Fun With Haskell: Introduction

Nathaniel Wesley Filardo

January 11, 2012

Course Metadata

- This slide deck:
- More functions
- Types
- ADTs
- Break
- Next slide deck: lazy evaluation and examples
- Coming up next: effects and monads

Functions
 Interlude: Some Words on Induction

How do we prove that every domino in a line falls?

- The domino that doesn't have one behind it is a base case. We push that one over, causing it to fall.
- Any domino that does have one behind it falls after that one does.
(Formal aside: Haskell does not, really, use induction, and inductive arguments are only "mostly" correct. Because it is lazy, it more properly is said to use the categorical dual, coinduction. I know; if you also know or are curious, we can get into it later. A good place to start is "Fast and Loose Reasoning is Morally Correct" [2].)

Functions
 Interlude: Some Words on Induction

What does this have to do with anything?

- Proofs are built up from smaller proofs.
- The line of 123787123 dominos all falls over because the prefix of 123787122 all fell over because because you pushed the first one over.

$$
\begin{gathered}
\text { Functions } \\
\text { Functions on Lists: length }
\end{gathered}
$$

length tells us the length of a list.

- How do we think about that using induction?
- What is the base case?
- What is the inductive case?

Functions
 Functions on Lists: length

length tells us the length of a list.

- How do we think about that using induction?
- What is the length of an empty list?
- What is the length of a non-empty list?

Functions
 Functions on Lists: length

length tells us the length of a list:
Length.hs

```
myLength [] = 0
myLength (x:xs) = 1 + myLength xs
```

(Disclaimer: this works but isn't how the library's function is defined. The details are important but we are not yet ready for them.)

Functions
 Functions on Lists: map

- map does something to each element of a list:

```
Prelude> map (+1) [1,2,3,4]
    [2,3,4,5]
Prelude> map Char.toLower "Hello, World!"
"hello, world!"
```


Functions
 Functions on Lists: map

- map does something to each element of a list:

```
Prelude> map (+1) [1,2,3,4]
    [2,3,4,5]
Prelude> map Char.toLower "Hello, World!"
"hello, world!"
```

- Which is to say

```
map _ [] = []
map f (x:xs) = f x : map f xs
```


Functions
 Functions on Lists: foldr

foldr is the one list function to rule them all:

- Foldr is "the natural eliminator" for lists.
- Which means that it captures the induction strategy on lists.
- Think of it as "replace nil with the base case and cons with the induction step."

$$
\begin{gathered}
\text { Functions } \\
\text { Functions on Lists: foldr }
\end{gathered}
$$

- Suppose we have a list

$$
2: 3: 5:[]
$$

- And we want to compute the product of all elements on it:

$$
2 * 3 * 5 * 1
$$

- Why did I choose to replace nil with 1 ?

In code, this substitution is done by foldr, which takes a function and the base case:

```
Prelude> foldr (*) 1 [2,3,5]
30
```


Functions
 Functions on Lists: foldr

One possible definition of foldr is

```
foldr f z [] = z
foldr f z (x:xs) = x 'f' (foldr f z xs)
```

So let's try some equational reasoning:

```
foldr (*) 1 [2,3,5]
2 * (foldr (*) 1 [3,5])
2 * (3 * (foldr (*) 1 [5]))
2 * (3 * (5 * foldr (*) 1 []))
2 * (3 * (5 * 1))
2 * (3 * 5)
2 * (15)
30
```

Functions
Functions on Lists: foldr

- We generated the expression $2 *(3 *(5 * 1))$.
- Isn't $((2 * 3) * 5) * 1$ just as good?
- The second is available, via foldl.
- The first follows the structure of the list; it is more "natural."
- If $x s$ is some list, what is

```
foldr (:) [] xs
```


Types

- Everybody sort of have a feel for what's going on?
- Now is an excellent time to stop and go back.

Types
 What are types?

- Types represent a coarsened version of your program
- $4,1+1$, sum $[1,1,2,3,5,8]$ all can have type Int.
- Saying that something is of type Int doesn't tell us which Int it is.
- This coarser program is easier to reason about.
- For the compiler...
- And for humans, too!
- In many cases, can get away without specifying them!
- It is convention and kind to other people to manually specify the type of top-level functions.
- Can specify types anywhere: excellent debugging tool.

Types
 What are types?

Can ask ghci what it has inferred a type to be:

```
Prelude> :t 1 < 2
1 < 2 :: Bool
Prelude> :t "Foo"
"Foo" :: [Char]
Prelude> let x = 1 :: Int
Prelude> :t (x, x+2)
(x, x+2) :: (Int, Int)
```

And it's not just "stuff" that has types! Functions have types:

```
Prelude> :t Char.toUpper
Char.toUpper :: Char -> Char
```

$$
\begin{gathered}
\text { Types } \\
\text { Polymorphic Types }
\end{gathered}
$$

- What is the type of the function fst?
- Why is this a tricky question?

$$
\begin{gathered}
\text { Types } \\
\text { Polymorphic Types }
\end{gathered}
$$

- fst has to specify that it takes a pair...
- But a pair of what?!
- Any pair!
- Use type variables to only partially specify the type.
fst : : (a,b) -> a
- This is called polymorphism.

> Types
> Higher-Order Types

The type of functions taking and/or returning functions!

- What is the type of foldr?
- What did it take?
- A function, replacing cons,
- A base case, replacing nil,
- A list.
- So we know it has a basic skeleton of

$$
? ? ? \rightarrow ? ? ? \rightarrow ? ? ? \rightarrow ? ? ?
$$

$$
\begin{gathered}
\text { Types } \\
\text { Higher-Order Types }
\end{gathered}
$$

- What is the type of foldr?
- Some refinement of

$$
? ? ? \rightarrow ? ? ? \rightarrow ? ? ? \rightarrow ? ? ?
$$

- Call the list elements a and the base case b

$$
? ? ? \rightarrow b \rightarrow[a] \rightarrow ? ? ?
$$

- The return type is the type of the base case (think: empty list)

$$
? ? ? \rightarrow b \rightarrow[a] \rightarrow b
$$

- The function takes an element and an intermediate and produces an intermediate:

$$
(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow[a] \rightarrow b
$$

Types
 Higher-Order Types: Partial Application

- Recall: function applications are just written f a b ...
- This isn't just clever (lack of) syntax!
- Consider foldr (\&\&) True.
- foldr :: (a -> b -> b) -> b -> [a] -> b,
- \&\& :: Bool -> Bool -> Bool,
- foldr (\&\&) :: Bool -> [Bool] -> Bool,
- True :: Bool,
- foldr (\&\&) True :: [Bool] -> Bool.
- Functions can be partially applied (unsaturated)
- The result is another function!

$$
\begin{gathered}
\text { Types } \\
\text { Higher-Order Types }
\end{gathered}
$$

- foldr in fact can be used to implement any function g of this form (i.e. given a z and a f):

```
g [] = z
g (x:xs) = f x (g xs)
```

- Then $g=$ foldr f z.
- Higher-order functions open the door to factoring out recursion strategies from processing functions.
- There's an entire (category-theoretic) landscape here, which we could get into if people are interested. [6, 5]

$$
\begin{aligned}
& \text { Types } \\
& \text { Type Classes }
\end{aligned}
$$

- Sometimes, many different types of things all have "the same ability."
- In Java, we could express this as an interface.
- Examples:
- Some things can be added, subtracted, ...
- Some things can be compared for equality or ordering
- Some things can be printed out
- Haskell groups types together into type classes.
- Please do not confuse these with OO classes.
- This gives us type-directed overloading in a nice way.
- A type may be a instance of a class.

> Types
> Type Classes

Consider equality:

- The class Eq specifies two functions:
class Eq a where

$$
\begin{aligned}
& (==):: \text { a }->\text { a }->\text { Boob } \\
& (/=): \text { a }->\text { a }->\text { Boob }
\end{aligned}
$$

- An instance might then look like:

$$
\begin{aligned}
& \text { instance Eq Dol where } \\
& \begin{aligned}
\text { True } & ==\text { True }=\text { True } \\
\text { False } & ==\text { False }=\text { True } \\
& ==- \\
\text { - } & =\text { False } \\
\{-\ldots & \text { - }\}
\end{aligned}
\end{aligned}
$$

> Types
> Type Classes

- Another instance might be

$$
\begin{aligned}
& \text { instance (Eq } a, \text { Eq } b)=>\text { Eq }(a, b) \text { where } \\
& (a, b)==(c, d)=(a==c) \& \&(b==d) \\
& \{-\ldots-\}
\end{aligned}
$$

- The (Eq a, Eq b) to the left of the double arrow => is called a context.
- It says that we can define equality on pairs if we have a definition of equality on the constituent types.

> Types
> Type Classes

- Try :info Eq at ghci's prompt.
- (The list will vary depending on which modules you have in scope; more on that some other day.)
- Try this: map $(+1)[1,2]==[2,3]$.

> Types
> Type Classes

- The Show class provides (among other fiddly bits) the show function:

```
class Show a where
    show :: a -> String
    -- ...
```

- Haskell uses a class called Num to capture the basics of numbers:

```
class (Eq a, Show a) => Num a where
    (+) :: a -> a -> a
    fromInteger :: Integer -> a
```

> Types
> Type Classes

- Ord refines equality for fully-ordered types:

```
class (Eq a) => Ord a where
    compare :: a -> a -> Ordering
    (<) :: a -> a -> Bool
    max :: a -> a -> a
```

- Enum captures what it means to be an enumerable type.
- Bounded adds limits.
- Other classes (e.g. Integral and Fractional) provide more numeric functionality:
- Only some types support division.
- Only some types can represent their own reciprocals.

$$
\begin{gathered}
\text { Types } \\
\text { Type Classes }
\end{gathered}
$$

- The Read class provides a (fragile!) parser:

```
read :: Read a => String -> a
```

- Useful when hacking things together, but don't depend on it.
- Throws exceptions when it can't read the right thing.

```
Prelude> read "3" :: Int
3
Prelude> read "\"Foo\"" :: String
"Foo"
```

$$
\begin{gathered}
\text { An Algebraic Take on Data } \\
\text { Recreating Pairs }
\end{gathered}
$$

- We aren't restricted to built-in data types.
- Define our own with data declarations.

MyPair.hs

```
data MyPair a b = MyPair a b
myFst (MyPair a b) = a
myMapSnd f (MyPair a b) = MyPair a (f b)
```

- Haskell programmers often pun and use the same name for the type and its constructor, especially when there's just one.
- Defining a data type gives us constructors and pattern matching destructors implicitly.

$$
\begin{gathered}
\text { An Algebraic Take on Data } \\
\text { Recreating Pairs }
\end{gathered}
$$

- Can also have larger products:
data Triple a b c = Triple a b c
data Quadruple ab c d = Quad ab c d
- (Usually you will see that constructors are shorter than type names, if it matters, because we write them more often).
- Can also have singletons:

```
data Id a = Id a
```

- And...zero-tons, pronounced "unit":

```
data () = ()
```

$$
\begin{aligned}
& \text { An Algebraic Take on Data } \\
& \text { Choices }
\end{aligned}
$$

- Many times, types are used to express choices.
- Sometimes we have Either an a or a b: data Either a b $=$ Left $\mathrm{a} \mid$ Right b
- The \mid indicates a choice of constructors (branch).
- Dually, a plurality of pattern matches to be done.
- Can have more than two constructors.
- Constructors do not need to take arguments.

```
An Algebraic Take on Data
    Choices: The Maybe Type
```

Do these things scare you?

- "NULL pointer dereference"
- Segmentation Fault (core dumped)
- "NullPointerException"

They probably should (Hoare [3]):
I call it my billion-dollar mistake. It was the invention of the null reference in 1965. [...] This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty years.

$$
\begin{gathered}
\text { An Algebraic Take on Data } \\
\text { Choices: The Maybe Type }
\end{gathered}
$$

- What do we really want, instead?
- Maybe we have Just a thing, or
- Maybe we have Nothing.
data Maybe a = Nothing | Just a

$$
\begin{aligned}
& \text { An Algebraic Take on Data } \\
& \text { Choices: The Maybe Type }
\end{aligned}
$$

- Hey, what's the head of an empty list?

```
Prelude> head []
*** Exception: Prelude.head: empty list
```

- Now that's not very nice!
- Especially because we can't catch exceptions in pure code! (More on that some other day.)
- But it's certainly the case (formally: a total function) that a list Maybe has a head:

```
safeHead [] = Nothing
safeHead (x:_) = Just x
```

$$
\begin{gathered}
\text { An Algebraic Take on Data } \\
\text { Recursive Types }
\end{gathered}
$$

- We've seen an example of a type that contains itself in one branch: a list.
- Binary trees are another excellent example of recursive types.
- A tree could be empty.
- Or it could have just one piece of data.
- Or a root with two children, each trees.

An Algebraic Take on Data Recursive Types

- We've seen an example of a type that contains itself in one branch: a list.
- Binary trees are another excellent example of recursive types.
- A tree could be empty.
- Or it could have just one piece of data.
- Or a root with two children, each trees.
- That translates naturally to the type:

```
data Tree a = Empty
    | Singleton a
    | Node a (Tree a) (Tree a)
```

- What is the equivalent of foldr on such a tree?

$$
\begin{aligned}
& \text { An Algebraic Take on Data } \\
& \text { What's "algebraic" about all this, anyway? }
\end{aligned}
$$

- Isomorphisms on types:
- Maybe $\mathrm{a} \simeq$ Either () a.
- $\mathrm{a}->\mathrm{b}->\mathrm{c} \simeq(\mathrm{a}, \mathrm{b})$-> c
- Let's talk about that second one:
- In C or Java, functions take all their arguments at once, making them (a,b) -> c.
- In functional languages, functions very often return other functions, called closures.
- They "close over" the arguments they have been given thus far.
- As we saw above, can be very handy: define and from foldr.
- The witnesses to the isomorphism are available as

$$
\begin{aligned}
& \text { curry :: ((a,b) -> c) -> a -> b -> c } \\
& \text { uncurry :: (a -> b }->\text { c) -> (a,b) -> c }
\end{aligned}
$$

> An Algebraic Take on Data What's "algebraic" about all this, anyway?

- Can build up (up to isomorphism) all of these kinds of data from combinators:

```
data Id f = Id f
data Const k f = Const k
data :+: a b f = Left (a f) | Right (b f)
data :*: a b f = Pair (a f, b f)
data Mu f = In (f (Mu f))
```

- $[a] \simeq M u(C o n s t():+:(C o n s t ~ a ~: *: ~ I d))$.
- Or more simply: $\operatorname{List}(a)=1+a * \operatorname{List}(a)$.

Bib

围 Available from: http://courses.cms.caltech.edu/ cs11/material/haskell/index.html.

圊 Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons.
Fast and loose reasoning is morally correct.
In Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
POPL '06, pages 206-217, New York, NY, USA, 2006.
ACM.
Available from: http://doi.acm.org/10.1145/
1111037.1111056,
doi:http://doi.acm.org/10.1145/1111037.1111056.
Tony Hoare.
Null references: The billion dollar mistake, 2009.

Available from: http://qconlondon.com/
london-2009/presentation/Null+References:
+The+Billion+Dollar+Mistake.
固 Hal Daumé III.
Yet another haskell tutorial.
2002-2006.
Available from: http://www.cs.utah.edu/~hal/htut/.
圄 Edward Kmett.
Rotten bananas, 2008.
Available from: http://comonad.com/reader/2008/ rotten-bananas/.

E Edward Kmett.
Recursion schemes: A field guide (redux), 2009.

Available from: http://comonad.com/reader/2009/ recursion-schemes/.

