Fun	Types	ADT
00 0000000	00 00 0000 0000000	00 0000 0 00

Fun With Haskell: Introduction

Nathaniel Wesley Filardo

January 11, 2012

3.5	
- M	ETA

Fun	Types	ADT
00 0000000	00 00 0000 0000000	00 0000 0 00

 $Course \ Metadata$

- This slide deck:
 - More functions
 - Types
 - ADTs
- Break
- Next slide deck: lazy evaluation and examples
- Coming up next: effects and monads

- 4	TOTO A
	P/LA

Fun	Types	ADT
•0	00	00
0000000	00	0000
	0000	0
	0000000	00

Functions Interlude: Some Words on Induction

How do we prove that every domino in a line falls?

- The domino that doesn't have one behind it is a **base case**. We push that one over, causing it to fall.
- Any domino that *does* have one behind it falls after that one does.

(Formal aside: Haskell does not, really, use induction, and inductive arguments are only "mostly" correct. Because it is lazy, it more properly is said to use the categorical dual, coinduction. I know; if you also know or are curious, we can get into it later. A good place to start is "Fast and Loose Reasoning is Morally Correct" [2].)

-			

Fun	Types	ADT
0000000	00 00 0000	00 0000
	0000000	00

Functions Interlude: Some Words on Induction

What does this have to do with anything?

- Proofs are built up from *smaller* proofs.
- The line of 123787123 dominos all falls over because the prefix of 123787122 all fell over because because you pushed the first one over.

-			

Fun	Types	ADT
00 0000000	00 00 0000 0000000	00 0000 0 00

Functions Functions on Lists: length

length tells us the length of a list.

- How do we think about that using induction?
- What is the base case?
- What is the inductive case?

-			

Fun	Types	ADT
○○ ○●○○○○○○	00 00 00000 0000000	00 0000 0 00

Functions Functions on Lists: length

length tells us the length of a list.

- How do we think about that using induction?
- What is the length of an empty list?
- What is the length of a non-empty list?

28	TOTO A
	P/LA

Fun	Types	ADT
00 0000000	00	00
	0000	000

Functions Functions on Lists: length

length tells us the length of a list:

Length.hs

myLength [] = 0
myLength (x:xs) = 1 + myLength xs

(Disclaimer: this works but isn't how the library's function is defined. The details are important but we are not yet ready for them.)

-	-	
	- 4	A CD/CT
	V I.	P/LA

Fun	Types	ADT
00 0000000	00 00 00000 0000000	00 0000 0 00

Functions Functions on Lists: map

• map does something to each element of a list:

```
Prelude> map (+1) [1,2,3,4]
[2,3,4,5]
Prelude> map Char.toLower "Hello, World!"
"hello, world!"
```

-	-	
	- 4	A CD/CT
	V I.	P/LA

Fun	Types	ADT
00 000●0000	00 00 0000 000000	00 0000 0 00

Functions Functions on Lists: map

• map does something to each element of a list:

```
Prelude> map (+1) [1,2,3,4]
[2,3,4,5]
Prelude> map Char.toLower "Hello, World!"
"hello, world!"
```

• Which is to say

map _ [] = []
map f (x:xs) = f x : map f xs

	-	
- N		
	.	P/LA

Fun	Types	ADT
00 0000000	00	00
	0000	0

foldr is the one list function to rule them all:

- Foldr is "the natural eliminator" for lists.
 - Which means that it *captures the induction strategy* on lists.
- Think of it as "replace nil with the base case and cons with the induction step."

-	
- 4	TOTO A
	P/LA

Fun	Types	ADT
00 00000000	00 00 00000 0000000	00 0000 0 00

• Suppose we have a list

2:3:5:[]

• And we want to compute the product of all elements on it:

$$2 * 3 * 5 * 1$$

• Why did I choose to replace nil with 1?

In code, this substitution is done by foldr, which takes a function and the base case:

- N.		DTD A
	ı	DIA

Fun	Types	ADT
00 000000€0	00 00 0000 0000000	00 0000 0 00

One possible definition of foldr is

foldr f z [] = z
foldr f z (x:xs) = x 'f' (foldr f z xs)

So let's try some equational reasoning:

```
foldr (*) 1 [2,3,5]
2 * (foldr (*) 1 [3,5])
2 * (3 * (foldr (*) 1 [5]))
2 * (3 * (5 * foldr (*) 1 []))
2 * (3 * (5 * 1))
2 * (3 * 5)
2 * (15)
30
```

-			

Fun	Types	ADT
00 0000000	00 00 0000 000000	00 0000 0 00

- We generated the expression 2 * (3 * (5 * 1)).
- Isn't ((2 * 3) * 5) * 1 just as good?
- The second is available, via foldl.
- The first *follows the structure of the list*; it is more "natural."
- If xs is some list, what is

foldr (:) [] xs

A	Fun	Types	ADT
	00 0000000	00 00 0000 000000	00 0000 0 00

Types

- Everybody sort of have a feel for what's going on?
- Now is an excellent time to stop and go back.

-	
- 4	TOTO A
	P/LA

F	UN
0	0
0	00000000

YPES		
0		
0		
0000		
000000		

ADI
00
0000
0
00

Types What are types?

- Types represent a *coarsened* version of your program
 - 4, 1+1, sum [1,1,2,3,5,8] all can have type Int.
 - Saying that something is of type Int doesn't tell us *which* Int it is.
- This coarser program is easier to reason about.
 - For the compiler...
 - And for humans, too!
- In many cases, can get away without specifying them!
 - It is convention and kind to other people to manually specify the type of top-level functions.
 - Can specify types anywhere: excellent debugging tool.

-	
- 4	TOTO A
	P/LA

Fun	Types	ADT
00 0000000	○● ○○ ○○○○	00 0000 0
	0000000	00

Types What are types?

Can ask ghci what it has inferred a type to be:

```
Prelude> :t 1 < 2
1 < 2 :: Bool
Prelude> :t "Foo"
"Foo" :: [Char]
Prelude> let x = 1 :: Int
Prelude> :t (x, x+2)
(x, x+2) :: (Int, Int)
```

And it's not just "stuff" that has types! Functions have types:

```
Prelude> :t Char.toUpper
Char.toUpper :: Char -> Char
```

	-	
- N		
	.	P/LA

Fun 00 00000000

Types	ADT
00	00
•0	0000
0000	0
0000000	00

Types Polymorphic Types

- What is the type of the function fst?
- Why is this a tricky question?

	-	
- N		
		P/LA

Fun	
00	
00000000	

Types	ADT
00	00
00	0000
0000	0
0000000	00

Types Polymorphic Types

- fst has to specify that it takes a pair...
- But a pair of what?!
- Any pair!
- Use type variables to only partially specify the type.

fst :: (a,b) \rightarrow a

• This is called **polymorphism**.

- 4	TOTO A
	P/LA

Fun	
00	
0000	0000

 Types
 AD

 ○○
 ○○

 ○○○
 ○○○

 ●○○○
 ○○

 ●○○○
 ○○

Types Higher-Order Types

The type of functions taking and/or returning functions!

- What is the type of foldr?
- What did it take?
 - A function, replacing cons,
 - A base case, replacing nil,
 - A list.
- So we know it has a basic skeleton of

 $??? \rightarrow ??? \rightarrow ??? \rightarrow ???$

-	
- 4	TOTO A
	P/LA

Fun	Types	
00	00	
0000000	00	
	0000	
	000000	

Types Higher-Order Types

- What is the type of foldr?
- Some refinement of

$$??? \rightarrow ??? \rightarrow ??? \rightarrow ???$$

• Call the list elements a and the base case b

$$??? \rightarrow b \rightarrow [a] \rightarrow ???$$

• The return type is the type of the base case (think: empty list)

$$??? \rightarrow b \rightarrow [a] \rightarrow b$$

• The function takes an element and an intermediate and produces an intermediate:

$$(a
ightarrow b
ightarrow b
ightarrow b
ightarrow [a]
ightarrow b$$

META.					
1X/1 H 1 / X					

Fun	Types	ADT
00	00	00
0000000	0000	00000
	0000000	00

Types Higher-Order Types: Partial Application

- Recall: function applications are just written f a b ...
- This isn't just clever (lack of) syntax!
- Consider foldr (&&) True.
 - foldr :: (a -> b -> b) -> b -> [a] -> b,
 - && :: Bool -> Bool -> Bool,
 - foldr (&&) :: Bool -> [Bool] -> Bool,
 - True :: Bool,
 - foldr (&&) True :: [Bool] -> Bool.
- Functions can be partially applied (unsaturated)
 - The result is another function!

- 4	TOTO A
	P/LA

IN	Types	ADT
)	00	00
000000	00	0000
	0000	0
	0000000	00

Types Higher-Order Types

 foldr in fact can be used to implement any function g of this form (i.e. given a z and a f):

- Then g = foldr f z.
- Higher-order functions open the door to factoring out *recursion strategies* from processing functions.
- There's an entire (category-theoretic) landscape here, which we could get into if people are interested. [6, 5]

- 4	TATES A
	ET A

Fun	Types	ADT
00	00	00
00000000	0000	0000
	●000000	00

- Sometimes, many different types of things all have "the same ability."
 - In Java, we could express this as an interface.
- Examples:
 - Some things can be added, subtracted,
 - Some things can be compared for equality or ordering
 - Some things can be printed out
- Haskell groups types together into type classes.
 - Please do not confuse these with OO classes.
- This gives us type-directed overloading in a nice way.
 - A type may be a **instance** of a class.

- 4	TOTO A
	P/LA

Fun	Types	ADT
00	00	00
00000000	00	0000
	0000	0
	000000	00

Consider equality:

• The class Eq specifies two functions:

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

• An instance might then look like:

instance Eq Bool where True == True = True False == False = True _ == _ = False {- ... -}

-			

Fun	Types	ADT
00	00	00
00000000	0000	0000
	000000	00

• Another instance might be

- The (Eq a, Eq b) to the left of the double arrow => is called a **context**.
- It says that we can define equality on pairs if we have a definition of equality on the constituent types.

- 4	TOTO A
	P/LA

Fun	Types	ADT
00	00	00
0000000	00	0000
	0000	0
	0000000	00

- Try : info Eq at ghci's prompt.
 - (The list will vary depending on *which modules* you have in scope; more on that some other day.)
- Try this: map (+1) [1,2] == [2,3].

Fun	Types	ADT
00 00000000	00 00 0000 0000	00 0000 0 00

• The Show class provides (among other fiddly bits) the show function:

class Show a where
 show :: a -> String
 -- ...

• Haskell uses a class called Num to capture the basics of numbers:

```
class (Eq a, Show a) => Num a where
  (+) :: a -> a -> a
  -- ...
  fromInteger :: Integer -> a
```

Fun	Types	ADT
00 0000000	00 00 00000 00000€0	00 0000 0 00

• Ord refines equality for fully-ordered types:

```
class (Eq a) => Ord a where
    compare :: a -> a -> Ordering
    (<) :: a -> a -> Bool
    max :: a -> a -> a
    -- ...
```

- Enum captures what it means to be an enumerable type.
- Bounded adds limits.
- Other classes (e.g. Integral and Fractional) provide more numeric functionality:
 - Only some types support division.
 - Only some types can represent their own reciprocals.

	-	
- A		D A
		L A

Fun	Types	ADT
00	00	00
00000000	0000	0000
	000000	00

• The Read class provides a (fragile!) parser:

read :: Read a => String -> a

- Useful when hacking things together, but don't depend on it.
- Throws exceptions when it can't read the right thing.

```
Prelude> read "3" :: Int
3
Prelude> read "\"Foo\"" :: String
"Foo"
```

- A.		TOTO A
	œ	LIA

Fun	Types	ADT
00 0000000	00 00 0000	• 0 0000
	0000000	00

An Algebraic Take on Data Recreating Pairs

- We aren't restricted to built-in data types.
- Define our own with data declarations.

MyPair.hs

data MyPair a b = MyPair a b
myFst (MyPair a b) = a
myMapSnd f (MyPair a b) = MyPair a (f b)

- Haskell programmers often pun and use the same name for the type and its constructor, especially when there's just one.
- Defining a data type gives us constructors and pattern matching *destructors* implicitly.

'A	Fun	Types	ADT
	00	00	00
		0000	000

An Algebraic Take on Data Recreating Pairs

• Can also have larger **product**s:

data Triple a b c = Triple a b c data Quadruple a b c d = Quad a b c d

- (Usually you will see that constructors are shorter than type names, if it matters, because we write them more often).
- Can also have singletons:

data Id a = Id a

• And. . . zero-tons, pronounced "unit":

data () = ()

- 4	TOTO A
	P/LA

	Types	ADT
	00	00
0000	00	0000
	0000000	00

An Algebraic Take on Data Choices

- Many times, types are used to express choices.
- Sometimes we have **Either** an a or a b:

data Either a b = Left a | Right b

- The | indicates a choice of constructors (branch).
 - Dually, a plurality of pattern matches to be done.
- Can have more than two constructors.
- Constructors do not need to take arguments.

	-	
- N		
		P/LA

Fun
00
00000000

Types
00
00
0000
0000000

ADT
00
0000
00

An Algebraic Take on Data Choices: The Maybe Type

Do these things scare you?

- "NULL pointer dereference"
 - Segmentation Fault (core dumped)
- "NullPointerException"

They probably should (Hoare [3]):

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. [...] This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty years.

	-	
- N		
		P/LA

F	UN				
0	0				
0	00	00	00	0	

Types	
00	
00	
0000	
0000000	

ADT
00
0

An Algebraic Take on Data Choices: The Maybe Type

- What do we really want, instead?
- Maybe we have Just a thing, or
- Maybe we have Nothing.

data Maybe a = Nothing | Just a

-			

Fun		
00		

An Algebraic Take on Data Choices: The Maybe Type

• Hey, what's the head of an empty list?

```
Prelude> head []
*** Exception: Prelude.head: empty list
```

- Now that's not very nice!
 - Especially because we can't catch exceptions in pure code! (More on that some other day.)
- But it's certainly the case (formally: a total function) that a list Maybe has a head:

safeHead [] = Nothing
safeHead (x:_) = Just x

ADT 00 000

- A.	TOTTO A	
	LIA	

N		
000000		

00 00 0000 00000000 ADT 00 0000 • 00

An Algebraic Take on Data Recursive Types

- We've seen an example of a type that contains itself in one branch: a list.
- Binary trees are another excellent example of recursive types.
 - A tree could be empty.
 - Or it could have just one piece of data.
 - Or a root with two children, each trees.

3.4	
	BULLA

Fun	
00000000	

Types 00 0000 000000000 ADT 00 0000

An Algebraic Take on Data Recursive Types

- We've seen an example of a type that contains itself in one branch: a list.
- Binary trees are another excellent example of recursive types.
 - A tree could be empty.
 - Or it could have just one piece of data.
 - Or a root with two children, each trees.
- That translates naturally to the type:

data Tree a = Empty | Singleton a | Node a (Tree a) (Tree a)

• What is the equivalent of foldr on such a tree?

/	Fun	Types	ADT
	00	00	00
	0000000	0000	0
		000000	•0

An Algebraic Take on Data What's "algebraic" about all this, anyway?

- Isomorphisms on types:
 - Maybe a \simeq Either () a.
 - a -> b -> c \simeq (a,b) -> c
- Let's talk about that second one:
 - In C or Java, functions take all their arguments at once, making them (a,b) -> c.
 - In functional languages, functions very often return other functions, called **closures**.
 - They "close over" the arguments they have been given thus far.
 - As we saw above, can be very handy: define and from foldr.
 - The witnesses to the isomorphism are available as

curry :: ((a,b) -> c) -> a -> b -> c uncurry :: (a -> b -> c) -> (a,b) -> c

ΓA	Fun	Types	ADT
	00 0000000	00 00 0000	00 0000 0

An Algebraic Take on Data What's "algebraic" about all this, anyway?

• Can build up (up to isomorphism) all of these kinds of data from combinators:

```
data Id f = Id f
data Const k f = Const k
data :+: a b f = Left (a f) | Right (b f)
data :*: a b f = Pair (a f, b f)
data Mu f = In (f (Mu f))
```

- [a] \simeq Mu (Const () :+: (Const a :*: Id)).
- Or more simply: List(a) = 1 + a * List(a).

ETA	Fun	Types	ADT
	00 0000000	00 00 0000 00000	00 0000 0 00

Bib

- Available from: http://courses.cms.caltech.edu/ cs11/material/haskell/index.html.
- Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons.

Fast and loose reasoning is morally correct.

In Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '06, pages 206–217, New York, NY, USA, 2006. ACM.

Available from: http://doi.acm.org/10.1145/ 1111037.1111056,

doi:http://doi.acm.org/10.1145/1111037.1111056.

Tony Hoare.

Null references: The billion dollar mistake, 2009.

Types	
00	
00	
0000	
0000000	

ADT
00
0000
00

Available from: http://qconlondon.com/ london-2009/presentation/Null+References: +The+Billion+Dollar+Mistake.

📔 Hal Daumé III.

Yet another haskell tutorial.

2002-2006.

Available from: http://www.cs.utah.edu/~hal/htut/.

Edward Kmett.

Rotten bananas, 2008.

Available from: http://comonad.com/reader/2008/ rotten-bananas/.

Edward Kmett.

Recursion schemes: A field guide (redux), 2009.

- 4	TOTO A
	P/LA

Fun	Types	ADT
00 0000000	00 00 00000 000000	00 0000 0 00

Available from: http://comonad.com/reader/2009/ recursion-schemes/.