
Meta Fun Types ADT

Fun With Haskell: Introduction

Nathaniel Wesley Filardo

January 11, 2012

1 / 37

Meta Fun Types ADT

Course Metadata

� This slide deck:

� More functions
� Types
� ADTs

� Break

� Next slide deck: lazy evaluation and examples

� Coming up next: effects and monads

2 / 37

Meta Fun Types ADT

Functions

Interlude: Some Words on Induction

How do we prove that every domino in a line falls?

� The domino that doesn’t have one behind it is a base

case. We push that one over, causing it to fall.

� Any domino that does have one behind it falls after that
one does.

(Formal aside: Haskell does not, really, use induction, and inductive arguments are only “mostly” correct. Because

it is lazy, it more properly is said to use the categorical dual, coinduction. I know; if you also know or are curious,

we can get into it later. A good place to start is “Fast and Loose Reasoning is Morally Correct” [2].)

3 / 37

Meta Fun Types ADT

Functions

Interlude: Some Words on Induction

What does this have to do with anything?

� Proofs are built up from smaller proofs.

� The line of 123787123 dominos all falls over because the
prefix of 123787122 all fell over because
. because you pushed the first one over.

4 / 37

Meta Fun Types ADT

Functions

Functions on Lists: length

length tells us the length of a list.

� How do we think about that using induction?

� What is the base case?

� What is the inductive case?

5 / 37

Meta Fun Types ADT

Functions

Functions on Lists: length

length tells us the length of a list.

� How do we think about that using induction?

� What is the length of an empty list?

� What is the length of a non-empty list?

6 / 37

Meta Fun Types ADT

Functions

Functions on Lists: length

length tells us the length of a list:

Length.hs

myLength [] = 0

myLength (x:xs) = 1 + myLength xs

(Disclaimer: this works but isn’t how the library’s function is

defined. The details are important but we are not yet ready for

them.)

7 / 37

Meta Fun Types ADT

Functions

Functions on Lists: map

� map does something to each element of a list:

Prelude> map (+1) [1,2,3,4]

[2,3,4,5]

Prelude> map Char.toLower "Hello, World!"
"hello, world!"

8 / 37

Meta Fun Types ADT

Functions

Functions on Lists: map

� map does something to each element of a list:

Prelude> map (+1) [1,2,3,4]

[2,3,4,5]

Prelude> map Char.toLower "Hello, World!"
"hello, world!"

� Which is to say

map _ [] = []

map f (x:xs) = f x : map f xs

8 / 37

Meta Fun Types ADT

Functions

Functions on Lists: foldr

foldr is the one list function to rule them all:

� Foldr is “the natural eliminator” for lists.

� Which means that it captures the induction strategy on
lists.

� Think of it as “replace nil with the base case and cons
with the induction step.”

9 / 37

Meta Fun Types ADT

Functions

Functions on Lists: foldr

� Suppose we have a list

2 : 3 : 5 : []

� And we want to compute the product of all elements on
it:

2 ∗ 3 ∗ 5 ∗ 1

� Why did I choose to replace nil with 1?

In code, this substitution is done by foldr, which takes a
function and the base case:

Prelude> foldr (*) 1 [2,3,5]

30

10 / 37

Meta Fun Types ADT

Functions

Functions on Lists: foldr

One possible definition of foldr is

foldr f z [] = z

foldr f z (x:xs) = x ‘f‘ (foldr f z xs)

So let’s try some equational reasoning:

foldr (*) 1 [2,3,5]

2 * (foldr (*) 1 [3,5])

2 * (3 * (foldr (*) 1 [5]))

2 * (3 * (5 * foldr (*) 1 []))

2 * (3 * (5 * 1))

2 * (3 * 5)

2 * (15)

30

11 / 37

Meta Fun Types ADT

Functions

Functions on Lists: foldr

� We generated the expression 2 ∗ (3 ∗ (5 ∗ 1)).

� Isn’t ((2 ∗ 3) ∗ 5) ∗ 1 just as good?

� The second is available, via foldl.

� The first follows the structure of the list; it is more
“natural.”

� If xs is some list, what is

foldr (:) [] xs

12 / 37

Meta Fun Types ADT

Types

� Everybody sort of have a feel for what’s going on?

� Now is an excellent time to stop and go back.

13 / 37

Meta Fun Types ADT

Types

What are types?

� Types represent a coarsened version of your program

� 4, 1+1, sum [1,1,2,3,5,8] all can have type Int.
� Saying that something is of type Int doesn’t tell us

which Int it is.

� This coarser program is easier to reason about.

� For the compiler. . .
� And for humans, too!

� In many cases, can get away without specifying them!

� It is convention and kind to other people to manually
specify the type of top-level functions.

� Can specify types anywhere: excellent debugging tool.

14 / 37

Meta Fun Types ADT

Types

What are types?

Can ask ghci what it has inferred a type to be:

Prelude> :t 1 < 2

1 < 2 :: Bool

Prelude> :t "Foo"

"Foo" :: [Char]

Prelude> let x = 1 :: Int

Prelude> :t (x, x+2)

(x, x+2) :: (Int, Int)

And it’s not just “stuff” that has types! Functions have types:

Prelude> :t Char.toUpper

Char.toUpper :: Char -> Char

15 / 37

Meta Fun Types ADT

Types

Polymorphic Types

� What is the type of the function fst?

� Why is this a tricky question?

16 / 37

Meta Fun Types ADT

Types

Polymorphic Types

� fst has to specify that it takes a pair. . .

� But a pair of what?!

� Any pair!

� Use type variables to only partially specify the type.

fst :: (a,b) -> a

� This is called polymorphism.

17 / 37

Meta Fun Types ADT

Types

Higher-Order Types

The type of functions taking and/or returning functions!

� What is the type of foldr?

� What did it take?

� A function, replacing cons,
� A base case, replacing nil,
� A list.

� So we know it has a basic skeleton of

??? →??? →??? →???

18 / 37

Meta Fun Types ADT

Types

Higher-Order Types

� What is the type of foldr?
� Some refinement of

??? →??? →??? →???

� Call the list elements a and the base case b

??? → b → [a] →???

� The return type is the type of the base case (think:
empty list)

??? → b → [a] → b

� The function takes an element and an intermediate and
produces an intermediate:

(a → b → b) → b → [a] → b

19 / 37

Meta Fun Types ADT

Types

Higher-Order Types: Partial Application

� Recall: function applications are just written f a b ...

� This isn’t just clever (lack of) syntax!

� Consider foldr (&&) True.

� foldr :: (a -> b -> b) -> b -> [a] -> b,
� && :: Bool -> Bool -> Bool,
� foldr (&&) :: Bool -> [Bool] -> Bool,
� True :: Bool,
� foldr (&&) True :: [Bool] -> Bool.

� Functions can be partially applied (unsaturated)

� The result is another function!

20 / 37

Meta Fun Types ADT

Types

Higher-Order Types

� foldr in fact can be used to implement any function g of
this form (i.e. given a z and a f):

g [] = z

g (x:xs) = f x (g xs)

� Then g = foldr f z.

� Higher-order functions open the door to factoring out
recursion strategies from processing functions.

� There’s an entire (category-theoretic) landscape here,
which we could get into if people are interested. [6, 5]

21 / 37

Meta Fun Types ADT

Types

Type Classes

� Sometimes, many different types of things all have “the
same ability.”

� In Java, we could express this as an interface.

� Examples:

� Some things can be added, subtracted, . . .
� Some things can be compared for equality or ordering
� Some things can be printed out

� Haskell groups types together into type classes.

� Please do not confuse these with OO classes.

� This gives us type-directed overloading in a nice way.

� A type may be a instance of a class.

22 / 37

Meta Fun Types ADT

Types

Type Classes

Consider equality:
� The class Eq specifies two functions:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

� An instance might then look like:

instance Eq Bool where

True == True = True

False == False = True

_ == _ = False

{- ... -}
23 / 37

Meta Fun Types ADT

Types

Type Classes

� Another instance might be

instance (Eq a, Eq b) => Eq (a,b) where

(a,b) == (c,d) = (a == c) && (b == d)

{- ... -}

� The (Eq a, Eq b) to the left of the double arrow => is
called a context.

� It says that we can define equality on pairs if we have a
definition of equality on the constituent types.

24 / 37

Meta Fun Types ADT

Types

Type Classes

� Try :info Eq at ghci’s prompt.

� (The list will vary depending on which modules you have
in scope; more on that some other day.)

� Try this: map (+1) [1,2] == [2,3].

25 / 37

Meta Fun Types ADT

Types

Type Classes

� The Show class provides (among other fiddly bits) the
show function:

class Show a where

show :: a -> String

-- ...

� Haskell uses a class called Num to capture the basics of
numbers:

class (Eq a, Show a) => Num a where

(+) :: a -> a -> a

-- ...

fromInteger :: Integer -> a

26 / 37

Meta Fun Types ADT

Types

Type Classes

� Ord refines equality for fully-ordered types:

class (Eq a) => Ord a where

compare :: a -> a -> Ordering

(<) :: a -> a -> Bool

max :: a -> a -> a

-- ...

� Enum captures what it means to be an enumerable type.

� Bounded adds limits.
� Other classes (e.g. Integral and Fractional) provide
more numeric functionality:

� Only some types support division.
� Only some types can represent their own reciprocals.

27 / 37

Meta Fun Types ADT

Types

Type Classes

� The Read class provides a (fragile!) parser:

read :: Read a => String -> a

� Useful when hacking things together, but don’t depend
on it.

� Throws exceptions when it can’t read the right thing.

Prelude> read "3" :: Int

3

Prelude> read "\"Foo\"" :: String

"Foo"

28 / 37

Meta Fun Types ADT

An Algebraic Take on Data

Recreating Pairs

� We aren’t restricted to built-in data types.

� Define our own with data declarations.

MyPair.hs

data MyPair a b = MyPair a b

myFst (MyPair a b) = a

myMapSnd f (MyPair a b) = MyPair a (f b)

� Haskell programmers often pun and use the same name
for the type and its constructor, especially when there’s
just one.

� Defining a data type gives us constructors and pattern
matching destructors implicitly.

29 / 37

Meta Fun Types ADT

An Algebraic Take on Data

Recreating Pairs

� Can also have larger products:

data Triple a b c = Triple a b c

data Quadruple a b c d = Quad a b c d

� (Usually you will see that constructors are shorter than
type names, if it matters, because we write them more
often).

� Can also have singletons:

data Id a = Id a

� And. . . zero-tons, pronounced “unit”:

data () = ()

30 / 37

Meta Fun Types ADT

An Algebraic Take on Data

Choices

� Many times, types are used to express choices.

� Sometimes we have Either an a or a b:

data Either a b = Left a | Right b

� The | indicates a choice of constructors (branch).

� Dually, a plurality of pattern matches to be done.

� Can have more than two constructors.

� Constructors do not need to take arguments.

31 / 37

Meta Fun Types ADT

An Algebraic Take on Data

Choices: The Maybe Type

Do these things scare you?

� “NULL pointer dereference”

� Segmentation Fault (core dumped)

� “NullPointerException”

They probably should (Hoare [3]):

I call it my billion-dollar mistake. It was the
invention of the null reference in 1965. [. . .] This
has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion
dollars of pain and damage in the last forty years.

32 / 37

Meta Fun Types ADT

An Algebraic Take on Data

Choices: The Maybe Type

� What do we really want, instead?

� Maybe we have Just a thing, or

� Maybe we have Nothing.

data Maybe a = Nothing | Just a

33 / 37

Meta Fun Types ADT

An Algebraic Take on Data

Choices: The Maybe Type

� Hey, what’s the head of an empty list?

Prelude> head []

*** Exception: Prelude.head: empty list

� Now that’s not very nice!
� Especially because we can’t catch exceptions in pure

code! (More on that some other day.)

� But it’s certainly the case (formally: a total function)
that a list Maybe has a head:

safeHead [] = Nothing

safeHead (x:_) = Just x

34 / 37

Meta Fun Types ADT

An Algebraic Take on Data

Recursive Types

� We’ve seen an example of a type that contains itself in
one branch: a list.

� Binary trees are another excellent example of recursive
types.

� A tree could be empty.
� Or it could have just one piece of data.
� Or a root with two children, each trees.

35 / 37

Meta Fun Types ADT

An Algebraic Take on Data

Recursive Types

� We’ve seen an example of a type that contains itself in
one branch: a list.

� Binary trees are another excellent example of recursive
types.

� A tree could be empty.
� Or it could have just one piece of data.
� Or a root with two children, each trees.

� That translates naturally to the type:

data Tree a = Empty

| Singleton a

| Node a (Tree a) (Tree a)

� What is the equivalent of foldr on such a tree?
35 / 37

Meta Fun Types ADT

An Algebraic Take on Data

What’s “algebraic” about all this, anyway?

� Isomorphisms on types:
� Maybe a ≃ Either () a.
� a -> b -> c ≃ (a,b) -> c

� Let’s talk about that second one:
� In C or Java, functions take all their arguments at once,

making them (a,b) -> c.
� In functional languages, functions very often return other

functions, called closures.
� They “close over” the arguments they have been given

thus far.
� As we saw above, can be very handy: define and from

foldr.

� The witnesses to the isomorphism are available as

curry :: ((a,b) -> c) -> a -> b -> c

uncurry :: (a -> b -> c) -> (a,b) -> c
36 / 37

Meta Fun Types ADT

An Algebraic Take on Data

What’s “algebraic” about all this, anyway?

� Can build up (up to isomorphism) all of these kinds of
data from combinators:

data Id f = Id f

data Const k f = Const k

data :+: a b f = Left (a f) | Right (b f)

data :*: a b f = Pair (a f, b f)

data Mu f = In (f (Mu f))

� [a] ≃ Mu (Const () :+: (Const a :*: Id)).

� Or more simply: List(a) = 1 + a ∗ List(a).

37 / 37

Meta Fun Types ADT

Bib

Available from: http://courses.cms.caltech.edu/
cs11/material/haskell/index.html.

Nils Anders Danielsson, John Hughes, Patrik Jansson, and
Jeremy Gibbons.
Fast and loose reasoning is morally correct.
In Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
POPL ’06, pages 206–217, New York, NY, USA, 2006.
ACM.
Available from: http://doi.acm.org/10.1145/
1111037.1111056,
doi:http://doi.acm.org/10.1145/1111037.1111056.

Tony Hoare.
Null references: The billion dollar mistake, 2009.

37 / 37

http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://doi.acm.org/10.1145/1111037.1111056
http://doi.acm.org/10.1145/1111037.1111056
http://dx.doi.org/http://doi.acm.org/10.1145/1111037.1111056

Meta Fun Types ADT

Available from: http://qconlondon.com/
london-2009/presentation/Null+References:

+The+Billion+Dollar+Mistake.

Hal Daumé III.
Yet another haskell tutorial.
2002–2006.
Available from: http://www.cs.utah.edu/~hal/htut/.

Edward Kmett.
Rotten bananas, 2008.
Available from: http://comonad.com/reader/2008/
rotten-bananas/.

Edward Kmett.
Recursion schemes: A field guide (redux), 2009.

37 / 37

http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake
http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake
http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake
http://www.cs.utah.edu/~hal/htut/
http://comonad.com/reader/2008/rotten-bananas/
http://comonad.com/reader/2008/rotten-bananas/

Meta Fun Types ADT

Available from: http://comonad.com/reader/2009/
recursion-schemes/.

37 / 37

http://comonad.com/reader/2009/recursion-schemes/
http://comonad.com/reader/2009/recursion-schemes/

	Course Metadata
	Functions
	Interlude: Some Words on Induction
	Functions on Lists

	Types
	What are types?
	Polymorphic Types
	Higher-Order Types
	Type Classes

	An Algebraic Take on Data
	Recreating Pairs
	Choices
	Recursive Types
	What's ``algebraic'' about all this, anyway?

