
Dyna: Extending Datalog For Modern AI⋆

Jason Eisner and Nathaniel W. Filardo

Johns Hopkins University
Computer Science Department

3400 N. Charles Ave.
Baltimore, MD 21218 USA

http://www.cs.jhu.edu/~{jason,nwf}/
{jason,nwf}@cs.jhu.edu

Abstract. Modern statistical AI systems are quite large and complex;
this interferes with research, development, and education. We point out
that most of the computation involves database-like queries and updates
on complex views of the data. Specifically, recursive queries look up and
aggregate relevant or potentially relevant values. If the results of these
queries are memoized for reuse, the memos may need to be updated

through change propagation. We propose a declarative language, which
generalizes Datalog, to support this work in a generic way. Through ex-
amples, we show that a broad spectrum of AI algorithms can be concisely
captured by writing down systems of equations in our notation. Many
strategies could be used to actually solve those systems. Our examples
motivate certain extensions to Datalog, which are connected to functional
and object-oriented programming paradigms.

1 Why a New Data-Oriented Language for AI?

Modern AI systems are frustratingly big, making them time-consuming to en-
gineer and difficult to modify. In this chapter, we describe our work toward a
declarative language that was motivated originally by various use cases in AI.
Our goal is to make it easier to specify a wide range of new systems that are
more or less in the mold of existing AI systems. Our declarative language should
simplify inferential computation in the same way that the declarative language
of regular expressions has simplified string pattern matching and transduction.

All areas of AI have become data-intensive, owing to the flood of data and the
pervasiveness of statistical modeling and machine learning. A system’s exten-

sional data (inputs) include not only current sensory input but also background

⋆ This chapter has been condensed for publication; the full version is available as [22].
This material is based on work supported by the National Science Foundation under
Grants No. 0347822 and 0964681 to the first author, and by a graduate fellowship
to the second author from the Human Language Technology Center of Excellence,
Johns Hopkins University. We thank Wren N. G. Thornton and John Blatz for many
stimulating discussions. We also thank Yanif Ahmad, Adam Teichert, Jason Smith,
Nicholas Andrews, and Veselin Stoyanov for timely comments on the writing.

knowledge, large collections of training examples, and parameters trained from
past experience. The intensional data (intermediate results and outputs) in-
clude combinatorially many possible analyses and conclusions derived from the
inputs.

Each AI system usually builds and maintains its own custom data structures,
so that it can efficiently query and update the current state of the system.
Although many conceptual ideas are reused across AI, each implemented system
tends to include its own specialized code for storage and inference, specialized to
the data and computations used by that system. This turns a small mathematical
abstraction into a large optimized implementation. It is difficult to change either
the abstract computation or the storage and execution strategy because they
are intertwined throughout the codebase. This also means that reusable general
strategies have to be instantiated anew for each implemented system, and cannot
even be easily described in an abstract way.

As an alternative, we are working to develop an appealing declarative lan-
guage, Dyna, for concise specification of algorithms, with a compiler that turns
such specifications into efficient code for storage and inference. Our goal is to
produce a language that practitioners will actually use.

The heart of this long paper is the collection of suggestive Dyna code ex-
amples in §3.1. Readers are thus encouraged to browse at their leisure through
Figures 1–12, which are relatively self-contained. Readers are also welcome to
concentrate on the main flow of the paper, skipping over details that have been
relegated for this reason to footnotes and figures.

1.1 AI and Databases Today

Is a new language necessary? That is, why don’t AI researchers already use
database systems to manage their data [8]? After all, any procedural AI program
is free to store its data in an external database. It could use Datalog or SQL to
express queries against the current state of a database, perform some procedural
computation on the results, and then store the results back to the database.

Unfortunately, there is rather little in most AI systems that looks like typical
database queries:

– Queries in a standard language like Datalog or SQL are not expressive enough
for any one query to capture the entire AI computation. The restrictions are
intended to guarantee that each query terminates in polynomial time and
has a single well-defined answer. Yet the overall AI algorithm may not be
able to make those guarantees anyway—so the effect of the restrictions is
only to partition the algorithm artificially into many smaller queries. This
limits the opportunities for the database system itself to plan, rearrange,
and parallelize computations.

– It may be inefficient to implement the algorithm in terms of database queries.
AI systems typically work with lots of smaller, in-memory, ephemeral, write-
heavy data sets often accessed at the level of individual records. For example,
upon creating a promising hypothesis, the AI system might try to score it or

extend it or compute its consequences, which involves looking up and stor-
ing individual records related to that specific hypothesis. Channeling these
record-at-a-time queries and updates through a standard database would
have considerable overhead.

– Standard database languages do not support features for programming-in-
the-large, such as modules, structured objects, or inheritance.

In this setting, switching from a data structure library to a relational database
is likely to hurt performance without significantly easing implementation.

1.2 A Declarative Alternative

Our approach instead eliminates most of the procedural program, instead spec-
ifying its computations declaratively. We build on Datalog to propose a con-
venient, elegantly concise notation for specifying the systems of equations that
relate intensional and extensional data. This is the focus of §2, beginning with
a review of ordinary Datalog in §2.1.

A program in our Dyna language specifies what we call a dynabase. Recall
that a deductive database [11,56] contains not only extensional relations but
also rules (usually Datalog rules or some other variant on Horn clauses) that
define additional intensional relations, similar to views. Our term “dynabase”
emphasizes that our deductive databases are dynamic: they can be declaratively
extended into new dynabases that have modified extensional data, with conse-
quent differences in the intensional data.

Because a Dyna program merely specifies a dynabase, it has no serial I/O
or side effects. How, then, are dynabases used in a procedural environment? A
running process, written in one’s favorite procedural language, which does have
I/O and side effects, can create a dynabase and update it serially by adding
extensional data. At any time, the process can query the dynabase to retrieve
either the current extensional data, or intensional data that are defined in terms
of the extensional data. As the process updates the extensional data, the inten-
sional data that depend on it (possibly in other dynabases) are automatically
maintained, as in a spreadsheet. Carrying out the query and update operations
requires the “heavy computational lifting” needed in AI for search, deduction,
abduction, message passing, etc. However, the needed computations are speci-
fied only declaratively and at a high level of abstraction. They are carried out
by the Dyna execution engine (eagerly or lazily) as needed to serve the process.

Essentially, a Dyna program is a set of equational schemata, which are similar
to Datalog rules with (non-stratified) negation and aggregation. These schemata
together with the extensional data define a possibly infinite system of equations,
and the queriable “contents” of the dynabase come from a solution to this system.
We give a gentle introduction in §2.3, and sketch a provisional semantics in an
appendix to the full version [22].

Dyna does extend Datalog in several ways, in part by relaxing restrictions
(§2.4). It is Turing-complete, so that the full computation needed by an AI
system can be triggered by a single query against a dynabase. Thus it is not

necessary to specify which data to look up when, or whether or where to store
the results. The resulting Turing-completeness gives greater freedom to both the
Dyna programmer and the execution model, along with greater responsibility.
Dyna also includes programming language features that improve its usability,
such as typing, function evaluation, encapsulation, inheritance, and reflection.

Finally, Dyna’s syntax for aggregation is very concise (even compared to other
logic notations, let alone explicit loops) because its provable items have arbitrary
values, not just truth values. Evaluating items in place makes it possible to write
equations quite directly, with arithmetic and nested function evaluation.

We show and justify some of our extensions by way of various examples
from AI in §3. As Figures 1–12 illustrate, Dyna programs are startlingly short
relative to more traditional, procedural versions. They naturally support record-
at-a-time execution strategies (§2.6), as well as automatic differentiation (§3.1)
and change propagation (§4.3), which are practically very important. Dynabases
are modular and can be easily integrated with one another into larger programs
(§2.7). Finally, they do not specify any particular storage or execution strategies,
leaving opportunities for both automatic and user-directed optimizations that
preserve correctness.

1.3 Storage and Execution Strategies

In this paper, we focus on the expressivity and uses of the Dyna language, as a
user of Dyna would. From this point of view, the underlying computation order,
indexing, and storage are distractions from a Dyna program’s fundamentally
declarative specification, and are relegated to an execution model—just as or-
dinary Datalog or SQL is a declarative language that leaves query optimization
up to the database engine.

Actually computing and updating intensional data under a Dyna program
may involve recursive internal queries and other work. However, this happens in
some implementation-dependent order that can be tuned manually or automat-
ically without affecting correctness.

The natural next questions concern this query and update planning, as well
as physical design. How do we systematize the space of execution strategies and
optimizations? Given a particular Dyna program and workload, can a generic
Dyna engine discover the algorithms and data structures that an expert would
choose by hand?

By showing in this paper that Dyna is capable of describing a wide range of
computations, we mean to argue that finding efficient execution strategies for
Dyna constitutes a substantial general program of research on algorithms for AI

and logic programming.1 After all, one would like a declarative solution of a given
problem to exploit the relevant tricks used by the state-of-the-art procedural so-
lutions. But then it is necessary to generalize these tricks into strategies that can

1 More restricted declarative formalisms have developed substantial communities that
work on efficient execution: propositional satisfiability, integer linear programming,
queries and physical design in relational databases, etc.

be incorporated more generally into the Dyna runtime engine or encapsulated
as general Dyna-to-Dyna program transformations [21,13]. These strategies may
then be applied in new contexts. Building a wide range of tricks and strategies
into the Dyna environment also raises the issue of how to manually specify and
automatically tune strategies that work well on a particular workload.

Algorithms and pseudocode for a fragment of Dyna—the Dyna 1 prototype—
appeared in [23]. We are now considering a much larger space of execution strate-
gies, supported by type and mode systems (cf. [53]). Again, the present paper
has a different focus; but a high-level discussion of some of the many interesting
issues can be found in the final sections of the full version [22].

2 Basic Features of the Language

Our goal in this section is to sketch just enough of Dyna that readers will be able
to follow our AI examples in the next section. After quickly reviewing Datalog,
we explain how Dyna augments Datalog by proving that terms have particular
values, rather than merely proving that they are true; by relaxing certain re-
strictions; and by introducing useful notions of encapsulation and inheritance.
(Formal semantics are outlined in an appendix to the full version [22].)

2.1 Background: Datalog

Datalog [10] is a language—a concrete syntax—for defining named, flat rela-
tions. The (slightly incorrect) statement “Two people are siblings if they share
a parent” can be precisely captured by a rule such as

sibling(A,B) :- parent(C,A), parent(C,B). (1)

which may be read as “A is a sibling of B if, for some C, C is a parent of A
and C is a parent of B.” Formally, capitalized identifiers such as A,B,C denote
universally quantified variables,2 and the above rule is really a schema that
defines infinitely many propositional implications such as

sibling(alice,bob) :- parent(charlie,alice),

parent(charlie,bob).
(2)

where alice, bob, and charlie are constants. (Thus, (2) is one of many possible
implications that could be used to prove sibling(alice,bob).) Rules can also
mention constants directly, as in

parent(charlie,alice).

parent(charlie,bob).
(3)

2 A, B, C can have any value. The full version of this paper [22] (both at this point and
in §2.4) discusses optional type declarations that can aid correctness and efficiency.

Since the rules (3) also happen to have no conditions (no “:- . . . ” part), they
are simply facts that directly specify part of the binary relation parent, which
may be regarded as a two-column table in a relational database. The rule (1)
defines another two-column table, sibling, by joining parent to itself on its
first column and projecting that column out of the result.

Informally, we may regard parent (3) as extensional and sibling (1) as in-
tensional, but Datalog as a language does not have to distinguish these cases.
Datalog also does not specify whether the sibling relation should be material-
ized or whether its individual records should merely be computed as needed.

As this example suggests, it is simple in Datalog to construct new relations
from old ones. Just as (1) describes a join, Datalog rules can easily describe other
relational algebra operations such as project and select. They also permit recur-
sive definitions. Datalog imposes the following syntactic restrictions to ensure
that the defined relations are finite [10]:

– Flatness: Terms in a rule must include exactly one level of parentheses.
This prevents recursive structure-building rules like

is_integer(zero).

is_integer(oneplus(X)) :- is_integer(X).
(4)

which would define an infinite number of facts such as
is_integer(oneplus(oneplus(oneplus(zero)))).

– Range restriction: Any variables that occur in a rule’s head (to the left
of :-) must also appear in its body (to the right of :-). This prevents rules
like

equal(X,X). (5)

which would define an infinite number of facts such as equal(31,31).

Pure Datalog also disallows built-in infinite relations, such as < on the integers.
We will drop all these restrictions below.

2.2 Background: Datalog with Stratified Aggregation

Relations may range over numbers: for example, the variable S in
salary(alice,S) has numeric type. Some Datalog dialects (e.g., [55,70]) sup-
port numeric aggregation, which combines numbers across multiple proofs of
the same statement. As an example, if wparent(charlie, alice) = 0.75 means
that charlie is 75% likely to be a parent of alice, we might wish to define a
soft measure of siblinghood by summing over possible parents:3

wsibling(A,B) =
∑

C

wparent(C,A) · wparent(C,B). (6)

The sum over C is a kind of aggregation. The syntax for writing this in Datalog
varies by dialect; as an example, [14] would write the above fact and rule (6) as

3 This sum cannot necessarily be interpreted as the probability of siblinghood (for
that, see related work in §2.5). We use definition (6) only to illustrate aggregation.

parent(charlie,alice;0.75).

sibling(A,B;sum(Ma*Mb)) :- parent(C,A;Ma),

parent(C,B;Mb).

(7)

Datalog dialects with aggregation (or negation) often impose a further re-
quirement to ensure that the relations are well-defined [4,49]:

– Stratification: A relation that is defined using aggregation (or negation)
must not be defined in terms of itself. This prevents cyclic systems of equa-
tions that have no consistent solution (e.g., a :- not a) or multiple consis-
tent solutions (e.g., a :- not b and b :- not a).

We omit details here, as we will drop this restriction below.

2.3 Dyna

Our language, Dyna, aims to readily capture equational relationships with a
minimum of fuss. In place of (7) for (6), we write more simply

parent(charlie,alice) = 0.75.

sibling(A,B) += parent(C,A) * parent(C,B).
(8)

The += carries out summation over variables in the body which are not in the
head, in this case C. For each A and B, the value of sibling(A,B) is being defined
via a sum over values of the other variables in the rule, namely C.

The key point is that a Datalog program proves items, such as
sibling(alice,bob), but a Dyna program also proves a value for each prov-
able item (cf. [38]). Thus, a Dyna program defines a partial function from items
to values. Values are numeric in this example, but in general may be arbitrary
ground terms.4

Non-provable items have no value and are said to be null. In general, null
items do not contribute to proofs of other items, nor are they retrieved by
queries.5

Importantly, only ground terms (variable-free terms) can be items (or val-
ues), so sibling(A,B) is not itself an item and cannot have values. Rather, the
+= rule above is a schema that defines infinitely many grounded rules such as

sibling(alice,bob) += parent(charlie,alice)

* parent(charlie,bob).
(9)

which contributes a summand to sibling(alice,bob) iff parent(charlie,bob)

and parent(charlie,alice) are both provable (i.e., have values).

4 Abstractly, the value could be regarded as an additional argument with a functional
dependency; see the full version of this paper [22] for more discussion.

5 Dyna’s support for non-monotonic reasoning (e.g., Figure 5) does enable rules to
determine whether an item is null, or to look up such items. This is rarely necessary.

The Dyna program may include additional rules beyond (8) that contribute
additional summands to sibling(alice,bob). All rules for the same item must
specify the same aggregation operator (or aggregator for short). In this case
that operator is += (summation), so sibling(alice,bob) is defined by sum-
ming the value of γ over all grounded rules of the form sibling(alice,bob)

+= γ such that γ is provable (non-null). If there are no such rules, then
sibling(alice,bob) is null (note that it is not 0).6

In the first line of (8), the aggregation operator is =, which simply returns its
single aggregand, if any (or gives an error if there are multiple aggregands). It
should be used for clarity and safety if only one aggregand is expected. Another
special aggregator we will see is :=, which chooses its latest aggregand; so the
value of a := item is determined by the last rule (in program order) to contribute
an aggregand to it (it is an error for that rule to contribute multiple aggregands).

However, most aggregators are like +=, in that they do not care about the
order of aggregands or whether there is more than one, but simply reduce the
multiset of aggregands with some associative and commutative binary operator
(e.g, +).7

Ordinary Datalog as in (1) can be regarded as the simple case where all prov-
able items have value true, the comma operator denotes boolean conjunction
(over the subgoals of a proof), and the aggregator :- denotes boolean disjunc-
tion (over possible proofs). Thus, true and null effectively form a 2-valued logic.
Semiring-weighted Datalog programs [30,23,31] correspond to rules like (8) where
+ and * denote the operations of a semiring.

2.4 Restoring Expressivity

Although our motivation comes from deductive databases, Dyna relaxes the
restrictions that Datalog usually imposes, making it less like Datalog and more
like the pure declarative fragment of Datalog’s ancestor Prolog (cf. Mercury
[46]).8 As we will see in §3.1, relaxing these restrictions is important to support
our AI use cases.

– Flatness: We drop this requirement so that Dyna can work with lists and
other nested terms and perform unbounded computations.9 However, this
makes it Turing-complete, so we cannot guarantee that Dyna programs will
terminate. That is the programmer’s responsibility.

6 This language design choice naturally extends completion semantics [12]. One can
still force a default 0 by adding the explicit rule sibling(A,B) += 0 to (8). See the
full version of this paper [22] for further discussion.

7 See the full version of this paper [22] for more discussion of aggregation operators.
8 Of course, Dyna goes beyond pure Prolog, most importantly by augmenting items
with values and by adding declarative mechanisms for situations that Prolog would
handle non-declaratively with the cut operator. We also consider a wider space of
execution strategies than Prolog’s SLD resolution.

9 For example, in computational linguistics, a parser’s hypotheses may be represented
by arbitrarily deep terms that are subject to unification. See the full version of this
paper [22] for discussion and references.

– Range restriction: We drop this requirement primarily so that Dyna can
do default and non-monotonic reasoning, to support general function defini-
tions, and to simplify certain source-to-source program transformations [21].
However, this complicates Dyna’s execution model.

– Stratification: We drop this requirement because Dyna’s core uses include
many non-stratified design patterns such as recurrent neural networks, mes-
sage passing, iterative optimization, and dynamic programming. Indeed, the
examples in §3.1 are mainly non-stratified. These domains inherently rely on
cyclic systems of equations. However, as a result, some Dyna programs may
not converge to a unique solution (partial map from items to values) or even
to any solution.

The difficulties mentioned above are inevitable given our use cases. For exam-
ple, an iterative learning or optimization procedure in AI10 will often get stuck
in a local optimum, or fail to converge. The procedure makes no attempt to find
the global optimum, which may be intractable. Translating it to Dyna, we get a
non-stratified Dyna program with multiple supported models11 that correspond
to the local optima. Our goal for the Dyna engine is merely to mimic the origi-
nal AI method; hence we are willing to return any supported model, accepting
that the particular one we find (if any) will be sensitive to initial conditions and
procedural choices, as before. This is quite different from usual practice in the
logic programming community (see [54] for a review and synthesis), which when
it permits non-stratified programs at all, typically identifies their semantics with
one [29] or more [44] “stable models” or the intersection thereof [63,37], although
in general the stable models are computationally intractable to find.

A simple example of a non-stratified program (with at most one supported
model [58]) is single-source shortest paths,12 which defines the total cost from
the start vertex to each vertex V:

cost_to(start) min= 0.

cost_to(V) min= cost_to(U) + edge_cost(U,V).
(10)

The aggregator here is min= (analogous to += earlier) and the second rule ag-
gregates over values of U, for each V. The weighted directed graph is specified by
the edge_cost items. These are to be provided as extensional input or defined
by additional rules (which could specify a very large or infinite graph).

10 Such as expectation-maximization, gradient descent, mean-field inference, or loopy
belief propagation (see Figure 7).

11 A model (or interpretation) of a logic program P is a partial map J·K from items
to values. A supported model [4] is a fixpoint of the “immediate consequence”
operator TP associated with that program [62]. In our setting, this means that for
each item α, the value JαK (according to the model) equals the value that would be
computed for α (given the program rules defining α from other items and the values
of those items according to the model).

12 See the full version of this paper [22] for why it is hard to stratify this program.

Evaluation The above example (10) also illustrates evaluation. The start

item refers to the start vertex and is evaluated in place, i.e., replaced by its value,
as in a functional language.13 The items in the body of line 2 are also evaluated
in place: e.g., cost_to("bal") evaluates to 20, edge_cost("bal","nyc") eval-
uates to 100, and finally 20+100 evaluates to 120 (the evaluation mechanism is
explained in the full version of this paper [22]). This notational convention is
not deep, but to our knowledge, it has not been used before in logic program-
ming languages.14 We find the ability to write in a style close to traditional
mathematics quite compelling.

2.5 Related Work

Several recent AI projects have developed attractive probabilistic programming
languages (for space reasons, references are in the full version of this paper [22]).

By contrast, Dyna is not specifically probabilistic. Why? Our full paper [22]
lists a wide variety of other numeric and non-numeric objects that are commonly
manipulated by AI programs. Of course, Dyna items may take probabilities (or
approximate probabilities) as their values, and the rules of the program may

enforce a probabilistic semantics. However, the value of a Dyna item can be any
term (including another dynabase). We will see examples in §3.1.

There are other logic programming formalisms in which provable terms are
annotated by general values that need not be probabilities (some styles are ex-
emplified by [38,30,26]). However, to our knowledge, all of these formalisms are
too restrictive for our purposes.

In general, AI languages or toolkits have usually been designed to enforce
the semantics of some particular modeling or algorithmic paradigm within AI.15

Dyna, by contrast, is a more relaxed and general-purpose language that aims
to accommodate all these paradigms. It is essentially a general infrastructure
layer: specific systems or toolkits could be written in Dyna, or more focused
languages could be compiled to Dyna. Dyna focuses on defining relationships

13 Notice that items and their values occupy the same universe of terms—they are not
segregated as in §2.2. Thus, the value of one item can be another item (a kind of
pointer) or a subterm of another item. For example, the value of start is used as a
subterm of cost_to(. . .). As another example, extending (10) to actually extract a
shortest path, we define best_path(V) to have as its value a list of vertices:

best_path(V) ?= [U | best_path(U)]

whenever cost_to(V) == cost_to(U)

+ edge_cost(U,V).

(Here the construction [First | Rest] prepends an element to a list, as in Prolog.
The “free-choice” aggregator ?= allows the system to arbitrarily select any one of
the aggregands, hence arbitrarily breaks ties among equally short paths.)

14 With the exception of the hybrid functional-logic language Curry [17]. Curry is closer
to functional programming than to Datalog. Its logical features focus on nondeter-
minism in lazy evaluation, and it does not have aggregation.

15 Again, see the full paper for references.

among data items and supporting efficient storage, queries, and updates given
these relationships. We believe that this work is actually responsible for the bulk
of the implementation and optimization effort in today’s AI systems.

2.6 A First Execution Strategy

Before we turn to our AI examples, some readers may be wondering how pro-
grams might be executed. Consider the shortest-path program in (10). We wish
to find a fixed point of the system of equations that is given by those rules
(grounding their variables in all possible ways) plus the extensional data.

Here we can employ a simple forward chaining strategy (see [23] for details
and pseudocode). The basic idea is to propagate updates from rule bodies to rule
heads, until the values of all items converge.16 We refer to items in a rule’s body
as antecedents and to the item in the rule’s head as the consequent.

At all times, we maintain a chart that maps the items proved so far to their
current values, and an agenda (or worklist) of updates that have not yet been
applied to the chart. Any changes to the extensional data are initially placed on
the agenda: in particular, the initial definitions of start and edge_cost items.

A step of the algorithm consists of popping an update from the agenda,
applying it to the chart, and computing the effect that will have on other items.
For example, finding a new, shorter path to Baltimore may cause us to discover
a new, shorter path to other cities such as New York City.

Concretely, when updating cost_to("bal") to 20, we see that this item
pattern-matches one of the antecedents in the rule

cost_to(V) min= cost_to(U) + edge_cost(U,V). (11)

with the binding U="bal", and must therefore drive an update through this
rule. However, since the rule has two antecedents, the driver of the update,
cost_to("bal"), needs a passenger of the form edge_cost("bal",V) to com-
plete the update. We query the chart to find all such passengers. Suppose one re-
sult of our query edge_cost("bal",V) is edge_cost("bal","nyc")=100, which
binds V="nyc". We conclude that one of the aggregands of the consequent,
cost_to("nyc"), has been updated to 120. If that changes the consequent’s
value, we place an update to the consequent on the agenda.

This simple update propagation method will be helpful to keep in mind when
studying the examples in Figures 1–12. We note, however, that there is a rich
space of execution strategies, as alluded to in §1.3.

2.7 Multiple Interacting Dynabases

So far we have considered only one dynabase at a time. However, using multiple
interacting dynabases is useful for encapsulation, inheritance, and “what if”
analysis where one queries a dynabase under changes to its input items.

16 This is a record-at-a-time variant of semi-naive bottom-up evaluation.

Readers interested mainly in AI will want to skip the artificial example in this
section and move ahead to §3, returning here if needed when multiple dynabases
come into play partway through §3.1 (in Figures 7, 11 and 12).

All code fragments in this section are part of the definition of a dynabase
that we call δ. We begin by defining some ordinary items of δ:

three = 3.

e = { pigs += 100. % we have 100 adult pigs
pigs += piglets. % and any piglets we have are also pigs

}.

(12)

In δ, the value of three is 3 and the value of e is a particular dynabase ε. Just
as 3 is a numeric literal in the program that specifies a number, the string
{. . . } is an dynabase literal that specifies a literal dynabase ε.17

Since ε does not declare its items pigs and piglets to be private, our rules
in δ can refer to them as e.pigs and e.piglets, which evaluate to 100 and null.
(More precisely, e evaluates to ε within the expression e.pigs, and the resulting
expression ε.pigs looks up the value of item pigs in dynabase ε.)

Storing related items like pigs and piglets in their own dynabase ε can
be a convenient way to organize them. Dynabases are first-class terms of the
language, so one may use them in item names and values. For example, this
definition of matrix transposition

transpose(Matrix) = { element(I,J) = Matrix.element(J,I). }. (13)

defines for each dynabase µ an item transpose(µ) whose value is also a dyn-
abase. Each of these dynabases is an encapsulated collection of many elements.
Notice that transpose resembles an object-oriented function that takes an ob-
ject as an argument and returns an object.

However, the real power of dynabases comes from the ability to extend them.
Remember that a dynabase is a dynamic deductive database: ε.pigs is defined
in terms of ε.piglets and should increase when ε.piglets does. However,
ε.piglets cannot actually change because ε in our example is an immutable
constant. So where does the dynamism come in? How can a procedural program,
or another dynabase, supply new input to ε once it has defined or loaded it?

A procedural program can create a new extension of ε: a modifiable copy ε′.
As the owner of ε′, the program can freely specify new aggregands to its write-
able items. That serves to increment ε′.pigs and replace ε′.piglets (assuming
that their aggregators are respectively += and :=; see §2.3). These updates affect
only ε′ and so are not visible to other users of ε.18 The procedural program can
interleave updates to ε′ with queries against the updated versions (see §1).

17 One could equivalently define e = $load("pigpen"), where the file pigpen.dyna

consists of “pigs += 100. pigs += piglets.” or a compiled equivalent. Then
$load("pigpen") will evaluate to ε (until the file changes). (Note: Reserved-word
functors such as $load start with $, to avoid interference with user names of items.)

18 The converse is not true: any updates to ε would be inherited by its extension ε′.

A Dyna program with access to ε can similarly extend ε with new aggregands;
here too, changes to piglets will feed into pigs. Continuing our definition of δ:

f = new e. % f is a new pigpen ϕ that inherits all rules of ε
f.pigs += 20. % but has 20 extra adult pigs
f.piglets := three. % and exactly three piglets

(14)

These rules are written as part of the definition of δ (the owner19 of the new
dynabase ϕ) and supply new aggregands 20 and 3 to ϕ’s versions of pigs and
piglets.

The parent dynabase ε remains unchanged, but its extension ϕ has items
pigs and piglets with values 123 and 3, just as if it had been defined in the
first place by combining (12) and (14) into20

f = { pigs += 100.

pigs += piglets.

pigs += 20.

piglets := $owner.three. } % where $owner refers to δ

(15)

The important point is that setting f.piglets to have the same value as three
also affected f.pigs, since ε defined pigs in terms of piglets and this relation-
ship remains operative in any extension of ε, such as f’s value ϕ.

Interactions among dynabases can be quite flexible. Some readers may wish
to see a final example. Let us complete the definition of δ with additional rules

g = new e.

offspring = g.pigs / three. % all pigs have babies
g.piglets := offspring. % who are piglets

(16)

This creates a loop by feeding 1
3 of g’s “output item” pigs back into g’s “input

item” piglets, via an intermediate item offspring that is not part of g at all.
The result is that g.pigs and g.piglets converge to 150 and 50 (e.g., via the
forward chaining algorithm of §2.6). This is a correct solution to the system of
equations specified by (12) and (16), which state that there are 100 more pigs
than piglets and 1

3 as many piglets as pigs:

δ.three = 3 δ.offspring = γ.pigs/δ.three (17)

γ.pigs = 100 + γ.piglets γ.piglets = δ.offspring

Dynabases are connected to object-oriented programming. We will see prac-
tical uses of multiple dynabases for encapsulation (Figure 7), modularity (Fig-
ure 11), and backtracking search (Figure 12). More formal discussion of the
overall language semantics, with particular attention to dynabase extension, can
be found in an appendix to the full version [22].

19 Because δ invoked the new operator that created ϕ, δ is said to own ϕ. This is why
δ is permitted to have rules that extend ϕ with additional aggregands as shown in
(14). See the full version of this paper [22] for further discussion of ownership.

20 Fine points and formal semantics are covered in the full version of this paper [22].

3 Design Patterns in AI

Given the above sketch, we return to the main argument of the paper, namely
that Dyna is an elegant declarative notation for capturing the logical structure
of computations in modern statistical AI.

Modern AI systems can generally be thought of as observing some input and
recovering some (hidden) structure of interest:

– We observe an image and recover some description of the scene.

– We observe a sentence of English and recover a syntax tree, a meaning rep-
resentation, a translation into Chinese, etc.

– We are given a goal or reward function and recover a plan to earn rewards.

– We observe some facts expressed in a knowledge representation language
and recover some other facts that can be logically deduced or statistically
guessed from them.

– We observe a dataset and recover the parameters of the probability distri-
bution that generated it.

Typically, one defines a discrete or continuous space of possible structures,
and learns a scoring function or probability distribution over that space. Given a
partially observed structure, one either tries to recover the best-scoring comple-
tion of that structure, or else queries the probability distribution over all possible
completions. Either way, the general problem is sometimes called structured

prediction or simply inference.

3.1 Brief AI Examples in Dyna

We will show how to implement several AI patterns in Dyna. All the examples in
this section are brief enough that they are primarily pedagogical—they could be
used to teach and experiment with these basic versions of well-known methods.

Real systems correspond to considerably larger Dyna programs that modify
and combine such techniques. Real systems must also obtain their input by
transforming raw datasets (using additional Dyna rules).

Each of the code examples below is in a self-contained figure, with details in

the captions. Typically the program defines a dynabase in which all items are
still null, as it merely defines intensional items in terms of extensional items that
have not been supplied yet. One may however extend this dynabase (see §2.7),
adding observed structure (the input) and the parameters of the scoring function
(the model) as extensional data. Results now appear in the extended dynabase
as intensional data defined by the rules, and one may read them out.

Arithmetic Circuits One simple kind of system is an arithmetic circuit. A
classic AI example is a neural net (Figure 1). In the Dyna implementation (Fig-
ure 2), the network topology is specified by defining values for the weight items.

Fig. 1: A small acyclic neural network. The activation xn

at each node n is a nonlinear function f , such as a sigmoid
or threshold function, of a weighted sum of activations

at n’s parent nodes: xn
def

= f
(

∑

(n′,n)∈E xn′wn′,n

)

. The

three layers shown here are the traditional input, hidden,
and output nodes, with wn′,n values represented by arrow
thickness.

i1

i2 h1 o1

i3 h2 o2

i4

sigmoid(X) = 1 / (1 + exp(-X)).

output(Node) = sigmoid(input(Node)).

input(Node) += output(Child) * weight(Child,Node).

error += (output(Node) - target(Node))**2.

Fig. 2: A general neural network in Dyna. Line 1 defines the sigmoid func-
tion over all real numbers X. In Line 2, that function is applied to the
value of input(Node), which is evaluated in place. Line 3 sums over all in-
coming edges to Node. Those edges are simply the (Child,Node) pairs for
which weight(Child,Node) is defined. Additional summands to some of the
input(Node) items may be supplied to this dynabase at runtime; this is how
i1, i2, i3, i4 in Figure 1 would get their outside input. Finally, Line 4 evaluates er-
ror by summing over just those nodes for which target(Node) has been defined
(i.e., is non-null), presumably the output nodes oj .

As in the shortest-path program (10), the items that specify the topology
may be either provided directly at runtime (as extensional data), or defined by
additional Dyna rules (as intensional data: Figure 3 gives an attractive example).

Notice that line 3 of Figure 2 is a matrix-vector product. It is sparse because
the neural-network topology is typically a sparse graph (Figure 1). Sparse prod-
ucts are very common in AI. For example, sparse dot products are used both
in computing similarity and in linear or log-linear models [15]. A dot product
like score(Structure) += weight(Feature)*strength(Feature,Structure)

21 These names are not items but appear in the rule as unevaluated terms. However,
the expressions X+I and Y+J are evaluated in place, so that the rule is equivalent to

weight(pixel(X2,Y2), hidden(X,Y)) = shared_weight(I,J)

whenever X2 is X+I, Y2 is Y+I.

where in general, the condition γ is α has value true if γ is the value of item α,
and is null otherwise. For example, 97 is 95+2 has value true.

weight(pixel(X+I,Y+J), hidden(X,Y)) = shared_weight(I,J).

Fig. 3: One layer of a neural network topology for vision, to be used with Figure 2.
Each hidden node hidden(X,Y) is connected to a 5× 5 rectangle of input nodes
pixel(X+I,Y+J) for I, J ∈ {−2,−1, 0, 1, 2}, using a collection of 25 weights that
are reused across spatial positions (X,Y). The shared_weight(I,J) items should
be defined (non-null) only for I, J ∈ {−2,−1, 0, 1, 2}. This rule then connects
nodes with related names, such as such as hidden(75,95) and pixel(74,97).

This rule exploits the fact that the node names are structured objects.21

By using structured names, we have managed to specify an infinite network in a
single line (plus 25 weight definitions). Only a finite portion of this network will
actually be used by Figure 2, assuming that the image (the collection of pixel
items) is finite.

count(X,Y) += 0 whenever is_event(X), is_event(Y). % default
count(X) += count(X,Y).

count += count(X).

% Maximum likelihood estimates
mle_prob(X) = count(X) / count.

mle_prob(X,Y) = count(X,Y) / count(Y).

% Good-Turing smoothed estimates [50]
gt_prob(X) = total_mle_prob(count(X)+1) / n(count(X)).

gt_prob(X,Y) = total_mle_prob(count(X)+1,Y) / n(count(X),Y).

% Used by Good-Turing: How many events X occurred R times, or
% cooccurred R times with Y, and what is their total probability?
n(R) += 0. n(R) += 1 whenever R==count(X).

n(R,Y) += 0. n(R,Y) += 1 whenever R==count(X,Y).

total_mle_prob(R) += mle_prob(X) whenever R==count(X).

total_mle_prob(R,Y) += mle_prob(X,Y) whenever R==count(X,Y).

Fig. 4: Estimating conditional probabilities p(x) and p(x | y), based on counts
of x with y. The user can simply increment count(x,y) whenever x is observed
together with y, and the probability estimates will update (see §4.3). See the full
version of this paper [22] for more detailed discussion of this code.

resembles line 3, and can benefit from using complex feature names, just as
Figure 3 used complex node names.

A rather different example of arithmetic computation is shown in Figure 4,
a dynabase that maintains probability estimates based on the counts of events.
Some other commonly used arithmetic formulas in AI include distances, kernel
functions, and probability densities.

fly(X) := false.

fly(X) := true if bird(X).

fly(X) := false if penguin(X).

fly(bigbird) := false.

Fig. 5: An example of non-monotonic reasoning: all birds fly, other than Sesame
Street’s Big Bird, until such time as they are proved or asserted to be penguins.
Recall from §2.3 that the := aggregator is sensitive to rule ordering, so that
where the later rules apply at all, they override the earlier rules. The first rule is
a “default rule” that is not range-restricted (see §2.1): it proves infinitely many
items that unify with a pattern (here the very simple pattern X).

Training of Arithmetic Circuits To train a neural network or log-linear
model, one must adjust the weight parameters to reduce error. Common opti-
mization methods need to consult more than just the current error: they need
to query the gradient of error with respect to the parameters. How can they
obtain the gradient? Automatic differentiation can be written very naturally
as a source-to-source transformation on Dyna programs, automatically augment-
ing Figure 2 with rules that compute the gradient by back-propagation [23]. The
gradient can then be used by other Dyna rules or queried by a procedural opti-
mizer. Alternatively, the execution engine of our prototype Dyna implementation
natively supports [23] computing gradients, via tape-based automatic differenti-
ation in the reverse mode [32]. It is designed to produce exact gradients even of
incomplete computations.

An optimizer written in a conventional procedural language can iteratively
update the weight items in the dynabase of Figure 2, observing at each step
how the output, error, and gradient change in response. Or the optimizer could
be written in Dyna itself, via rules that define the weights at time step T+1 in
terms of items (e.g., gradient) computed at time step T. This requires adding an
explicit time argument T to all terms (another source-to-source transformation).

Theorem Proving Of course, logic and logic programming have a long history
in symbolic AI. Traditional systems for knowledge representation and reasoning
(KRR) are all automated theorem provers (see the full version of this paper [22]
for some references). They compute the entailments of a set of axioms obtained
from human input or derived by other theorem provers (e.g., OWL web services).

Logical languages like Dyna support these patterns naturally. The extensional
items are axioms, the intensional ones are theorems, and the inference rules are
the rules of the program. A simple example appears in our full paper.

Dyna also naturally handles some forms of default and non-monotonic rea-
soning [6], via := rules like those in Figure 5. A related important use of default
patterns in AI is “lifted inference” [61] in probabilistic settings like Markov Logic
Networks [57], where additional (non-default) computation is necessary only for
individuals about whom additional (non-default) facts are known. Yet another

use in AI is default arcs of various kinds in deterministic finite-state automata
over large or unbounded alphabets [3,52].23

Some emerging KRR systems embrace statistics and draw probabilistic in-
ferences rather than certain ones (again, see our full paper for references). Their
computations can typically be described in Dyna by using real-valued items.

Message Passing Many AI algorithms come down to solving (or approximately
solving) a system of simultaneous equations, often by iterating to convergence.
In fact, the neural network program of Figure 2 already requires iteration to
convergence in the case of a cyclic (“recurrent”) network topology [64].

Such iterative algorithms are often known as “message passing” algorithms.
They can be regarded as negotiating a stable configuration of the items’ values.
Updates to one item trigger updates to related items—easily handled in Dyna
since update propagation is exactly what a basic forward-chaining algorithm does
(§2.6). When the updates can flow around cycles, the system is not stratified and
sometimes has no guarantee of a unique fixed point, as warned in §2.4.

Message passing algorithms seek possible, likely, or optimal values of random
variables under a complex set of hard or soft constraints. Figure 6 and Figure 7
show two interesting examples in Dyna: arc consistency (with boolean values)
and loopy belief propagation (with unnormalized probabilities as the values).24

Other important examples include alternating optimization algorithms such as
expectation-maximization and mean-field. Markov chain Monte Carlo (MCMC)
and simulated annealing algorithms can also be regarded as message passing
algorithms, although in this case the updates are randomized; Dyna code for a
simple random walk appears in the full version of this paper [22]. n

Dynamic Programming Dyna began [23] as a language for dynamic pro-
gramming (hence the name). The connection of dynamic programming to logic
programming has been noted before (e.g., [33]). Fundamentally, dynamic pro-
gramming is about solving subproblems and reusing stored copies of those solu-
tions to solve various larger subproblems. In Dyna, the subproblems are typically
named by items, whose values are their solutions. An efficient implementation
of Dyna will typically store these solutions for reuse,25 whether by backward
chaining that lazily memoizes values in a table (as in XSB [65] and other tabled
Prologs), or by forward chaining that eagerly accumulates values into a chart
(as in §2.6 and the Dyna prototype [23]).

23 Dyna rules illustrating this are given in the full version of this paper [22].
24 Twists on these programs give rise to other popular local consistency algorithms

(bounds consistency, i-consistency) and propagation algorithms (generalized belief
propagation, survey propagation).

25 This support for reuse is already evident in our earlier examples, even though they
would not traditionally be regarded as dynamic programming. The activation of node
h1 in Figure 1 (represented by some output item in Figure 2) takes some work to
compute, but once computed, it is reused in computing each node oj . Similarly, each
count n(R) or n(R,Y) in Figure 4 is reused to compute many smoothed probabilities.

% For Var:Val to be possible, Val must be in-domain, and
% also supported by each Var2 that is co-constrained with Var.
% The conjunctive aggregator &= is like universal quantification over Var2.
possible(Var:Val) &= in_domain(Var:Val).

possible(Var:Val) &= supported(Var:Val, Var2).

p

% Var:Val is supported by Var2 only if it is still possible
% for Var2 to take some value that is compatible with Val.
% The disjunctive aggregator |= is like existential quantification over Val2.
supported(Var:Val, Var2)

|= compatible(Var:Val, Var2:Val2) & possible(Var2:Val2).

% If consistent ever becomes false, we have detected unsatisfiability:
% some variable has no possible value.
non_empty(Var) |= false. % default (if there are no possible values)
non_empty(Var) |= possible(Var:Val). % Var has a possible value
consistent &= non_empty(Var) whenever is_var(Var).

% each Var in the system has a possible value

Fig. 6: Arc consistency for constraint programming [19]. The goal is to rule out
some impossible values for some variables, using a collection of unary constraints
(in_domain) and binary constraints (compatible) that are given by the prob-
lem and/or tested during backtracking search (see Figure 12). The “natural”
forward-chaining execution strategy for this Dyna program corresponds to the
classical, asymptotically optimal AC-4 algorithm [48].

Variables and constraints can be named by arbitrary terms. Var:Val

is syntactic sugar for an ordered pair, similar to pair(Var,Val) (the :

has been declared as an infix functor). The program determines whether
possible(Var:Val). The user should define is_var(Var) as true for each vari-
able, and in_domain(Var:Val) as true for each value Val that Var should con-
sider. To express a binary constraint between the variables Var and Var2, the user
should define compatible(Var:Val, Var2:Val2) to be true or false for each
value pair Val and Val2, according to whether the constraint lets these variables
simultaneously take these values. This ensures that supported(Var:Val,Var2)
will be true or false (not null) and so will contribute a conjunct to line 2.

A traditional dynamic programming algorithm can be written directly in
Dyna as a set of recurrence equations. A standard first example is the Fibonacci
sequence, whose runtime goes from exponential to linear in N if one stores enough
of the intermediate values:

fib(N) := fib(N-1) + fib(N-2). % general rule
fib(0) := 1. % exceptions for base cases

fib(1) := 1.

(18)

As a basic AI example, consider context-free parsing with a CKY-style al-
gorithm [67]. The Dyna program in Figure 8 consists of 3 rules that directly

% Belief at each variable based on the messages it receives from constraints.
belief(Var:Val) *= message(Con, Var:Val).

% Belief at each constraint based on the messages it receives from variables
% and the preferences of the constraint itself.
belief(Con:Asst) = messages_to(Con:Asst) * constraint(Con:Asst).

% To evaluate a possible assignment Asst to several variables, look at messages
% to see how well each variable Var likes its assigned value Asst.Var.
messages_to(Con:Asst) *= message(Var:(Asst.Var), Con).

% Message from a variable Var to a constraint Con. Var says that it plausibly
% has value Val if Var independently believes in that value (thanks to other

% constraints, with Con’s own influence removed via division).
message(Var:Val, Con) := 1. % initial value, will be overridden
message(Var:Val, Con) := belief(Var:Val) / message(Con, Var:Val).

% Messages from a constraint Con to a variable Var.
% Con says that Var plausibly has value Val if Con independently
% believes in one or more assignments Asst in which this is the case.
message(Con, Var:Val) += belief(Con:Asst) / message(Var:Val, Con)

whenever Asst.Var == Val.

Fig. 7: Loopy belief propagation on a factor graph [66]. The constraints together
define a Markov Random Field joint probability distribution over the variables.
We seek to approximate the marginals of that distribution: at each variable Var
we will deduce a belief about its value, in the form of relative probabilities of
the possible values Val. Similarly, at each constraint Con over a set of variables,
we will deduce a belief about the correct joint assignment of values to just those

variables, in the form of relative probabilities of the possible assignments Asst.
Assignments are slightly complicated because we allow a single constraint

to refer to arbitrarily many variables (in contrast to Figure 6, which assumed
binary constraints). A specific assignment is a map from variable names (terms
such as color, size) to their values (e.g., red, 3). It is convenient to represent
this map as a small sub-dynabase, Asst, whose elements are accessed by the .

operator: for example, Asst.color == red and Asst.size == 3.
As input, the user must define constraint so that each constraint (“factor”

or “potential function”) gives a non-negative value to each assignment, giving
larger values to its preferred assignments. Each variable should be subject to at
least one constraint, to specify its domain (analogous to in_domain in Figure 6).

A message to or from a variable specifies a relative probability for each value
of that variable. Since messages are proved circularly from one another, we need
to initialize some messages to 1 in order to start propagation; but these initial
values are overridden thanks to the := aggregator, which selects its “latest”
aggregand and hence prefers the aggregand from line 5 (once defined) to the
initial aggregand from line 4. Note: For simplicity, this version of the program
glosses over minor issues of message normalization and division by 0.

% A single word is a phrase (given an appropriate grammar rule).
phrase(X,I,J) += rewrite(X,W) * word(W,I,J).

% Two adjacent phrases make a wider phrase (given an appropriate rule).
phrase(X,I,J) += rewrite(X,Y,Z) * phrase(Y,I,Mid) * phrase(Z,Mid,J).

% An phrase of the appropriate type covering the whole sentence is a parse.
goal += phrase(start_nonterminal,0,length).

Fig. 8: Probabilistic context-free parsing in Dyna (the “inside algorithm”).
phrase(X,I,J) is provable if there might be a constituent of type X from
position I to position J of the input sentence. More specifically, the value of
phrase(X,I,J) is the probability that nonterminal symbol X would expand into
the substring that stretches from I to J. It is defined using += to sum over all
ways of generating that substring (considering choices of Y, Z, Mid). Thus, goal
is the probability of generating the input sentence, summing over all parses.

The extensional input consists of a sentence and a grammar.
word("spring",5,6)=1 means that "spring" is the sixth word of the sentence;
while length=30 specifies the number of words. rewrite("S","NP","VP")=0.9
means that any copy of nonterminal S has a priori probability 0.9 of expanding
via the binary grammar production S → NP VP; while start_nonterminal="S"
specifies the start symbol of the grammar.

and intuitively express how a parse tree is recursively built up by combining
adjacent phrases into larger phrases, under the guidance of a grammar. The
forward-chaining algorithm of §2.6 here yields “agenda-based parsing” [60]: when
a recently built or updated phrase pops off the agenda into the chart, it tries to
combine with adjacent phrases in the chart.

We will return to this example in §3.2. Meanwhile, the reader is encouraged
to figure out why it is not a stratified program (§2.2), despite being based on the
stratified CKY algorithm.26 Replacing the += aggregator with max= (compare
(10)) would make it find the probability of the single best parse, instead of the
total probability of all parses [30].

This example also serves as a starting point for more complicated algorithms
in syntactic natural-language parsing and syntax-directed translation.27 The uses
of the Dyna prototype (listed in a section of [22]) have been mainly in this
domain; see [21,23] for code examples. In natural language processing, active
areas of research that make heavy use of parsing-like dynamic programs include
machine translation, information extraction, and question answering.28 There is
a tremendous amount of experimentation with models and algorithms in these
areas and in parsing itself. The machine vision community has also begun to
explore recursive parsing of images [69,27]. Dyna is potentially helpful on all of
these fronts.

26 See the full version of this paper [22] for a detailed answer.
27 The connection of these areas to deductive inference and logic programming has been

well explored. See the full version of this paper [22] for discussion and references.
28 Again, see our full paper [22] for references.

% The optimal value function V .
value(State) max= value(State,Action).

% The optimal action-value function Q.
% Note: The value of p(s, a, s′) is a conditional transition probability, P (s′ | s, a).
value(State,Action) += reward(State,Action).

value(State,Action) += γ * p(State,Action,NewState) * value(NewState).

% The optimal policy function π. The free-choice aggregator ?= is used
% merely to break ties as in footnote 13.
best_action(State) ?= Action if value(State) == value(State,Action).

Fig. 9: Finding the optimal policy in an infinite-horizon Markov decision pro-
cess, using value iteration. The reward and transition probability functions can
be sensitive to properties of the states, or to their structured names as in Fig-
ure 3. The optimal value of a State is the expected total reward that an agent
will earn if it follows the optimal policy from that State (where the reward at
t steps in the future is discounted by a factor of γt). The optimal value of a
(State,Action) pair is the expected total reward that the agent will earn by
first taking the given Action—thereby earning a specified reward and stochas-
tically transitioning to a new state—and thereafter following the optimal policy
to earn further reward.

The mutual recurrence between V and Q interleaves two different aggrega-
tors: max= treats optimization by the agent, while += computes an expectation to
treat randomness in the environment. This “expectimax” strategy is appropriate
for acting in a random environment, in contrast to the “minimax” strategy using
max= and min= that is appropriate when acting against an adversarial opponent.
The final line with ?= merely extracts the optimal policy once its value is known.

Other dynamic programming algorithms are also straightforward in Dyna,
such as the optimal strategy in a game tree or a Markov Decision Process (Fig-
ure 9), variations from bioinformatics on weighted edit distance (Figure 10) and
multiple sequence alignment, or the intersection or composition of two finite-
state automata (see [13] for Dyna code).

Processing Pipelines It is common for several algorithms and models to work
together in a larger AI system. Connecting them is easy in Dyna: one algorithm’s
input items can be defined by the output of another algorithm or model, rather
than as extensional input. The various code and data resources can be provided
in separate dynabases (§2.7), which facilitates sharing, distribution, and reuse.

For example, Figure 11a gives a version of Figure 8’s parser that conveniently
accepts its grammar and input in the form of other dynabases. Figure 11b illus-
trates how this setup allows painless scripting.

Figure 11c shows how the provided grammarmay be an interesting component
in its own right if it does not merely list weighted productions but computes

% Base case: distance between two empty strings.
dist([],[]) = 0.

% Recursive cases.
dist([X|Xs], Ys) min= delete_cost(X) + dist(Xs,Ys).

dist(Xs, [Y|Ys]) min= insert_cost(Y) + dist(Xs,Ys).

dist([X|Xs],[Y|Ys]) min= subst_cost(X,Y) + dist(Xs,Ys).

% Part of the cost function.
substcost(L,L) = 0. % cost of 0 to align any letter to itself

Fig. 10: Weighted edit distance between two strings. This example illustrates
items whose names are arbitrarily deep terms: each dist name encodes two
strings, each being an list of letters. As in Prolog, the syntactic sugar [X|Xs]
denotes a list of length > 0 that is composed of a first element X and a remainder
list Xs.

We pay some cost for aligning the first 0 or 1 letters from one string
with the first 0 or 1 letters from the other string, and then recurse to find
the total cost of aligning what is left of the two strings. The choice of
how many initial letters to align is at lines 2–4: the program tries all three
choices and picks the one with the minimum cost. Reuse of recursive subprob-
lems keeps the runtime quadratic. For example, if all costs not shown are 1,
then dist([a,b,c,d], [s,b,c,t,d]) has value 2. This is obtained by opti-
mally choosing the line with subst_cost(a,s) at the first recursive step, then
subst_cost(b,b), subst_cost(c,c), insert_cost(t), subst_cost(d,d), for
a total cost of 1+0+0+1+0.

them using additional Dyna rules (analogous to the neural network example
in Figure 3). The particular example in Figure 11c constructs a context-free
grammar from weights. It is equally easy to write Dyna rules that construct a
grammar’s productions by transforming another grammar,29 or that specify an
infinitely large grammar.30

Not only grammar but also input may be defined using rules. For example,
the input sequence of words may be derived from raw text or speech signal using
a structured prediction system—a tokenizer, morphological analyzer, or auto-
matic speech recognizer. A generalization is that such a system, instead of just
producing a single “best guess” word sequence, can often be made to produce a
probability distribution over possible word sequences, which is more informative.
This distribution is usually represented as a “hypothesis lattice”—a probabilis-

29 E.g., one can transform a weighted context-free grammar into Chomsky Normal
Form for use with Figure 11a, or coarsen a grammar for use as an A* heuristic [39].

30 E.g., the non-range-restricted rule rewrite(X/Z,X/Y,Y/Z). encodes the infinitely
many “composition” rules of combinatory categorial grammar [60], in which a com-
plex nonterminal such as s/(pp/np) denotes an incomplete sentence (s) missing an
incomplete prepositional phrase (pp) that is in turn missing a noun phrase (np).

phrase(X,I,J) += grammar.rewrite(X,W) * input.word(W,I,J).

phrase(X,I,J) += grammar.rewrite(X,Y,Z) * phrase(Y,I,Mid)

* phrase(Z,Mid,J).

goal += phrase(grammar.start_nonterminal,0,input.length).

(a) A parser like that of Figure 8, except that its input items are two dynabases (denoted
by grammar and input) rather than many separate numbers (denoted by rewrite(. . .),
word(. . .), etc.).

% Specialize (a) into an English-specific parser.
english_parser = new $load("parser"). % parser.dyna is given in (a)
english_parser.grammar = $load("english_grammar"). % given in (c)

% Parse a collection of English sentences by providing different inputs.
doc = $load("document").
parse(K) = new english_parser.

parse(K).input = doc.sentence(K).

% The total log-probability of the document, ignoring sentences for which
% no parse was found.
logprob += log(parse(K).goal).

(b) An illustration of how to use the above parser. This declarative “script” does not
specify the serial or parallel order in which to parse the sentences, whether to retain
or discard the parses, etc. All dynabases parse(K) share the same grammar, so the rule
probabilities do not have to be recomputed for each sentence. A good grammar will obtain
a comparatively high logprob; thus, the logprob measure can be used for evaluation or
training. (Alternative measures that consider the correct parses, if known, are almost as
easy to compute in Dyna.)

% Define the unnormalized probability of the grammar production X → Y Z

% as a product of feature weights.
urewrite(X,Y,Z) *= left_child_weight(X,Y).

urewrite(X,Y,Z) *= right_child_weight(X,Z).

urewrite(X,Y,Z) *= sibling_weight(Y,Z).

urewrite(X,Y,Y) *= twin_weight. % when the two siblings are identical
urewrite(X,Y,Z) *= 1. % default in case no features are defined

% Normalize into probabilities that can be used in PCFG parsing:
% many productions can rewrite X but their probabilities should sum to 1.
urewrite(X) += urewrite(X,Y,Z)

whenever nonterminal(Y), nonterminal(Z).

rewrite(X,Y,Z) = urewrite(X,Y,Z) / urewrite(X).

(c) Constructing a dense grammar for use by the above programs, with probabilities given
by a conditional log-linear model. With k grammar nonterminals, this scheme specifies
k3 rule probabilities with only O(k2) feature weights to be learned from limited data [5].
Just as for neural nets, these weights may be trained on observed data. For example,
maximum likelihood estimation would try to maximize the resulting logprob in 11b.

Fig. 11: A modular implementation of parsing.

tic finite-state automaton that may generate exponentially or infinitely many
possible sequences, assigning some probability to each sequence. The parser of
Figure 11a can handle this kind of nondeterministic input without modification.
The only effect on the parser is that I, J, and Mid in Figure 11a now range over
states in an automaton instead of positions in a sentence.31

At the other end of the parsing process, the parse output can be passed
downstream to subsequent modules such as information extraction. Again, it is
not necessary to use only the single most likely output (parse tree). The down-
stream customer can analyze all the phrase items in the dynabase of Figure 11a
to exploit high-probability patterns in the distribution over parse trees [59,68].

As discussed in the caption for Figure 11c, the training of system parameters
can be made to feed back through this processing pipeline of dynabases [20].
Thus, in summary, hypotheses can be propagated forward through a pipeline
(joint prediction) and gradients can be propagated backward (joint training).
Although this is generally understood in the natural language processing commu-
nity [28], it is surprisingly rare for papers to actually implement joint prediction
or joint training, because of the extra design and engineering effort, particularly
when integrating non-trivial modules by different authors. Under Dyna, doing
so should be rather straightforward.

Another advantage to integrating the phases of a processing pipeline is that
integration can speed up search. The phases can interactively negotiate an ex-
act or approximate solution to the joint prediction problem—various techniques
include alternating optimization (hill-climbing), Gibbs sampling, coarse-to-fine
inference, and dual decomposition. However, these techniques require system-
atic modifications to the programs that specify each phase, and are currently
underused because of the extra implementation effort.

Backtracking Search Many combinatorial search situations require backtrack-
ing exploration of a tree or DAG. Some variants include beam search, game-tree
analysis, the DPLL algorithm for propositional satisfiability, and branch-and-
bound search in settings such as Integer Linear Programming.

It is possible to construct a search tree declaratively in Dyna. Since a node
in a search tree shares most properties with its children, a powerful approach is
to represent each node as a dynabase, and each of its child nodes as a modified
extension of that dynabase (see §2.7).

We illustrate this in Figure 12 with an elegant DPLL-style program for solv-
ing NP-hard satisfiability problems. Each node of the search tree runs the arc-
consistency program of Figure 6 to eliminate some impossible values for some
variables, using a message-passing local consistency checker. It “then” probes a
variable nextvar, by constructing for each of its remaining possible values Val a
child dynabase in which nextvar is constrained to have value Val. The child dyn-
abase copies the parent, but thanks to the added constraint, the arc-consistency
algorithm can pick up where it left off and make even more progress (eliminate

31 See the full version of this paper [22] for details.

% Freely choose an unassigned variable nextvar, if any exists.
% For each of its values Val that is still possible after arc consistency,
% create a clone of the current dynabase, called child(Val).
nextvar ?= Var whenever unassigned(Var). % free choice of nextvar
child(Val) = new $self if possible(nextvar:Val). % create several extensions

% Further constrain each child(Val) via additional extensional input,
% so that it will only permit value Val for nextvar,
% and so that it will choose a new unassigned variable to assign next.
child(Val).possible(nextvar:Val2) &= (Val==Val2)

whenever possible(nextvar:Val).

child(Val).unassigned(nextvar) &= false. % nextvar has been assigned

% We are satisfiable if Figure 6 has not already proved consistent to be false,
% and also at least one of our children (if we have any) is satisfiable.
consistent &= some_child_consistent.

some_child_consistent |= child(Val).consistent.

% usually is true or false, but is null at a leaf (since nextvar is null)

Fig. 12: Determining the satisfiability of a set of constraints, using backtrack-
ing search interleaved with arc consistency. These rules extend the program of
Figure 6—which rules out some impossible values for some variables, and which
sometimes detects unsatisfiability by proving that consistent is false. Here,
we strengthen consistent with additional conjuncts so that it fully checks for
satisfiability. Lines 1–2 choose a single variable nextvar (using the “free-choice”
aggregator ?=) and guess different values for it in child dynabases. We place
constraints into the child at lines 3–4 and read back the result (whether that
child is satisfiable) at line 6.

even more values). That reduces the number of grandchildren the child needs to
probe. The recursion terminates when all variables are constrained.

One good execution strategy for this Dyna program would resemble the ac-
tual DPLL method [18], with

– a reasonable variable ordering strategy to select nextvar;

– each child dynabase created by a temporary modification of the parent, which
is subsequently undone;

– running arc consistency at a node to completion before constructing any
children, since quickly eliminating values or proving unsatisfiability can rule
out the need to examine some or all children;

– skipping a node’s remaining children once consistent has been proved
false (by arc consistency) or true (by finding a consistent child).

However, the program itself is purely declarative and admits other strategies,
such as parallel ones.

A simple modification to the program will allow it to solve MAX-SAT-style
problems using branch-and-bound.32 In this case, a more breadth-first variant
such as A* or iterative deepening will often outperform the pure depth-first
DPLL strategy. All these strategies can be proved correct from the form of the
Dyna program, so a Dyna query engine is free to adopt them.33

Local Search and Sampling While the search tree constructed above was ex-
haustive, a similar approach can be used for heuristic sequential search strategies:
greedy local search, stochastic local search, particle filtering, genetic algorithms,
beam search, and survey-inspired decimation. Each configuration considered at
time T can be described by a dynabase that extends a configuration from time
T-1 with some modifications. As with our arc consistency example, rules in the
dynabase will automatically compute any consequences of these modifications.
Thus, they helpfully update any intensional data, including the score of the
configuration and the set of available next moves.

The same remarks apply to Monte Carlo sampling methods such as Gibbs
sampling and Metropolis-Hastings, which are popular for Bayesian learning and
inference. Modifications at time T are now randomly sampled from a move distri-
bution computed at time T-1. Again, the consequences are automatically com-
puted; this updates the move distribution and any aggregate sample statistics.

3.2 Proofs and Proof Forests

It is useful to connect Dyna, whose items have weights or values, to the tradi-
tional notion of proofs in unweighted logic programming.

32 The goal is to find a maximum-scoring joint assignment to the variables, subject to
the constraints. The score of a given assignment is found by summing the subscore
values (as specified by the user) of the several Var:Val pairs in the assignment.

In Figure 6 and Figure 12, replace consistent (a boolean item aggregated by &=)
by score (a real-valued item aggregated by min=). In Figure 6, just as consistent
computes a boolean upper bound on satisfiability, score computes a numeric upper
bound on the best achievable score:

subscore(Var) max= −∞.

subscore(Var) max= subscore(Var:Val) whenever possible(Var:Val).

upper_bound += subscore(Var) whenever is_var(Var).

score min= upper_bound.

Then in Figure 12, score is reduced to the best score actually achieved by any child:

score min= best_child_score.

best_child_score max= child(nextvar:Val).score.

33 For example, it is easy to see that upper_bound at each node n (once it has converged)
is indeed an upper bound on the score of the node (so can be used as an admissible
heuristic for A*). It can further be proved that as long as this bound is smaller than
the current value of best_child_score at an ancestor of n whose score was queried,
then exploring the children of n further cannot affect the query result.

Datalog can be regarded as defining proof trees. Figures 13a–13b show a
collection of simple inference rules (i.e., a program) and two proof trees that
can be constructed from them. As a more meaningful example, Figures 14–15
show inference rules for context-free CKY parsing (unweighted versions of the
rules in Figure 8) and two proof trees that can be constructed using them.34

These proof trees are isomorphic to the parse trees in Figure 16. In other words,
a parser is really trying to prove that the input string can be generated by the
grammar. By exploring the proof trees, we can see the useful hidden derivational
structures that record how the string could have been generated, i.e., the possible
parses.35

A Datalog program may specify a great many proof trees, but thanks to
shared substructure, the entire collection may be represented as a packed for-

est. The hypergraph in Figure 13c shows the packed forest of all proofs licensed
by the program in Figure 13a. Some vertices here have multiple incoming hyper-
edges, indicating that some items can be proved in multiple ways. The number
of proofs therefore explodes combinatorially with the in-degree of the vertices.36

In fact, the forest in Figure 13c, being cyclic, contains infinitely many proof
trees for b. Even an acylic forest may contain a number of proof trees that is
exponential in the size of the hypergraph.

Indeed, a Datalog program can be regarded simply as a finite specification
of a proof forest. If the rules in the program do not contain variables, then the
program is actually isomorphic to the proof forest, with the items correspond-
ing to nodes and the rules corresponding to hyperedges. Rules with variables,
however, give rise to infinitely many nodes (not merely infinitely many proofs).

3.3 From Logical Proofs to Generalized Circuits

To get a view of what Dyna is doing, we now augment our proof forests to allow
items (vertices) to have values (Figure 13e). This yields what we will call gener-
alized circuits. Like an arithmetic (or boolean) circuit, a generalized circuit is
a directed graph in which the value at each node α is a specified function of the
values at the 0 or more nodes that point to α. Finding a consistent solution to
these equations (or enough of one to answer particular value queries) is challeng-
ing and not always possible, since Dyna makes it possible to define circuits that
are cyclic and/or infinite, including infinite fan-in or fan-out from some nodes.
(Arithmetic circuits as traditionally defined must be finite and acyclic.)

We emphasize that our generalized circuits are different from weighted proof
forests, which attach weights to the individual proof trees of an item and then

34 To obtain the CKY proof trees, we must add facts that specify the words and
grammar rules. That is, we extend the CKY program with the extensional input.

35 The mapping from proof trees (derivation trees) to syntactic parse trees (derived
trees) is generally deterministic but is not always as transparent as shown here.
For example, a semantics-preserving transformation of the Dyna program [47,21,36]
would change the derivation trees but not the derived trees.

36 Although a has only one incoming edge, it has two proof trees, one in which p is
proved from y and the other (shown in Figure 13b) in which p is proved from z.

x p
a

p

b

b f

b

y
p

z
p f

x y z

a :- x, p.

b :- p.

b :- b, f.

p :- y.

p :- z.

f.

x.

y.

z.

(a) A set of inference rules, and their encoding
in Datalog. Axioms are written as inference
rules with no antecedents.

a b

• •

x p f b

z

•

p

•

y

•

(b) Two proof trees using these
rules. When an item is proved
by an inference rule from 0 or
more antecedent items, its ver-
tex has an incoming hyperedge
from its antecedents’ vertices.
Hyperedges with 0 antecedents
(to f, x, y, z) are not drawn.

a b

• •

x p

•

f

y

•

z

•

(c) The proof forest
containing all possible
proofs. In contrast,
each hypergraph in 13b
shows only a single
proof from this forest,
with each copy of an
item selecting only a
single incoming hyper-
edge from the forest,
and cycles from the
forest unrolled to a
finite depth.

a += x + p.

b += p.

b += b / f.

p *= y.

p *= z.

f = 4.

x = 1.

y = 2.

z = 3.

(d) A set of numeric
recurrence relations
that are analogous to
the unweighted infer-
ence rule in Figure 13a.
We use Dyna’s syntax
here.

a = 7 b =
+

8

• = 7 • = 2

x = 1 p =
∗

6

•

f = 4

y = 2 z = 3

•

(e) A generalized arithmetic circuit
with the same shape as the proof
forest in Figure 13c. The weight
labellings are consistent with 13d.
Each node (including the • nodes) is
computed from its predecessors.

Fig. 13: Some examples of proof trees and proof forests, using hypergraphs
(equivalently, AND-OR graphs). Named nodes in the graphs represent items,
and • nodes represent intermediate expressions.

iwj X → w

iXj

iYj jZk X → Y Z

iXk

Fig. 14: The two proof rules necessary to support context-free grammars with
unary productions and binary rewrites. w denotes a word from the input sentence
and X a symbol of the grammar. Subscripts denote the object’s span (which part
of the sentence they cover).

N → Time 0Time1

0N1

V → flies 1flies2

1V2

.

.

.

2P3

.

.

.

3NP5 PP → P NP

2PP5 VP → V PP

1VP5 S → N VP

0S5

N → Time 0Time1

0N1

N → flies 1flies2

1N2 NP → N N

0NP2

.

.

.

2V3

.

.

.

3NP4 VP → V NP

2VP5 S → NP VP

0S5

Fig. 15: Two example proofs that “Time flies like an arrow.” is an English sen-
tence, using the rules in Figure 14. This is traditional notation, but the hyper-
graphs of Figure 13 are more flexible because they would be able to show reuse
of subgoals within a single proof, as well as making it possible to show packed
forests of multiple proofs with shared substructure, as in Figure 13c.

combine those to get the item’s weight. In particular, the common setup of
semiring-weighted deduction is a special case of weighted proof forests that
is strictly less general than our circuits. In semiring-weighted deduction [30],
the weight of each proof tree is a product of weights of the individual rules
or facts in the tree. The weight of an item is the sum of the weights of all
its proofs. It is required that the chosen product operation ⊗ distributes over
the chosen sum operation ⊕, so that the weights form a semiring under these
operations. This distributive property is what makes it possible to sum over the
exponentially many proofs using a compact generalized circuit like Figure 8 (the
inside algorithm) that is isomorphic to the proof forest and computes the weight
of all items at once.

Our original prototype of Dyna was in fact limited to semiring-weighted
deduction (which is indeed quite useful in parsing and related applications).
Each program chose a single semiring (⊕,⊗); each rule in the program had to
multiply its antecedent values with ⊗ and aggregate these products using ⊕=.

However, notice that most of our useful AI examples in §3.1 actually fall
outside this form. They mix several aggregation operators within a program,
sometimes including non-commutative aggregators like :=, and it is sometimes
important that they define the aggregation of 0 items to be null, rather than

S

N

Time

VP

V

flies

PP

P

like

NP

Det

an

N

arrow

S

NP

N

Time

N

flies

VP

V

like

NP

Det

an

N

arrow

Fig. 16: Two example parse trees of the sentence “Time flies like an arrow” [40].
These are isomorphic to the proofs in Figure 15 (upside down) and correspond
to different meanings of the sentence. The first conveys information about how
time passes; the second tree says that flies of a certain species (“time flies”) are
fond of an arrow.

requiring the aggregator to have an identity element and using that element.
They also use additional non-linear operations like division and exponentiation.

As a result, it is not possible to regard each of our AI examples as simply
an efficient way to sum over exponentially many proofs of each output item. For
example, because of the sigmoid function in Figure 2, the distributive property
from semiring-weighted programs like Figure 8 does not apply there. One cannot
regard the activation value of an output node in a neural network as a sum over
the values of many individual proofs of that output node.37 That is, a generalized
circuit does not necessarily fall apart into disjoint trees the way that a weighted
forest does. Rather, the computations are tangled together. In the neural network
example, computing intermediate sums at the hidden nodes is important not only
for dynamic programming efficiency (as it is in the semiring-weighted program
of Figure 8) but also for correctness. The sigmoid function at each node really
does need to apply to the sum, not to each summand individually.

We remark that even generalized circuits are not a convenient representation
for all Dyna programs. The rule f(0) += g(1) generates a single edge in a
generalized circuit. However, the rule f(start) += g(end), where start and
end are evaluated, would generate edges to f(x) (for every x that is a possible
value of start) from start, end, and g(y) (for every y that is a possible value of
end). Typically this leads to infinitely many edges, only one of which is actually
“active” in a given solution to the program.

Despite all this freedom, Dyna circuits remain circuits, and do not seem to
present the difficulties of arbitrary systems of equations. A Dyna program cannot
impose fiendish constraints such as x3 + y3 = z3. (Recall that Fermat’s Last
Theorem says that there are no postive integer solutions.) Rather, each equation

37 Each proof of o1 in Figure 1 would be a separate path of length 2, from some input
node through some hidden node to o1.

in a Dyna system constrains a single item to equal some function of the items in
the program. (This arises from Dyna’s use of single-headed rules, similar to Horn
clauses.) Furthermore, every item has exactly one “defining constraint” of this
sort (obtained by aggregating across multiple rules).38 So one cannot formulate
x3 + y3 = z3 by writing u = x3 + y3 and u = z3 (which would give two defining
constraints). Nor can one formulate it by writing s = s+ (x3 + y3 − z3), a legal
Dyna program that might appear to imply x3 + y3 − z3 = 0, but whose unique
solution is actually that x, y, z, s are all null, since each of x, y, z (having no
defining rules) has a defining constraint that it is the aggregation of 0 aggregands.

4 Practical AI and Logic Programming

Given an applied AI problem, one would like to experiment with a broad range of
models, exact or approximate inference algorithms, decision procedures, training
procedures for the model parameters and system heuristics, and storage and ex-
ecution plans. One must also experiment when developing new general methods.

Dyna supports the common computational core for all this—mechanisms for
maintaining a possibly infinite and possibly cyclic network of related items that
are named by structured terms. Its job is to store and index an item’s value, to
query for related items and aggregate their values (including planning of complex
queries), to maintain the item’s value and propagate changes to related items,
and to back-propagate gradient information.

In this section, we expand on our argument from §1 that a fast and scalable
implementation of Dyna would be of practical use to the AI community. The full
version of this paper [22] gives a more detailed argument, with many citations
as well an informal survey of current code and data size.

4.1 What’s Wrong with Current AI Practices

Current AI practices, especially in our target area of natural-language process-
ing and machine learning, suffer from a large distance between specification
and implementation. Typical specifications are a handful of recurrence relations
(though not as short as the examples in this paper). Creative graduate students
can easily dream up innovative systems at the specification level. Implementa-
tions, however, are typically imperative and by necessity include storage and
inference code.

Large Extensional Data Modern statistical methods mine large corpora of
data and produce sizable models. It is not atypical to process billions of words
and extract models with millions of constants and hundreds of millions of rela-
tions between those constants.

Knowledge bases and information integration pose additional problems of
scale. As statistical methods gain popularity in other computational fields, the

38 As mentioned earlier, this generalizes the completion semantics of [12], which treats
a logic program as defining each boolean item with an “if and only if” constraint.

large-data problem spreads. Storage and indexing structures are becoming ex-
tremely relevant, as are approximation and streaming techniques.

Large Intensional Effort As we have seen, even when extensional data is
small, modern AI systems often have large computations over intermediate quan-
tities. For many algorithms, the (weighted) proof forests may be exponentially or
unboundedly large. Here, efficient inference algorithms, prioritization, and query
planning become critical for managing execution time.

Modern AI academic research systems consist of large bodies of imperative
code (20,000–100,000 lines), specialized for the purpose at hand. Regardless of
programmer intent, there is little cross-system code reuse. Some researchers have
aimed to develop reusable code libraries (known as toolkits) to support common
development patterns. However, even the best and most flexible of these toolkits
are themselves large, and invariably are not general enough for all purposes.39

Uncaught Bugs The size of these coding efforts is not only a barrier to entry,
to learning, and to progress, but also likely affects correctness. The potential
for uncaught bugs was recognized early in statistical AI. Statistical AI systems
have many moving parts, and tend to produce some kind of quantitative result
that is used to evaluate the method. The results are not expected to be perfect,
since the problems are inherently hard and the statistical models usually cannot
achieve human-level performance even at their best. This makes it very diffi-
cult to detect errors. Methods that appear to be producing “reasonable” results
sometimes turn out to work even better (and occasionally worse) when bugs in
the implementation are later noticed and fixed.

Diverse Data Resources The AI community is distributed over many geo-
graphic locations, and many AI researchers produce data for others to share.
The difficulty in using this vast sea of resources is that they tend to be provided
in idiosyncratic formats. Trying out a new dataset often requires understanding
a new encoding scheme, parsing a new file format, and building one’s own data
structures for random access.

Diverse Code Resources Many AI resources are in the form of code rather
than data. It can be very valuable to build on the systems of others, and there
are principled ways to do so. At present, however, software engineering consid-
erations strongly discourage any deep integration of systems that were built in
different labs. One would like pipelines (of the kind discussed in §3.1) to agree
on a common high-quality output and common parameters, but this requires
the ability for components to query one another or pass messages to one another
[28]. Similarly, one may wish to combine the strengths of diverse AI systems
that are attempting the same task [35]. A recently emerging theme, therefore,
is the development of principled methods for coordinating the work of multiple
combinatorial algorithms. See references in the full version of this paper [22].

39 See the full version of this paper [22] for discussion of an example, and for the code
sizes of some AI systems and toolkits.

Ad Hoc Experimental Management AI researchers spend considerable time
managing computational experiments. It is usual to compare multiple systems,
compare variants of a system, tune system parameters, graph performance across
different types and amounts of data, and so forth. Common practice is to run
programs at the Unix command line and to store results in files, perhaps writing
scripts to manage the process. Sometimes one keeps intermediate results in files
for reuse or manual analysis. It can be difficult to keep all the files organized,
up to date, and track their provenance [7].

4.2 Declarative Programming to the Rescue

The above problems are intensifying as AI research grows in size, scope, and
sophistication. They have motivated our attempt to design a unified declarative
solution that hides some of the complexity. We would like it to be easy again to
simply try out good ideas!

Promising declarative languages based on Datalog have recently been built
for domains such as sensor networks [43] and business data analytics [41,42].

Why does a declarative approach fit for AI as well? We believe the business of
AI is deriving hypotheses and conclusions from data (as discussed in a section of
the full version of this paper [22]). These are fundamentally declarative problems:
what to conclude can be specified without any commitment to how to conclude it,
e.g., the order of computation. The Dyna approach has something to contribute
toward solving each of the challenges of the previous section:

Large Extensional Data We expect that most access by AI programs to large
extensional data stores could be supported by traditional on-disk database tech-
nology, such as B-trees, index structures, and standard query planning methods.
AI programs can automatically exploit this technology if they are written in a
Datalog-derived language with an appropriate implementation.

Large Intensional Effort The computational load of AI programs such as those
in §3.1 consists mainly of database queries and updates. Dyna provides an ex-
ecutable language for specifying these algorithms, making them concise enough
to publish within a paper.

Our hope is that the details left unspecified in these concise programs—the
storage and inference policies—can be efficiently handled in a modular, reusable
way across problems, eventually with automatic optimization and performance
tuning. Even basic strategies like those in §2.6 sometimes correspond closely
to current practice, and are often asymptotically optimal [45]. We are deeply
interested in systematizing existing tricks of the trade and making them reusable
across problems,40 as well as pushing in new directions (§1.3).

Quality Control Smaller programs should have fewer bugs. We also expect that
Dyna will allow some attractive paradigms for inspecting and debugging what a
system is doing , as discussed in a section of the full version of this paper [22].

40 See additional discussion in the full version of this paper [22].

Diverse Data Resources We hope that dynabases can provide a kind of natu-
ral interchange format for data resources. They allow flexible representation of
typed, structured data, and Dyna offers an attractive query language that can
be integrated directly into arbitrary computations. It is conceptually straight-
forward to convert existing data resources into collections of Dyna facts that can
be stored and queried as in Datalog.

Diverse Code Resources Dynabases are a useful format for code resources as
well. We do not claim that wrapping Java code (for example) in a dynabase in-
terface will improve its API. However, computational resources that are natively
written in the Dyna language do have advantages as components of larger AI
systems. First, they can more easily expose their internal hypotheses to be flex-
ibly queried and influenced by another component. Second, query optimization
can take place across the dynabase boundary, as can automatic differentiation.
Third, we suspect that Dyna programs are simply easier for third parties to
understand and modify manually when necessary. They can also be manipu-
lated and combined by program transformation; for example, [13] shows how to
combine two Dyna programs into a product-of-experts model.

Ad Hoc Experimental Management Dyna suggests an elegant solution to running
collections of experiments. Figure 11b gives a hint of how one could create a
parametric family of dynabases that vary input data, training data, experimental
parameters, and even the models and algorithms. The dynabases are named by
structured terms. Each dynabase holds the results of some experiment, including
all intermediate computations, and can track the provenance of all computations
(by making the hyperedges of proof forests visible as items). Some computations
would be automatically shared across related dynabases.

Using dynabases to store experimental results is quite flexible, since dyn-
abases can be structured and nested, and since the Dyna language can be used
to query, aggregate, analyze, and otherwise explore their contents.

In principle, this collection of dynabases may be infinite, representing an in-
finite variety of parameter settings. However, the contents of a dynabase would
be materialized only when queried. Which materialized intermediate and final
results are stored for later use, versus being discarded and recreated on de-
mand, would depend on the dynabase’s chaining and memoization policies,41as
declared by the user or chosen by the system to balance storage, latency, and
total runtime.

4.3 Uses of Change Propagation in AI

Recall that dynabases implement dynamic algorithms: their intensional items
update automatically in response to changes in their extensional input. This
corresponds to “view maintenance” in databases [34], and to “self-adjusting com-
putation” [1] in functional languages.

41 Additional details may be found in a section of the full version of this paper [22].

We observe that this kind of change propagation is widely useful in AI
algorithms. Internally, many algorithms simply propagate changes until conver-
gence (see the discussion of message passing in §3.1). In addition, AI systems
frequently experiment with slight variants of their parameters or inputs for train-
ing, validation, or search.

Optimization of Continuous or Discrete Parameters Training a data-
driven system typically runs the system on a fixed set of training examples. It
explores different parameter settings in order to maximize an objective measure
of system performance. A change to an individual parameter may affect rela-
tively few of the training examples. Similarly, adding or removing parameters
(“feature selection”) may require only incremental changes to feature extractors,
automata, or grammars. The ability to quickly recompute the objective function
in response to such small changes can significantly speed up training [51].

k-Fold Cross Validation The dual situation occurs when the parameters are
held fixed and the training data are varied. Systems often use cross-validation to
tune some high-level parameters of a model. For example, a language model is a
probability distribution over the strings of a language, and is usually trained on
as much data as possible. “Smoothing parameters” that affect how much prob-
ability mass is reserved for events that have not been seen in the training data
(cf. Figure 4). To evaluate a particular choice of smoothing parameters, cross-
validation partitions the available training data into k “folds,” and evaluates the
method’s performance on each fold when the language model is trained on the
other k− 1 folds. This requires training k different language models. However, it
should not be necessary to build each model from scratch. Rather, one can train
a master model on the full dataset, and then create variants by removing each
fold in turn. This removal should not require recomputing all counts and proba-
bilities of the model, particularly when k is large. For example, “leave-one-out”
training takes each sentence to be a separate fold.

Search and Sampling §3.1 already described how change propagation was
useful in backtracking search, local search, and sampling. In all of these cases,
some tiny change is made to the configuration of the system, and all the con-
sequences must be computed. For example, in the DPLL backtracking search
of Figure 12, constraining a single additional variable may have either small or
large effects on reducing the possibilities for other variables, thanks to the arc
consistency rules.

Control and Streaming-Data Systems Systems that process real-world data
have obvious reasons for their inputs to change: time passes and more data is fed
in. Monitoring the results is why commercial database engines such as Oracle
have begun to support continuous queries, where the caller is continually notified
of any changes to the query result. The Dyna version of continuous queries is
discussed in a section of the full version of this paper [22]. Applications include
business intelligence (e.g., LogicBlox [41]); stream processing for algorithmic

equities trading (e.g., DBToaster [2]); user interfaces (e.g., Dynasty [24] and
Fruit [16]); declarative animation (e.g., Fran [25]); query planners and optimizers
(see the discussion in the full paper); and even (incremental) compilers [9].

In an AI system—for example, medical decision support—sensors may con-
tinously gather information from the world, users may state new facts or needs,
and information integration may keep track of many large, evolving datasets at
other locations. We would like a system to absorb such changes and draw con-
clusions about the state of the world. Furthermore, it should draw conclusions
about desirable actions—actions such as notifying a human user of significant
changes, controlling physical actuators, seeking more information, or carrying
out more intensive computation. A running process can monitor these recom-
mended actions and carry them out.

5 Conclusion

We have described our work towards a general-purpose weighted logic program-
ming language that is powerful enough to address the needs of statistical AI.
Our claim is that modern AI systems can be cleanly specified using such a lan-
guage, and that much of the implementation burden can be handled by general
mechanisms related to logical deduction, database queries, and change propaga-
tion. In our own research in natural language processing, we have found a simple
prototype of the language [23] to be very useful, enabling us to try out a range
of ideas that we otherwise would have rejected as too time-consuming. The new
version aims to support a greater variety of execution strategies across a broader
range of programs, including the example programs we have illustrated here.

Note: Throughout this book chapter, we have referred to additional material
in the full version [22]. The full version also includes sections that sketch execu-
tion strategies; how dynabases interact with the world (the form of queries/re-
sults/updates, the dynabase API, mode checking, foreign dynabases, debugging);
and formal semantics.

References

1. Acar, U.A., Ley-Wild, R.: Self-adjusting computation with Delta ML. In: Koop-
man, P.W.M., Plasmeijer, R., Swierstra, S.D. (eds.) Advanced Functional Program-
ming. Lecture Notes in Computer Science, vol. 5832, pp. 1–38. Springer (2008)

2. Ahmad, Y., Koch, C.: DBToaster: A SQL compiler for high-performance delta
processing in main-memory databases. In: Proc. of VLDB. pp. 1566–1569 (2009)

3. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFST: A general
and efficient weighted finite-state transducer library. In: Proc. of the 12th Inter-
national Conference on Implementation and Application of Automata. pp. 11–23.
Springer-Verlag (2007)

4. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming,
chap. 2. Morgan Kaufmann (1988)

5. Berg-Kirkpatrick, T., Bouchard-Côté, A., DeNero, J., Klein, D.: Painless unsuper-
vised learning with features. In: Proc. of NAACL. pp. 582–590. ACL (2010)

6. Bidoit, N., Hull, R.: Minimalism, justification and non-monotonicity in deductive
databases. Journal of Computer and System Sciences 38(2), 290–325 (1989)

7. Breck, E.: zymake: A computational workflow system for machine learning and
natural language processing. In: Software Engineering, Testing, and Quality As-
surance for Natural Language Processing. pp. 5–13. SETQA-NLP ’08, ACL (2008)

8. Brodie, M.L.: Future Intelligent Information Systems: AI and Database Technolo-
gies Working Together. Morgan Kaufman (1988)

9. Burstall, R.M., Collins, J.S., Popplestone, R.J.: Programming in POP-2. Edin-
burgh University Press, Edinburgh, (1971)

10. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering
1, 146–166 (1989)

11. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer
(1990)

12. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum (1978)

13. Cohen, S.B., Simmons, R.J., Smith, N.A.: Products of weighted logic programs.
Theory and Practice of Logic Programming (2010)

14. Cohen, S., Nutt, W., Serebrenik, A.: Algorithms for rewriting aggregate queries
using views. In: Proc. of ADBIS-DASFAA. pp. 65–78. Springer-Verlag (2000)

15. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

16. Courtney, A., Elliott, C.: Genuinely functional user interfaces. In: 2001 Haskell
Workshop (2001)

17. The functional logic language Curry, http://www.informatik.uni-kiel.de/

~curry/

18. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

19. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)

20. Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: Proc.
of ACL. pp. 1–8 (2002)

21. Eisner, J., Blatz, J.: Program transformations for optimization of parsing algo-
rithms and other weighted logic programs. In: Wintner, S. (ed.) Proc. of FG 2006:
The 11th Conference on Formal Grammar. pp. 45–85. CSLI Publications (2007)

22. Eisner, J., Filardo, N.W.: Dyna: Extending Datalog for modern AI (full ver-
sion). Tech. rep., Johns Hopkins University (2011), available at http://dyna.org/
Publications. Extended version of the present paper.

23. Eisner, J., Goldlust, E., Smith, N.A.: Compiling comp ling: Weighted dynamic
programming and the Dyna language. In: Proc. of HLT-EMNLP. pp. 281–290.
Association for Computational Linguistics (2005)

24. Eisner, J., Kornbluh, M., Woodhull, G., Buse, R., Huang, S., Michael, C., Shafer,
G.: Visual navigation through large directed graphs and hypergraphs. In: Proc. of
IEEE InfoVis, Poster/Demo Session. pp. 116–117 (2006)

25. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming (1997)

26. Felzenszwalb, P.F., McAllester, D.: The generalized A* architecture. J. Artif. Int.
Res. 29(1), 153–190 (2007)

http://www.informatik.uni-kiel.de/~curry/
http://www.informatik.uni-kiel.de/~curry/
http://dyna.org/Publications
http://dyna.org/Publications

27. Fidler, S., Boben, M., Leonardis, A.: Learning hierarchical compositional represen-
tations of object structure. In: Dickinson, S., Leonardis, A., Schiele, B., Tarr, M.J.
(eds.) Object Categorization: Computer and Human Vision Perspectives. Cam-
bridge University Press (2009)

28. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proc. of ACL. pp. 363–370.
ACL (2005)

29. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Logic Programming, Proc. of the 5th International Conference and Symposium.
pp. 1070–1080 (1988)

30. Goodman, J.: Semiring parsing. Computational Linguistics 25(4), 573–605 (1999)
31. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proc. of

PODS. pp. 31–40 (2007)
32. Griewank, A., Corliss, G. (eds.): Automatic Differentiation of Algorithms. SIAM

(1991)
33. Guo, H.F., Gupta, G.: Simplifying dynamic programming via tabling. In: Practical

Aspects of Declarative Languages. Lecture Notes in Computer Science, vol. 3057,
pp. 163–177 (2004)

34. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques,
and applications. IEEE Data Eng. Bull. 18(2), 3–18 (1995)

35. Hinton, G.: Products of experts. In: Proc. of ICANN. vol. 1, pp. 1–6 (1999)
36. Johnson, M.: Transforming projective bilexical dependency grammars into

efficiently-parsable CFGs with unfold-fold. In: Proc. of ACL. pp. 168–175 (2007)
37. Kemp, D.B., Stuckey, P.J.: Semantics of logic programs with aggregates. Proc. of

the International Logic Programming Symposium pp. 338–401 (1991)
38. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-

ming and its applications. Journal of Logic Programming 12(4), 335–368 (1992)
39. Klein, D., Manning, C.D.: A∗ parsing: Fast exact Viterbi parse selection. In: Proc.

of HLT-NAACL (2003)
40. Kline, M.: Mathematics in the modern world; readings from Scientific American.

With introductions by Morris Kline. W. H. Freeman San Francisco, (1968)
41. LogicBlox: Datalog for enterprise applications: from industrial applica-

tions to research (2010), http://www.logicblox.com/research/presentations/
arefdatalog20.pdf, presented by Molham Aref at Datalog 2.0 Workshop

42. LogicBlox: Modular and reusable Datalog (2010), http://www.logicblox.

com/research/presentations/morebloxdatalog20.pdf, presented by Shan Shan
Huang at Datalog 2.0 Workshop

43. Loo, B.T., Condie, T., Garofalakis, M.N., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. Commun.
ACM 52(11), 87–95 (2009)

44. Marek, V., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K., Marek, V., Truszczyński, M., Warren, D. (eds.)
The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer-
Verlag (1999)

45. McAllester, D.A.: On the complexity analysis of static analyses. J. ACM 49(4),
512–537 (2002)

46. The Mercury Project, http://www.cs.mu.oz.au/research/mercury/index.html
47. Minnen, G.: Magic for filter optimization in dynamic bottom-up processing. In:

ACL. pp. 247–254 (1996)
48. Mohr, R., Henderson, T.: Arc and path consistency revised. Artificial Intelligence

28, 225–233 (1986)

http://www.logicblox.com/research/presentations/arefdatalog20.pdf
http://www.logicblox.com/research/presentations/arefdatalog20.pdf
http://www.logicblox.com/research/presentations/morebloxdatalog20.pdf
http://www.logicblox.com/research/presentations/morebloxdatalog20.pdf
http://www.cs.mu.oz.au/research/mercury/index.html

49. Mumick, I.S., Pirahesh, H., Ramakrishnan, R.: The magic of duplicates and ag-
gregates. In: Proc. of VLDB. pp. 264–277 (1990)

50. Nádas, A.: On Turing’s formula for word probabilities. IEEE Transactions on
Acoustics, Speech, and Signal Processing ASSP-33(6), 1414–1416 (1985)

51. Ngai, G., Florian, R.: Transformation-based learning in the fast lane. In: Proc. of
NAACL-HLT (2001)

52. van Noord, G., Gerdemann, D.: Finite state transducers with predicates and iden-
tities. Grammars 4(3) (2001)

53. Overton, D.: Precise and Expressive Mode Systems for Typed Logic Programming
Languages. Ph.D. thesis, University of Melbourne (2003)

54. Pelov, N.: Semantics of Logic Programs With Aggregates. Ph.D. thesis, Katholieke
Universiteit Leuven (2004)

55. Ramakrishnan, R., Srivastava, D., Sudarshan, S., Seshadri, P.: The coral deductive
system. The VLDB Journal 3(2), 161–210 (1994), special Issue on Prototypes of
Deductive Database Systems.

56. Ramamohanarao, K.: Special issue on prototypes of deductive database systems.
VLDB 3(2) (1994)

57. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

58. Ross, K.A., Sagiv, Y.: Monotonic aggregation in deductive databases. In: Proc. of
PODS. pp. 114–126 (1992)

59. Schmid, H., Rooth, M.: Parse forest computation of expected governors. In: Proc.
of ACL (2001)

60. Shieber, S.M., Schabes, Y., Pereira, F.: Principles and implementation of deductive
parsing. Journal of Logic Programming 24(1–2), 3–36 (1995)

61. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proc. of AAAI.
pp. 1094–1099. AAAI Press (2008)

62. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. JACM 23(4), 733–742 (1976)

63. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 620–650 (1991)

64. Williams, R., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural networks. Neural Computation 1(2), 270–280 (1989)

65. XSB, http://xsb.sourceforge.net/
66. Yedidia, J.S., Freeman, W., Weiss, Y.: Understanding belief propagation and its

generalizations. In: Exploring Artificial Intelligence in the NewMillennium, chap. 8.
Science & Technology Books (2003)

67. Younger, D.H.: Recognition and parsing of context-free languages in time n3. In-
formation and Control 10(2), 189–208 (1967)

68. Zhang, M., Zhang, H., Li, H.: Convolution kernel over packed parse forest. In: Proc.
of ACL. pp. 875–885 (2010)

69. Zhu, S.C., Mumford, D.: A stochastic grammar of images. Foundations and Trends
in Computer Graphics and Vision 2(4), 259–362 (2006)

70. Zukowski, U., Freitag, B.: The deductive database system LOLA. In: Dix, J., Fur-
bach, U., Nerode, A. (eds.) Logic Programming and Nonmonotonic Reasoning. pp.
375–386. LNAI 1265, Springer (1997)

http://xsb.sourceforge.net/

	Dyna: Extending Datalog For Modern AI

