
Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Fun With Haskell: ReST-ful Websites

with Yesod

Nathaniel Wesley Filardo

January 18, 2012

1 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Metadata

Questions?

� Questions from last time?

2 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Metadata

Overview of today

� ReST-ful Web development with Yesod.

� First half: me going quickly through the Yesod Book [3]
and QCon presentation [2]

� Second half: see if we can get something flying.

3 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Yesod?

Yesod (“foundation”) is a full server-side web stack:

� Web server (“warp”)

� Protocol for server/application connection (“WAI”)

� Front-controller / router

� Template system (“Hamlet”, “Lucius”, “Julius”)

� Database API (“yesod-persistent”)

� With add-ons for more.

4 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Yesod?

Yesod aims to be:

� Fast!

� ReST-ful.

� Safe (using static typing and code generation)

� Template system uses types to guard against XSS.
� Type-safe URLs encode every URL on the site in Haskell

data.

� Modular (this is Haskell).

� An evolutionary design: MVC, SQL DB integration, . . .

5 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

ReST?

“Representational State Transfer.” Defined by Roy Fielding in
his 2000 thesis [1]. Roughly:

� Client-server architecture. Servers have resources that
clients address.

� Servers store no per-client state.

� Explicit cache control on resources.

� Hidden server architecture (“am I talking to one or
several servers?”)

6 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

ReST?

The upshot, as applied to HTTP:

� URIs uniquely name a resource (blog post, comment,
user, ...)

� GET actions are read-only: return the latest description
of the resource.

� DELETE and PUT are idempotent manipulators.

� POST more generally updates a resource.

Yesod gives us separate handlers for each (URI, Verb), rather
than only routing on URI.

7 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Type-safe URLs?

� Every page on the site is identified by a piece of Haskell
data.

� That’s really atypical: usually identified directly by path!
� Algebraic data, in fact. Constructors take parameters!

� Rather than paste strings together, we use these handles
and leave the rendering to Yesod.

� Dually, rather than tease strings apart, Yesod maps
(“routes”) URLs to data and hands them to us for case
analysis!

8 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Hello World

� Let’s look at the helloworld.hs example quickly.

� Gives us some idea of where we’re going.

� Note: real Yesod sites use the “scaffolding” generated by
yesod init which is much more feature-ful (multiple
files!) and robust.

9 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Hello World

08-yesod/helloworld.hs

{-# LANGUAGE TypeFamilies,

QuasiQuotes,

MultiParamTypeClasses,

TemplateHaskell,

OverloadedStrings #-}

Alright, first off: we need a slew of extensions.
� Template Haskell and Quasi-Quotation are how Yesod will
do its code generation on our behalf.

� Overloaded Strings let us use string literals in the same
way as numeric literals. See IsString class.

� The others are type system extensions.
10 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Hello World

08-yesod/helloworld.hs

import Yesod

We need to import the modules we’re going to use. For now,
that’s just Yesod itself.

11 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Hello World

08-yesod/helloworld.hs

data HelloWorld = HelloWorld

instance Yesod HelloWorld where

approot _ = ""

We define a data type for our site (so simple, it doesn’t take
any parameters to construct one) and make this type an
instance of the Yesod class. The approot class method is the
root of the URI for our site; the empty string "" works when
we serve on the root of a site.

12 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Hello World

08-yesod/helloworld.hs

mkYesod "HelloWorld" [parseRoutes|

/ HomeR GET

|]

mkYesod is a Template Haskell function which blats out a lot
of code for us. The funny [parseRoute| |] brackets are a
quasi-quoter which generate code for us, too. We told it

� The map between URLs and Haskell data (“Home
Resource”)

� The methods which can be called on each

13 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Hello World

08-yesod/helloworld.hs

getHomeR :: Handler RepHtml

getHomeR = defaultLayout [whamlet|Hello World!|]

We have to say what happens when a GET request comes in
for HomeR. We first use a “Hamlet widget” (we’ll talk about
those later) quasi-quoter (which actually makes a Builder) to
capture the string; we then lay this out with defaultLayout,
a method of the Yesod class.

14 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Introduction

Hello World

08-yesod/helloworld.hs

main :: IO ()

main = warpDebug 3000 HelloWorld

Glue it all together. warpDebug is a really awesome utility
function: given a port number and the data for a site, it sets
up the warp web server and runs the site listening on localhost.

15 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Shakespearian Templates

Yesod defines several “Shakespearian” template languages for
generating web content. In order of increasing complexity:

� Julius for JavaScript.

� Cassius and Lucius for CSS.

� Hamlet for HTML.

All of these languages support interpolation, wherein we
splice a Haskell value into the template.

16 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Shakespearian Templates

Julius

� Julius in fact only supports interpolation.

17 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Shakespearian Templates

Julius

� Julius in fact only supports interpolation.

� For example:

function(){#{f x} = "@{SomeR}";}

17 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Shakespearian Templates

Julius

� Julius in fact only supports interpolation.

� For example:

function(){#{f x} = "@{SomeR}";}

� Shakespearian templates can reference a lot of things:

#{x} The Haskell Text expression x.
@{x} The URL path to the page computed by x.
^{x} Splice in another template (of the same type) x.

17 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Shakespearian Templates

Lucius

� Lucius is a strict superset of CSS.

� Supports interpolation and nested blocks.

article {

code { background-color: grey; }

p { text-indent: 2em; }

a { text-decoration: none; }

}

18 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Shakespearian Templates

Hamlet

Hamlet is a whitespace-based alternative to HTML. It
supports interpolation:

<html>

<head>

<title>#{siteTitle} - Foo

<link rel=stylesheet href=@{Stylesheet}>

<body>

<p>The subsequent material will amaze:

^{makeFancy}

19 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Shakespearian Templates

Hamlet

It also supports some funky operators:

<body>

$with nvs <- null vs

$if nvs

$maybe alt <- mAlt

<p>#{alt}

$nothing

<p>Sorry, nothing to display.

$else

$forall v <- vs

#{v}
20 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Shakespearian Templates

Hamlet

Hamlet also has lots of conveniences:

� Explicit whitespace markers if you need it.

� Convenience attributes for id (#) and class (.).

� DOCTYPE sugar.

� “simplified Hamlet” without support for URLs.
(“shamlet”)

� Internationalized Hamlet (w/ new interpolation)

See the documentation for more details, if you need them.
(Also the shakespeareTest.hs file I pushed up.)

21 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

Web programming requires that we manage three different
languages: HTML, CSS, and JS.

� Great for single-page site: separate content, presentation
rules, and client-side logic.

� In many-page sites, each page has to pick which CSS and
JS their content requires.

� Makes providing reusable chunks of “a website” difficult.

22 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

Yesod provides a Widget for encapsulating content and its
required “stuff”. A widget describes

� The title

� CSS (external references and internal declarations)

� JS (ditto)

� Other tags in the <head>

� Other tags in the <body>

23 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

Some primitive widget combinators (non-exhaustive list):

� setTitle takes a chunk of Html and makes it the title.

� Adding scripts: addScript (type-safe URL),
addScriptRemote (arbitrary URL)

� toWidget is overloaded on type; Hamlet goes in the
body, Julius inside <script>, Lucius in <style>.

24 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

And! (Wait for it. . .)

25 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

And! (Wait for it. . .)

� Widget is a Monad.

25 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

And! (Wait for it. . .)

� Widget is a Monad.

� And a Monoid.

25 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

And! (Wait for it. . .)

� Widget is a Monad.

� And a Monoid.

� Combine widgets into an überwidget using do notation!

uwidget = do

setTitle "If you didn’t set one before..."

toWidget [hamlet|<h1>Really Big Heading|]

toWidget [hamlet|<h5>Sub-heading under that|]

toWidget [lucius|h1 { color : green } |]

25 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

Other widget niceties:

� newIdent operator for making a unique name, say for
class labels.

� The whamlet quasi-quoter: like hamlet except that

� It produces a widget.
� the embedding interpolation (^{...}) now also takes

widgets.

26 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Widgets

� In fact, essentially everything gets turned into a Widget
either explicitly or internally.

� Then, the defaultLayout method of the Yesod class is
given the whole widget hierarchy and renders it.

� We didn’t specify one in helloworld.hs (so we used the
default) but we can override it. This is how Yesod
site-theming works.

� See the documentation for details.

27 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

The Yesod Type Class

On that note, there’s a lot to say about the Yesod class itself.

� Path handling

� Default layout

� Error pages

� Automatic handling of static CSS and JS

� Messages

� Authentication

All I will say is this: there’s documentation if you want it, and
you probably will, but maybe not in the next two hours.

28 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Routing

� Previously alluded to having multiple pages. How do we
actually do that?

� Recall:

08-yesod/helloworld.hs

mkYesod "HelloWorld" [parseRoutes|

/ HomeR GET

|]

� The quoted line says “The path / corresponds to the
HomeR resource and supports the GET method”

� Elsewhere, we defined getHomeR.

29 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Routing

� Static paths we’ve seen:

/ HomeR GET

/a/b SomeR

� Dynamic single paths take a type denoted with #:

/def/#String DefR GET POST DELETE

/sum/#Int/#Int SumR GET

� Dynamic multi paths take a *:

/wiki/*Texts WikiR GET

� Also subsites: see documentation.
30 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Routing

Remember, the quasi-quoter is building an ADT for our site.

� Static paths are constructors with no arguments.

� Dynamic paths are constructors with an argument for
each match.

� Type classes for (de)coding: SinglePiece and
MultiPiece if you want to define your own match types.

That’s not to say that every piece of data of this type is a
page; it’s just a valid URL.

31 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Routing

Yesod handles the details of matching and so on automatically.
Then what does it do?

� If you leave off the list of methods (e.g. / FooR), you get
a single callback for all URLs that matched, called
handleFooR.

� If you give the list of methods (e.g. / FooR GET POST),
you get discriminated callbacks: getFooR, postFooR.
Anything you didn’t mention gets 405 treatment.

� Again, also subsites. See documentation.

32 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Routing

� The matches in the routing declarations are arguments to
the handler functions.

� Static handlers don’t take any
� Dynamic handlers take one per match of the right type.

� Handlers’ return type is HasReps a => Handler a: a
Handler-monadic action returning some response.

� Typical responses are RepHtml, RepPlain, RepJson.

33 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Routing

Handler has lots of things you might want.

� Access to information about the site (getYesod)

� Access to request information (lookupGetParam,
lookupCookie, getRequest).

� Response header control: setCookie, cacheSeconds,
. . .

� Short-circuiting behavior for

� redirect to a type-safe URL
� notFound and other errors
� sendFile for static files

� Again, documentation is great.

34 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Client-side Session State

� Try as we might, sometimes we just can’t ReST.

� Typical examples: login, shopping carts.

� Sometimes, we want a per-client key/value store.

� Ideally, not loading our database.

� Use HTTP cookies.

� With encryption and MACing for security!
� Handled by the clientsession package.

35 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Client-side Session State

Really simple, Handler-monadic API:

� Set a session key’s value with setSession k v.

� Get with lookupSession k, which returns a Maybe.

� Delete with deleteSession k.

(Types elided for simplicity.)

36 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Client-side Session State

Messages

Sometimes we want to tell the user something on the next

page load (e.g. after handling a POST request and redirecting
the user). Messages give us a way to do this easily:

� setMessage to make the note to ourselves.

� getMessage to get the message and clear it.

� Suggested that getMessage happen in defaultLayout so
that it “just happens” by default.

37 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Server-side Persistent State

Ah, the moment you’ve all been waiting for.

� Hooking Haskell up to a database.

� Details handled for us by the persistent package.

� Non-relational, database-agnostic system.
� For today: sqlite backend.
� Also PostgreSQL and MongoDB and room for more.
� Capable of handling (some) migrations automatically.

� I am giving you the most basic stuff.

38 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Server-side Persistent State

Here’s what we need to do:

� Define our database schema using a quasi-quoter or two.

� Define and use a pool of database connections.

� Run database commands in handlers.

I’m going to use the example from the end of the book
chapter on persistent, which is also PersistTest.hs on the
course website.

39 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Server-side Persistent State

Defining the Schema

08-yesod/PersistTest.hs

share [mkPersist sqlSettings,

mkMigrate "migrateAll"] [persist|

Person

firstName String

lastName String

age Int Gt Desc

|]

Defines PersonFirstName, PersonLastName, and
PersonAge columns and types. Further, implicitly defines a
PersonId column and type.

40 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Server-side Persistent State

Pool Management

First things first, our foundation needs to carry the database
pool around:

08-yesod/PersistTest.hs

data PersistTest = PersistTest ConnectionPool

Contrast to

08-yesod/helloworld.hs

data HelloWorld = HelloWorld

41 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Server-side Persistent State

Pool Management

Need to tell Yesod a few things. We make our foundation type
an instance of YesodPersist:

instance YesodPersist PersistTest where

� Need to pick a particular backend (using “associated
types”; cool stuff!)

type YesodPersistBackend PersistTest

= SqlPersist

42 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Server-side Persistent State

Pool Management

instance YesodPersist PersistTest where

� Also need to define how to run DB operations:

runDB action = liftIOHandler $ do

PersistTest pool <- getYesod

runSqlPool action pool

� “Get the foundation and pattern match out the pool”
� “Run our action against that pool”
� “Lift into the right monad with liftIOHandler”

43 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Server-side Persistent State

Pool Management

When we start up, build a connection pool, run migrations,
and then give the pool to our foundation:

main = withSqlitePool "test.db3" 10 $ \pool -> do

runSqlPool (runMigration migrateAll) pool

{- ... -}

warpDebug 3000 $ PersistTest pool

44 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Server-side Persistent State

Running Database Operations

Actually running database operations is now easy:

getPersonR :: PersonId -> Handler RepPlain

getPersonR personId = do

person <- runDB $ get404 personId

return $ RepPlain $ toContent $ show person

We make use of the runDB we just defined and the get404
utility function (either gives us the requested object, or
short-circuits with a 404). Code knows the right column to
use from the type annotation.

45 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Form Handling

� Hoo boy, forms are big. Probably too much for now.

� Manage all sorts of things in a nice API:

� Server-side validation
� Marshalling to/from strings (“boundary problem”)
� Generate HTML and JavaScript fun stuff.
� JS client-side validation (just for UX)
� Automatic form-field name generation.
� Anti-CSRF nonces

� As usual, forms are compositional.

46 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Scaffolding

� Real websites don’t fit entirely in one file.

� Run yesod init to get a skeleton multi-file website.

� cd into the directory it made, run yesod devel.

� Then visit http://localhost:3000/.

� And look around, at Foundation.hs first.

47 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Next time

� Alright, with that done. . . all yours.

� People should mail me with suggestions for Friday:

� More me talking about Yesod?
� More you working on your stuff?
� Lambda calculus and category theory?

48 / 48

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

Bib

Roy Thomas Fielding.
Architectural Styles and the Design of Network-based

Software Architectures.
PhD thesis, 2000.
Available from: http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm.

Michael Snoyman.
Yesod web framework, November 2011.
QCon, San Francisco.
Available from: https://docs.google.com/present/
view?id=dz4jvnj_54hrjnwpdc.

Michael Snoyman.
Yesod Web Framework Book.

48 / 48

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://docs.google.com/present/view?id=dz4jvnj_54hrjnwpdc
https://docs.google.com/present/view?id=dz4jvnj_54hrjnwpdc

Meta Intro Templ Widget Route Session Persist Form Scaffold Next

2012.
Available from: http://www.yesodweb.com/book.

48 / 48

http://www.yesodweb.com/book

	Metadata
	Questions?
	Overview of today

	Introduction
	Yesod?
	ReST?
	Type-safe URLs?
	Hello World

	Shakespearian Templates
	Julius
	Lucius
	Hamlet

	Widgets
	Routing
	Client-side Session State
	Messages

	Server-side Persistent State
	Defining the Schema
	Pool Management
	Running Database Operations

	Form Handling
	Scaffolding
	Next time

