
Treating Machine Learning Algorithms
As Declaratively Specified Circuits

Jason Eisner Nathaniel Wesley Filardo
Johns Hopkins University
{jason,nwf}@cs.jhu.edu

COMPLEXITY IN ML SYSTEMS
The complexity of modern ML systems interferes with research,
development, and education. It is a truism that an experiment that
is casually suggested by a research advisor, and seems to be straight-
forward, may cost six months before an efficient and (hopefully)
bug-free implementation is actually running.

Textbook algorithms may appear relatively simple because they
can be written at an abstract level — e.g., as update rules on a small
set of nicely notated mathematical quantities. However, applying
such an algorithm to a real-world problem means instantiating
those abstract quantities in terms of problem-specific data struc-
tures that must be efficiently and correctly manipulated.

The abstract quantities mentioned in the textbook might be fea-
ture vectors, gradients, random samples, messages, probability dis-
tributions (which play many roles including models, posterior dis-
tributions, proposal distributions, variational approximations, and
stochastic policies), likelihoods, entropies, upper or lower bounds,
particles, importance weights, neural activations, weight tensors,
loss or reward estimates, etc.

Worse, a typical applied ML system combines multiple model-
ing/inference/training techniques, so that many types of quantities
are interacting. Not only does this increase complexity, but it creates
a pressure to optimize across the abstraction boundaries in order to
maintain speed. Choosing among possible optimizations is challeng-
ing and time-consuming, involving questions such as multiple-use
data structures, time-space tradeoffs, loop orders, and use of spe-
cialized libraries and hardware. Implementing these optimizations
further increases the complexity and risks bugs, particularly as the
system evolves during research and development.

THE DYNA LANGUAGE
To insulate users from these implementation choices, we propose an
abstract model of programming based on circuits. In our generalized
definition, a circuit is a graph that describes the dependence of data
items on other data items, using functions and aggregations. We
allow the graph to be cyclic or infinite; it can be discovered lazily
as computation proceeds.

While our circuit programming model is Turing-complete, it was
specifically developed to support design patterns in the applied
machine learning (ML) community.

Our user-level circuit language, Dyna [4], allows a concise high-
level specification of the heterogeneous computations that are to
be performed by a machine learning method. Two examples are
shown in Figures 1 and 2. Additional examples are listed in Table 1.

Dyna programs are related to deductive databases with aggrega-
tion [3, 9]. A Dyna programmer simply specifies how data items
are derived from other data items, perhaps recursively or cyclically.
Since the items have structured names (similar to Prolog terms),

these specifications can usually be cleanly stated by a few schematic
rules, which are very close to the textbook ML equations.

The rule notation is inspired by Datalog and Prolog, but Dyna
augments these languages with non-boolean values, functional
evaluation, and aggregation. For safety, we are currently adding
novel mechanisms for type safety, assertion, error handling, and
stability of stochastic or nondeterministic computation.

Finally, Dyna supports programming-in-the-large through en-
capsulation and inheritance. The encapsulation mechanism de-
fines sub-circuit objects called “dynabases” (dynamic deductive
databases) that have a public interface. Inheritance is an “extension”
mechanism that defines new dynabases as modifications of old ones,
augmenting them with new inputs or new rules.

PURE COMPUTATION
Dyna is a pure language, with no side effects and no I/O. A program
simply defines a generalized computational circuit: a finite or
infinite collection of interrelated data items. Rules of the program
define each item as the aggregation of some function over other
items, which are identified by a pattern-matching syntax. As a
base case, some items are simply defined as constants, so a circuit
provides a unified interface to stored data (these “input” items)
along with algorithms for producing derived data.

Without I/O, how does one make use of the circuit? An exter-
nal driver program — in a procedural language — uses an API
to update and query the circuit. In other words, the circuit acts
like a database or other data structure that is capable of storing
information (including derived information) and answering queries
about the currently stored information.

Thus, to compile a Dyna program, our proposed system must
in effect synthesize a data structure (possibly a distributed one)
with efficient query and update methods that faithfully support the
semantics of the specified circuit.
• Queries may be computationally intensive, since they typi-
cally spawn recursive queries via rules. In general, queries
return information about a fixpoint of the circuit. A fixpoint
is a map from item names to item values, such that each
item’s value is consistent with its parents’ values.1
• Updates change the values of input items, affecting the fix-
point. They may be equally computationally intensive if
some derived itemswerememoized to speed up future queries.
Updates to input items may render memos stale at derived
descendants, so must propagate eagerly or lazily to refresh
or flush those memos before they are incorrectly returned.

A single query or update may target all nodes that match a Prolog-
style pattern.

1If the circuit has multiple fixpoints, then the system is free to use any of them,
but a group of queries must answer with respect to the same fixpoint.

SysML’18, Feb 2018, Palo Alto, CA, USA Jason Eisner Nathaniel Wesley Filardo

2-3 lines Dijkstra’s shortest-path algorithm
4 lines feed-forward neural network
11 lines Bigram language model with

Good-Turing backoff smoothing
6 lines Arc-consistency constraint propagation

+6 lines With backtracking search
+6 lines With branch-and-bound

6 lines Loopy belief propagation
3 lines Probabilistic context-free parsing

+3 lines Earley’s algorithm
+7 lines Conditional log-linear model of

grammar weights (toy example)
+10 lines Coarse-to-fine A∗ parsing

4 lines Value computation in a Markov
Decision Process

5 lines Weighted edit distance
3 lines Markov chain Monte Carlo (toy example)

Table 1: A range of example ML/AI algorithms whose very short
Dyna code is given in [4].

phrase(I,K,X) += word(I,K,W) * rewrite(X,W).
phrase(I,K,X) += phrase(I,J,Y) * phrase(J,K,Z)

* rewrite(X,Y,Z).
total = phrase(0,sentence_length,"s").

Figure 1: A Dyna program specifying a dynamic programming
circuit for probabilistic context-free parsing. It defines the total
item to be the total probability of all parses of a natural-language
sentence given asword items, under a grammar given asrewrite
items (which may be either stored or themselves derived from un-
derlying parameters). These 3 rules give the abstract structure of
the classical CKY parsing algorithm [11] (or more precisely, the
“inside algorithm” [2]), though without specifying a control flow.
They respectively say “a word can be a phrase,” “two adjacent
phrases can form a phrase,” and “we seek phrases covering the
sentence.” They define the probability of each hypothesized phrase:
phrase(I,K,X) denotes the total probability of all sub-parses
that span the input substring from I to K. The second rule can be
paraphrased as follows: “If there are possible phrases that span the
substrings (I,J] and (J,K], of types Y and Z respectively, and
the context-free grammar contains the rule X→ Y Z, then deduce
that there is a possible phrase of type X that spans (I,K]. Further-
more, the ‘inside probability’ of this phrase involves a three-way
product.”When there aremultiple ways to buildphrase(I,K,X),
its inside probability is defined to sum over all possibilities (choices
of J,Y,Z), as denoted by the += aggregation operator. To support
unary grammar rules X→ Y, we would add the rule phrase(I,K,X)
+= phrase(I,K,Y) * rewrite(X,Y); this may introduce cycles
into the circuit, which must be solved to fixpoint.

EXECUTION
Dyna aims to insulate programmers from the underlying questions
of how to store data and schedule computations. We believe that it
is a natural abstraction layer for pure computation settings such as
ML. Thus, supporting this layer provides a timely challenge to the
systems community.

sigmoid(X) = 1/(1+exp(-X)).
out(J) = sigmoid(in(J)).
in(J) += out(I) * edge(I,J).
loss += (out(J) - target(J))**2.

Figure 2: A feed-forward neural network. Note that line 1 defines
infinitely many sigmoid values (computed on demand), line 3 de-
fines a vector-matrix product, and the loss training objective in
line 4 sums only over output nodes J — those for which an item
target(J) has been defined. The network’s structure is specified
by defining items of the form edge(I,J), whose values are the edge
weights. This could be done by listing one explicit rule per edge.
Or it can be done systematically by writing edge-defining rules in
terms of structured node names, where these names will instantiate
I,J above. For example, edge(input(X,Y),hidden(X+DX,Y+DY))
= weight(DX,DY) defines a convolutional layer: the node named
hidden(10,10) receives a connection from the node named
input(8,11) with weight weight(-2,1).

TensorFlow [1] and PyTorch [8] are also circuit programming
models of computation. They cover a subset of Dyna since they
are limited to finite, acyclic, feed-forward computation and do not
support updates. They also expect users to describe circuits using
library operations on a few large data items such as matrices. In
contrast, the style of a Dyna program is often more fine-grained
— the program might refer directly to individual scalars by struc-
tured names, and leave it up to the system to arrange these scalars
appropriately into dense matrices and invoke vectorized operations.

Optimizing the execution of TensorFlow and PyTorch programs
has been an important accelerant to ML research. The efficient
execution of Dyna programs is a generalization of that systems
challenge. It is also a generalization of the database systems chal-
lenge: since Dyna subsumes Datalog, an implementation of Dyna
must make all the same choices as a database system, including
storage, indexing, and query cost estimation and planning.

Overall, the space of possible execution strategies for Dyna pro-
grams is large and complex [6, 7], involving many free choices for
how to schedule work, when to memoize partial results, and what
data structures to use for storing memos and input items. The opti-
mal choice of strategy may depend on the input data, the workload
of queries and updates, and hardware availability (multiple cores,
GPUs, distributed clusters, and memory/disk).

In a recent workshop paper [10], we and our co-authors laid out
our plans for gradually tuning the implementation at runtime using
reinforcement learning — that is, automatically testing out different
mixtures and combinations of strategies under real conditions (us-
ing JIT compilation). However, other approaches are possible. For
example, static analysis [6] may complement the dynamic analysis
performed by reinforcement learning. Our own initial implementa-
tion was a Dyna-to-C++ compiler [5] that was limited to efficient
forward-chaining execution of semiring-weighted circuits. This was
used for a series of 17 NLP papers. We later built a somewhat more
general Dyna interpreter that handled to a wider set of circuits, and
used this successfully to teach computational linguistics to a class
of non-programmers. We encourage other groups to consider how
to practically support the full Dyna language or useful subsets.

Treating Machine Learning Algorithms As Declaratively Specified Circuits SysML’18, Feb 2018, Palo Alto, CA, USA

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015).

[2] J. K. Baker. 1979. Trainable Grammars for Speech Recognition. In Speech Commu-
nication Papers Presented at the 97th Meeting of the Acoustical Society of America,
Jared J. Wolf and Dennis H. Klatt (Eds.). MIT, Cambridge, MA.

[3] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1990. Logic Programming and
Databases. Springer.

[4] Jason Eisner and Nathaniel W. Filardo. 2011. Dyna: Extending Datalog For
Modern AI. In Datalog Reloaded, Oege de Moor, Georg Gottlob, Tim Furche, and
Andrew Sellers (Eds.). Lecture Notes in Computer Science, Vol. 6702. Springer,
181–220.

[5] Jason Eisner, Eric Goldlust, and Noah A. Smith. 2005. Compiling Comp Ling:
Weighted Dynamic Programming and the Dyna Language. (October 2005), 281–
290 pages.

[6] Nathaniel Wesley Filardo. 2017. Dyna 2: Towards a General Weighted Logic
Language. Ph.D. Dissertation. Johns Hopkins University.

[7] Nathaniel Wesley Filardo and Jason Eisner. 2012. A Flexible Solver for Finite
Arithmetic Circuits. In International Conference on Logic Programming (Leibniz
International Proc. in Informatics), Vol. 17. 425–438.

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic Differentiation in PyTorch. In Proceedings of the NIPS Autodiff
Workshop.

[9] Kotagiri Ramamohanarao. 1994. Special Issue on Prototypes of Deductive Data-
base Systems. VLDB 3, 2 (1994).

[10] Tim Vieira, Matthew Francis-Landau, Nathaniel Wesley Filardo, Farzad Kho-
rasani, and Jason Eisner. 2017. Dyna: Toward a Self-Optimizing Declarative
Language for Machine Learning Applications. In Proceedings of the First ACM
SIGPLAN Workshop on Machine Learning and Programming Languages (MAPL).
ACM, Barcelona, 8–17. http://cs.jhu.edu/~jason/papers/#vieira-et-al-2017

[11] D. H. Younger. 1967. Recognition and Parsing of Context-Free Languages in Time
n3 . Information and Control 10, 2 (1967), 189–208.

http://cs.jhu.edu/~jason/papers/#vieira-et-al-2017

	References

