
Meta Math Next

Fun With Haskell: Sample Problems

and Testing

Nathaniel Wesley Filardo

January 18, 2012

1 / 24

Meta Math Next

Metadata

Questions?

� Any questions from last time?

2 / 24

Meta Math Next

Metadata

Overview of today

� Mostly intended for people to ask questions.

� Review using exercises from CalTech [1].

� Also: introduction to automated model checking:

� QuickCheck.
� SmallCheck / LazySmallCheck.

3 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� We’re going to write our own ++.

� Ultimately, using foldr. First, directly.

� What do we need?

4 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� We’re going to write our own ++.

� Ultimately, using foldr. First, directly.

� What do we need?

� Specification!

4 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� We’re going to write our own ++.

� Ultimately, using foldr. First, directly.

� What do we need?

� Specification!
� “Append takes two lists, a and b, and returns a list

composed of the elements of a in a-order followed by the
elements of b in b-order.”

4 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� “Append takes two lists, a and b, and returns a list
composed of the elements of a in a-order followed by the
elements of b in b-order.”

5 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� “Append takes two lists, a and b, and returns a list
composed of the elements of a in a-order followed by the
elements of b in b-order.”

� OK, yes, but. . .

5 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� “Append takes two lists, a and b, and returns a list
composed of the elements of a in a-order followed by the
elements of b in b-order.”

� OK, yes, but. . .

� How about we try some induction?

� What to induct over?

5 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� “Append takes two lists, a and b, and returns a list
composed of the elements of a in a-order followed by the
elements of b in b-order.”

� OK, yes, but. . .

� How about we try some induction?

� What to induct over?
� What’s the base case?
� What’s the induction step?

5 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� “Append takes two lists, a and b, and returns a list
composed of the elements of a in a-order followed by the
elements of b in b-order.”

� Induct on the length of a.
� Base case?

� Induction case?

6 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� “Append takes two lists, a and b, and returns a list
composed of the elements of a in a-order followed by the
elements of b in b-order.”

� Induct on the length of a.
� Base case?

� a is nil. What should append do?

� Induction case?

6 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� “Append takes two lists, a and b, and returns a list
composed of the elements of a in a-order followed by the
elements of b in b-order.”

� Induct on the length of a.
� Base case?

� a is nil. What should append do?

� Induction case?
� a is cons of ah and at. What should append do?

6 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� a is nil. What should append do?

appendList [] b = b

7 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� a is nil. What should append do?

appendList [] b = b

� a is cons of ah and at. What should append do?

appendList (ah:at) b = ah : (appendList at b)

7 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� So, all together:

appendList [] b = b

appendList (ah:at) b = ah : (appendList at b)

� Let’s do a quick sanity check using QuickCheck:

> import Test.QuickCheck

> quickCheck (\a b -> appendList a b == a ++ b)

+++ OK, passed 100 tests.

8 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� Or a more verbose sanity check using QuickCheck:

> verboseCheck (\a b -> appendList a b

== a ++ b)

Passed:

[()]

[(),(),(),(),(),(),(),(),(),(),()]

� Hey! That’s only sort of helpful!

9 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� Or a more verbose sanity check using QuickCheck:

> verboseCheck (\a b -> appendList a b

== a ++ b)

Passed:

[()]

[(),(),(),(),(),(),(),(),(),(),()]

� Hey! That’s only sort of helpful!

� appendList and ++ are polymorphic; QuickCheck chose
to use ().

9 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� Or a more verbose sanity check using QuickCheck:

> verboseCheck (\a b -> appendList a b

== a ++ b)

Passed:

[()]

[(),(),(),(),(),(),(),(),(),(),()]

� Hey! That’s only sort of helpful!

� appendList and ++ are polymorphic; QuickCheck chose
to use ().

� We’d rather it test on something with more than one
constructor.

9 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� Let’s tell it to use Ints:

> :set -XScopedTypeVariables

> verboseCheck (\a (b :: [Int]) ->

appendList a b == a ++ b)

... lots of numbers ...

+++ OK, passed 100 tests.

� Much better!

10 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� Let’s tell it to use Ints:

> :set -XScopedTypeVariables

> verboseCheck (\a (b :: [Int]) ->

appendList a b == a ++ b)

... lots of numbers ...

+++ OK, passed 100 tests.

� Much better!

� (Could use {-# LANGUAGE ScopedTypeVariables #-}

at the top of a file, too.)

10 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� Now, remember foldr?

foldr f z [] = z

foldr f z (x:xs) = x ‘f‘ (foldr f z xs)

11 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� Now, remember foldr?

foldr f z [] = z

foldr f z (x:xs) = x ‘f‘ (foldr f z xs)

� Alternatively:

� Given any g:

g [] = z

g (x:xs) = f x (g xs)

� Then g = foldr f z.

11 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� So we have:

appendList [] b = b

appendList (ah:at) b = ah : (appendList at b)

� Does that look like?

g [] = z

g (x:xs) = f x (g xs)

� Sort of.

12 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� So we have:

appendList [] b = b

appendList (ah:at) b = ah : (appendList at b)

� Does that look like?

g [] = z

g (x:xs) = f x (g xs)

� Sort of.

� Flip arguments:

alf b [] = b

alf b (ah:at) = ah : (alf b at)

12 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

� So now we have

alf b [] = b

alf b (ah:at) = ah : (alf b at)

� So the universal property of foldr tell us:

alf b = foldr (:) b

� So, making the other argument explicit:

alf b a = foldr (:) b a

� And, finally, recalling the definition of alf:

appendList a b = foldr (:) b a

13 / 24

Meta Math Next

Mathematical Examples

Appending Lists Using foldr

Just checking:

> quickCheck (\a (b :: [Int]) ->

foldr (:) b a == a ++ b)

+++ OK, passed 100 tests.

14 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

� The core of insertion sort.

� Specification?

� Given an ascending-ordered list ys of orderable things,
and another thing of the same type x, return the ordered
list containing x and all elements of ys.

� Note: if x is equal to something in ys, the above
specification says we return a list with two equal
elements.

15 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

� Base case?

ascInsert x [] = [x]

� Inductive step?

ascInsert x (y:ys) = -- ...

� What do we need to do?

16 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascInsert x (y:ys) = -- ...

� What do we need to do?

17 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascInsert x (y:ys) = -- ...

� What do we need to do?

� compare x y:

ascInsert x (y:ys) = case compare x y of

{- ... -}

17 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascInsert x (y:ys) = -- ...

� What do we need to do?

� compare x y:

ascInsert x (y:ys) = case compare x y of

{- ... -}

� Easy case arm first:

ascInsert x (y:ys) = case compare x y of

GT -> y : (ascInsert x ys)

{- ... -}

17 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascInsert x [] = [x]

ascInsert x (y:ys) = case compare x y of

GT -> y : (ascInsert x ys)

{- ... -}

18 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascInsert x [] = [x]

ascInsert x (y:ys) = case compare x y of

GT -> y : (ascInsert x ys)

{- ... -}

� Only one other arm! So, in full:

ascInsert x [] = [x]

ascInsert x (y:ys) = case compare x y of

GT -> y : (ascInsert x ys)

_ -> x : y : ys

18 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascInsert x [] = [x]

ascInsert x (y:ys) = case compare x y of

GT -> y : (ascInsert x ys)

{- ... -}

� Only one other arm! So, in full:

ascInsert x [] = [x]

ascInsert x (y:ys) = case compare x y of

GT -> y : (ascInsert x ys)

_ -> x : y : ys

� Note: not the right structure for foldr!

18 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

� Now, to test it!

19 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

� Now, to test it!

� Can’t use arbitrary inputs! List needs to be ordered!

� One answer: ==> combinator from QuickCheck.

ascTest (x :: Int) ys =

sorted ys ==> sorted (ascInsert x ys)

19 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

� Now, to test it!

� Can’t use arbitrary inputs! List needs to be ordered!

� One answer: ==> combinator from QuickCheck.

ascTest (x :: Int) ys =

sorted ys ==> sorted (ascInsert x ys)

� Problem: define sorted.

sorted [] = True

sorted [x] = True

sorted (x1:x2:xs) = x1 <= x2 && sorted (x2:xs)

19 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascTest (x :: Int) ys =

sorted ys ==> sorted (ascInsert x ys)

� So, run QuickCheck!

*Main> quickCheck ascTest

*** Gave up Passed only 46 tests.

20 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascTest (x :: Int) ys =

sorted ys ==> sorted (ascInsert x ys)

� So, run QuickCheck!

*Main> quickCheck ascTest

*** Gave up Passed only 46 tests.

� That doesn’t sound good.

� What happened?

20 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

ascTest (x :: Int) ys =

sorted ys ==> sorted (ascInsert x ys)

� So, run QuickCheck!

*Main> quickCheck ascTest

*** Gave up Passed only 46 tests.

� That doesn’t sound good.

� What happened?

� Most lists aren’t sorted!
� Our pre-condition said to throw almost all of them out!

20 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

� One of the motivations for LazySmallCheck.
� The ==> combinator could use laziness to determine when
it’s generated an unacceptable input and stop early.

� So, if we use the ==> operator from LazySmallCheck:
� Note: idential syntax, different imports.
� Or see the whole file for qualified names.

ascTestL (x :: Int) ys =

sorted ys ==> sorted (ascInsert x ys)

� And run its smallCheck function:

> smallCheck 2 ascTestL

OK, required 2 tests at depth 0

OK, required 10 tests at depth 1

OK, required 43 tests at depth 2
21 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

� QuickCheck has some special cases for this:

� Notably, the OrderedList a type, which is guaranteed
to only generate ordered lists.

ascTest2 (x :: Int) (Ordered ys) =

sorted ys ==> sorted (ascInsert x ys)

� And so if we run that. . .

*Main> quickCheck ascTest2

+++ OK, passed 100 tests.

� See the documentation for more.

22 / 24

Meta Math Next

Mathematical Examples

Inserting Into an Ordered List

� So, foldr naturally captures “in-order” traversal of a list.

� What about in-order traversals of other structures?

23 / 24

Meta Math Next

Next time

� You tell me?

24 / 24

Meta Math Next

Bib

Available from: http://courses.cms.caltech.edu/
cs11/material/haskell/index.html.

24 / 24

http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html

	Metadata
	Questions?
	Overview of today

	Mathematical Examples
	Appending Lists Using foldr
	Inserting Into an Ordered List

	Next time

