
Meta ByteString Builder Conduit Next

Fun With Haskell: Fast Haskell

Nathaniel Wesley Filardo

January 18, 2012

1 / 58

Meta ByteString Builder Conduit Next

Metadata

Overview of today

Today I want to give an overview of some of the plumbing
used in at-scale Haskell programs.

� bytestring for chunked handling of strings.

� Builders (e.g. blaze-builder) for efficient construction
of output.

� conduit package for managing streaming data.

� (Replacement for enumerator.)

(In particular, all of these are used by Yesod.)

2 / 58

Meta ByteString Builder Conduit Next

ByteString

� Suppose my goal is to fling bytes around as fast as
possible.

3 / 58

Meta ByteString Builder Conduit Next

ByteString

� Suppose my goal is to fling bytes around as fast as
possible.

� Not a crazy goal: lots of bytes out there.

3 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

> import Data.Char

> minBound :: Char

’\NUL’

> ord maxBound

1114111

4 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

> import Data.Char

> minBound :: Char

’\NUL’

> ord maxBound

1114111

� What is that�

4 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

> import Data.Char

> minBound :: Char

’\NUL’

> ord maxBound

1114111

� What is that�

� 0x10FFFF.

4 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

� It’s an abstract unicode code point.

5 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

� It’s an abstract unicode code point.

� Unicode is sort of a figment of everybody’s imagination.

� It’s great for what it is, but:
� No canonical mapping to/from reality.

5 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

� It’s an abstract unicode code point.

� Unicode is sort of a figment of everybody’s imagination.

� It’s great for what it is, but:
� No canonical mapping to/from reality.

� Importantly: it’s not a byte.

5 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with [Word8], then?

� Haskell has Data.Word.

� So: use [Word8]?

� What does a list look like, anyway?

6 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with [Word8], then?

Consider [1,2,3]:

� Each node here is a
separate thing on the
heap!

� Each arrow is a pointer,
maybe with bad locality.

� 5 machine words of data
for each byte!

7 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with [Word8], then?

OW!

8 / 58

Meta ByteString Builder Conduit Next

ByteString

What’s wrong with [Word8], then?

Probably fine for toy programs. What do we want for real?

� A structure with good cache performance:

� Amortize pointer overhead and chases by giving us lots of
data each time.

9 / 58

Meta ByteString Builder Conduit Next

ByteString

Strict ByteStrings

� Anybody know any data structures like that?
� Maybe even a structure that doesn’t use pointers
internally?

10 / 58

Meta ByteString Builder Conduit Next

ByteString

Strict ByteStrings

� Anybody know any data structures like that?
� Maybe even a structure that doesn’t use pointers
internally?

� (Strict) Arrays!

10 / 58

Meta ByteString Builder Conduit Next

ByteString

Strict ByteStrings

� Anybody know any data structures like that?
� Maybe even a structure that doesn’t use pointers
internally?

� (Strict) Arrays!
� Since they’re strings we also want offset and length
information.

10 / 58

Meta ByteString Builder Conduit Next

ByteString

Strict ByteStrings

� Anybody know any data structures like that?
� Maybe even a structure that doesn’t use pointers
internally?

� (Strict) Arrays!
� Since they’re strings we also want offset and length
information.

� Behold! A Data.ByteString:

data ByteString = PS

{-# UNPACK #-} !(ForeignPtr Word8) -- payload

{-# UNPACK #-} !Int -- offset

{-# UNPACK #-} !Int -- length

10 / 58

Meta ByteString Builder Conduit Next

ByteString

Strict ByteStrings

data ByteString = PS

{-# UNPACK #-} !(ForeignPtr Word8) -- payload

{-# UNPACK #-} !Int -- offset

{-# UNPACK #-} !Int -- length

� Lots of fanciness we haven’t covered (sorry!)
� But: this is essentially just what you’d do in C.

� Pointer to memory
� Current position
� Total length

� Implemented using all kinds of neat IO tricks.

� Hidden behind a much nicer interface.
11 / 58

Meta ByteString Builder Conduit Next

ByteString

Strict ByteStrings

� OK, scary stuff off the screen.

� ByteStrings are Eq, Ord, Show, so on.

� Constructors and destructors; empty and singleton and

pack :: [Word8] -> ByteString

unpack :: ByteString -> [Word8]

� API has everything we might want: maps, folds, search by
Word8, search by substring, IO, etc.

12 / 58

Meta ByteString Builder Conduit Next

ByteString

Lazy ByteStrings

� Good so far, right?

13 / 58

Meta ByteString Builder Conduit Next

ByteString

Lazy ByteStrings

� Good so far, right?

� Anything not so great about arrays?

13 / 58

Meta ByteString Builder Conduit Next

ByteString

Lazy ByteStrings

� Good so far, right?

� Anything not so great about arrays?

� Do a lot of copying to maintain purity.

13 / 58

Meta ByteString Builder Conduit Next

ByteString

Lazy ByteStrings

� Good so far, right?

� Anything not so great about arrays?

� Do a lot of copying to maintain purity.

� Suggestions for what we might do instead?

13 / 58

Meta ByteString Builder Conduit Next

ByteString

Lazy ByteStrings

� Good so far, right?

� Anything not so great about arrays?

� Do a lot of copying to maintain purity.

� Suggestions for what we might do instead?

� List of array chunks!

13 / 58

Meta ByteString Builder Conduit Next

ByteString

Lazy ByteStrings

� Good so far, right?

� Anything not so great about arrays?

� Do a lot of copying to maintain purity.

� Suggestions for what we might do instead?

� List of array chunks!

� Behold: Data.ByteString.Lazy!

import qualified Data.ByteString.Internal as S

data ByteString =

Empty

| Chunk {-# UNPACK #-} S.ByteString ByteString

13 / 58

Meta ByteString Builder Conduit Next

ByteString

Lazy ByteStrings

import qualified Data.ByteString.Internal as S

data ByteString =

Empty

| Chunk {-# UNPACK #-} S.ByteString ByteString

� Ah ha, a lazy list of strict ByteString Chunks.

14 / 58

Meta ByteString Builder Conduit Next

ByteString

Lazy ByteStrings

� Same API as last time, but different complexities for calls.

� Most O(n) now down to O(n/c + c).

� length a little more expensive, but that’s OK.

15 / 58

Meta ByteString Builder Conduit Next

ByteString

Do these solve all our problems?

� (Answer: no.)

16 / 58

Meta ByteString Builder Conduit Next

ByteString

Do these solve all our problems?

� (Answer: no.)

� If I try to produce output, what operation am I likely to
do over and over?

16 / 58

Meta ByteString Builder Conduit Next

ByteString

Do these solve all our problems?

� (Answer: no.)

� If I try to produce output, what operation am I likely to
do over and over?

� Append! Suppose I do n appends on

� A strict ByteString: O(n) copies of at least O(n) data.

16 / 58

Meta ByteString Builder Conduit Next

ByteString

Do these solve all our problems?

� (Answer: no.)

� If I try to produce output, what operation am I likely to
do over and over?

� Append! Suppose I do n appends on

� A strict ByteString: O(n) copies of at least O(n) data.
� A list? O(n) copies of O(n) data.

16 / 58

Meta ByteString Builder Conduit Next

ByteString

Do these solve all our problems?

� (Answer: no.)

� If I try to produce output, what operation am I likely to
do over and over?

� Append! Suppose I do n appends on

� A strict ByteString: O(n) copies of at least O(n) data.
� A list? O(n) copies of O(n) data.
� A lazy ByteString? Also quadratic.

16 / 58

Meta ByteString Builder Conduit Next

ByteString

Do these solve all our problems?

� Strict byte strings are great if you can get them.

� They might stink to build, however.
� Managing lots of long-lived ones might lead to leaks.

� Lazy byte strings a little better:

� Stink a little less to build.
� Can produce them chunk-at-a-time, lazily.
� Can collect them in pieces.

17 / 58

Meta ByteString Builder Conduit Next

ByteString

Do these solve all our problems?

� Often, really need to do lots of appends.

� Especially of small objects!

� Implies a lot of copies of arrays and/or list spines.

� What are we to do?

� Those imperative people are laughing at us. :(

18 / 58

Meta ByteString Builder Conduit Next

Builder

Difference Lists

� Wait, we do have a trick up our sleeve!

� Function composition! :)

19 / 58

Meta ByteString Builder Conduit Next

Builder

Difference Lists

� Why is (++) quadratic in the first place?

� Consider x = ([1,2] ++ [3,4]) ++ [5].

� Recall (++):

(++) [] ys = ys

(++) (x:xs) ys = x : xs ++ ys

20 / 58

Meta ByteString Builder Conduit Next

Builder

Difference Lists

(++) (x:xs) ys = x : xs ++ ys

(([1,2] ++ [3,4]) ++ [5])

(1:([2] ++ [3,4]) ++ [5]) -- visit 1

(1:2:([] ++ [3,4]) ++ [5]) -- visit 2

(1:2:[3,4] ++ [5])

1:(2:[3,4] ++ [5]) -- visit 1 again

1:2:([3,4] ++ [5]) -- visit 2 again

1:2:3:([4] ++ [5]) -- visit 3

1:2:3:4:([] ++ [5]) -- visit 4

1:2:3:4:[5]

21 / 58

Meta ByteString Builder Conduit Next

Builder

Difference Lists

� So: want to avoid visiting things over and over.

� Try this:

� Build a function which takes the “rest of the list” and
returns the “whole list”

� A prefix-concatenation function.
� :: [a] -> [a]

� [1,2] == (\t -> 1:2:t) []

22 / 58

Meta ByteString Builder Conduit Next

Builder

Difference Lists

� So: want to avoid visiting things over and over.

� Try this:

� Build a function which takes the “rest of the list” and
returns the “whole list”

� A prefix-concatenation function.
� :: [a] -> [a]

� [1,2] == (\t -> 1:2:t) []

� Easy to append:

append da db t = da (db t)

22 / 58

Meta ByteString Builder Conduit Next

Builder

Difference Lists

� So what happens when we evaluate this one?

append (\t -> 1:2:t)

(append (\t -> 3:4:t) (\t -> 5:t))

x

� It turns out to be pretty quick!

append (\t -> 1:2:t)

(append (\t -> 3:4:t) (\t -> 5:t))

x

1:2:(append (\t -> 3:4:t) (\t -> 5:t) x)

1:2:3:4:((\t -> 5:t) x)

1:2:3:4:5:x
23 / 58

Meta ByteString Builder Conduit Next

Builder

� Moral of the story: sometimes you can get what you want
by building a recipe and then invoking it.

� So, what did we want, again?

24 / 58

Meta ByteString Builder Conduit Next

Builder

� Moral of the story: sometimes you can get what you want
by building a recipe and then invoking it.

� So, what did we want, again?

� Fast concatenation of small objects.

24 / 58

Meta ByteString Builder Conduit Next

Builder

� Moral of the story: sometimes you can get what you want
by building a recipe and then invoking it.

� So, what did we want, again?

� Fast concatenation of small objects.

� But big buffers for amortization (e.g. syscalls).

24 / 58

Meta ByteString Builder Conduit Next

Builder

� Moral of the story: sometimes you can get what you want
by building a recipe and then invoking it.

� So, what did we want, again?

� Fast concatenation of small objects.

� But big buffers for amortization (e.g. syscalls).

� Builders capture this for us.

24 / 58

Meta ByteString Builder Conduit Next

Builder

� There are a few lurking around Hackage.

� blaze-builder currently popular.

� Provides Blaze.ByteString.Builder modules.
� Uses UTF-8 encodings to get bytes.

� Once you have built your recipe, you run it with

toLazyByteString :: Builder -> ByteString

toByteString :: Builder -> ByteString

-- other, more fancy forms

25 / 58

Meta ByteString Builder Conduit Next

Builder

� There are a few lurking around Hackage.

� blaze-builder currently popular.

� Provides Blaze.ByteString.Builder modules.
� Uses UTF-8 encodings to get bytes.
� (Likely replaced by a new builder in the bytestring

library in the next release.)

� Once you have built your recipe, you run it with

toLazyByteString :: Builder -> ByteString

toByteString :: Builder -> ByteString

-- other, more fancy forms

25 / 58

Meta ByteString Builder Conduit Next

Builder

Building Builders

� OK, so...

26 / 58

Meta ByteString Builder Conduit Next

Builder

Building Builders

� OK, so...

� Oh right, appending them.

� Builder is a Monoid, so use

mappend :: Monoid a => a -> a -> a

� or a Writer monad (transformer).

26 / 58

Meta ByteString Builder Conduit Next

Builder

Building Builders

� Ah, getting one in the first place.
� Blaze.ByteString.Builder.Char.Utf8:

fromChar :: Char -> Builder

fromString :: String -> Builder

fromShow :: Show a => a -> Builder

� Blaze.ByteString.Builder.Int:

fromInt8 :: Int8 -> Builder

{- ... -}

fromInt64sle :: [Int64] -> Builder

� Other builtins, and mechanisms for adding your own.
27 / 58

Meta ByteString Builder Conduit Next

Builder

Building Builders

BuilderTest.hs

import Data.Char

import Data.Monoid

import Blaze.ByteString.Builder

import Blaze.ByteString.Builder.Char.Utf8

main = print $ toByteString $

fromString "I would like to show you: "

‘mappend‘

fromShow (6*5)

‘mappend‘

fromInt8 (fromIntegral $ ord ’!’)
28 / 58

Meta ByteString Builder Conduit Next

More on This

If this has piqued your interest, and you want more detail:

� Real World Haskell [2, ch. 8,13].

� Simon Meier’s Guided Tour Through The ByteString
Library [1].

� Hackage documentation for ByteString and
blaze-builder.

� The upcoming ByteString-builder in ByteString
0.10.0.0.

29 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

“[a] solution to the streaming data problem” [3]. What’s the
problem?

� Imagine writing the zgrep tool.
� Need to read a chunk of compressed data, expand it, and
grep through it.

� And: don’t forget the boundary cases.
� Who thinks manual buffer management is fun? (more
than once?)

30 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

“[a] solution to the streaming data problem” [3]. What’s the
problem?

� Imagine writing the zgrep tool.
� Need to read a chunk of compressed data, expand it, and
grep through it.

� And: don’t forget the boundary cases.
� Who thinks manual buffer management is fun? (more
than once?)

� Want, instead, a logical abstraction of streams of data:
� grep asks the decompressor for data
� the decompressor asks the file for data
� Eventually, maybe, grep is done and closes the stream or

the file ends.
30 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

� “[a] solution to the streaming data problem” [3].

31 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

� “[a] solution to the streaming data problem” [3].

� Generic Source and Sink abstractions.

31 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

� “[a] solution to the streaming data problem” [3].

� Generic Source and Sink abstractions.
� Transformations in the middle: gzip, UTF-8 codec, ...

31 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

� “[a] solution to the streaming data problem” [3].

� Generic Source and Sink abstractions.
� Transformations in the middle: gzip, UTF-8 codec, ...
� Deterministic resource management (e.g. file

descriptors)

31 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

� “[a] solution to the streaming data problem” [3].

� Generic Source and Sink abstractions.
� Transformations in the middle: gzip, UTF-8 codec, ...
� Deterministic resource management (e.g. file

descriptors)
� All in a relatively simple API.

31 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

� “[a] solution to the streaming data problem” [3].

� Generic Source and Sink abstractions.
� Transformations in the middle: gzip, UTF-8 codec, ...
� Deterministic resource management (e.g. file

descriptors)
� All in a relatively simple API.

� Disclaimer: I am “borrowing” from Michael Snoyman’s
(the package author) blog. [4] and prior in the series.

31 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

Glossary:

� Source: whence data comes.

� Sink: whither data goes.

� Conduit: A (stateful) data manipulation function.

� Looks like a sink on one side, and a source on the other.

� Fuse: The act of combining a conduit to . . .

� a source; results in a source. ($=)
� a sink; results in a sink. (=$)
� a conduit; results in a conduit. (=$=)

� Combine: Joining a source and a sink ($$); causes data
to flow until either (or both) are done.

32 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

Why do we need “resource management” in this story at all?

� Sources and sinks might want to open files.

33 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

Why do we need “resource management” in this story at all?

� Sources and sinks might want to open files.

� Conduits might also!

33 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

Why do we need “resource management” in this story at all?

� Sources and sinks might want to open files.

� Conduits might also!

� Want to close files as soon as we’re done with them
(don’t want to wait for all references to go away and the
GC to run “finalizers”).

33 / 58

Meta ByteString Builder Conduit Next

Conduit

What are they?

Why do we need “resource management” in this story at all?

� Sources and sinks might want to open files.

� Conduits might also!

� Want to close files as soon as we’re done with them
(don’t want to wait for all references to go away and the
GC to run “finalizers”).

� Want to free resources on exceptions.

� Including asynchronous exceptions, so we can kill off
long-running threads by timeouts, etc.

33 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources

� Sources are relatively simple:

data SourceResult a = Open a | Closed

data PreparedSource m a = PreparedSource

{ sourcePull :: ResourceT m (SourceResult a)

, sourceClose :: ResourceT m ()

}

� Only two things you can do to PreparedSources:
� Close the source
� Ask for more data (“pull”)

34 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources

� Sources are relatively simple:

data SourceResult a = Open a | Closed

data PreparedSource m a = PreparedSource

{ sourcePull :: ResourceT m (SourceResult a)

, sourceClose :: ResourceT m ()

}

� Only two things you can do to PreparedSources:
� Close the source
� Ask for more data (“pull”)

� The source will respond to a pull either with data (Open
a) or by signaling the end.

34 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources

Consider a source which forever returns the same piece of data:

repeat :: Monad m => a -> PreparedSource m a

repeat a = PreparedSource

{ sourcePull = return $ Open a

, sourceClose = return ()

}

What would the source eof which never returned any data
look like?

35 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources

Invariants of the system for Sources

� Won’t ask for another pull after one returns Closed.

� Don’t close a source after it has said it was closed.

� Don’t close a source multiple times.

(These invariants are not enforced but may be assumed by all
Sources and should be maintained by all other bits of code.)

36 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources with State

� The source “methods” are monadic actions.
� Suppose we want a source which streams all Nats:
� Make a PreparedSource that closes over an IORef:

mkNatSource = do

r <- newRef 0 -- provided by ResourceT

return $ PreparedSource

{ sourceClose = return ()

, sourcePull = do

next <- readRef r

writeRef r (next+1)

return next

}
37 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources with State

� Very frequently have a monadic action to make a
PreparedSource.

� Conduit calls these actions Sources:

newtype Source m a = Source

{ prepareSource :: ResourceT m

(PreparedSource m a) }

� So should have

mkNatSource = Source $ do

{- ... -}

38 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources with State

� Utility function for stateful sources:

sourceState :: Resource m

=> state

-> (state -> ResourceT m (state

,SourceResult output))

-> Source m output

� And one for IO state:

sourceIO :: ResourceIO m

=> IO state -- open

-> (state -> IO ()) -- close

-> (state -> m (SourceResult output))

-> Source m output 39 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources with State

These curious ResourceT and such are how conduit

manages to track and free resources.
� Register some cleanup action:

register :: IO () -> ResourceT IO ReleaseKey

� Explicitly call some cleanup (guaranteed to happen at
most once):

release :: ReleaseKey -> ResourceT IO ()

� Run a computation ensuring that everything gets released:

runResourceT :: ResourceT IO a -> IO a

40 / 58

Meta ByteString Builder Conduit Next

Conduit

Sources with State

These curious ResourceT and such are how conduit

manages to track and free resources.
� Register some cleanup action:

register :: IO () -> ResourceT IO ReleaseKey

� Explicitly call some cleanup (guaranteed to happen at
most once):

release :: ReleaseKey -> ResourceT IO ()

� Run a computation ensuring that everything gets released:

runResourceT :: ResourceT IO a -> IO a

� (Actually more polymorphic than slideware allows)
40 / 58

Meta ByteString Builder Conduit Next

Conduit

Sinks

� OK, now we can produce data.

� Could actually use sources directly in monadic code (call
sourcePull and sourceClose ourselves).

� Sinks take a stream of input and produce exactly one

output.

� As with sources, sinks can be in two states:

data SinkResult in out =

Processing

| Done (Maybe in) out

� (When it’s Done it may have some input left over.)

41 / 58

Meta ByteString Builder Conduit Next

Conduit

Sinks

� Sinks come in one of two flavors:

data PreparedSink in m out =

SinkNoData out

| SinkData

{ sinkPush :: in

-> ResourceT m (SinkResult in out)

, sinkClose :: ResourceT m out

}

� Some sinks are trivial and need no data.
� The rest need to be fed some input.

� May return a result before the end of the stream.
� Obligated to return a result when the stream ends.

42 / 58

Meta ByteString Builder Conduit Next

Conduit

Sinks

� And, as before, a Sink is really a monadic computation
returning a prepared Sink:

newtype Sink in m out = Sink

{ prepareSink :: ResourceT m

(PreparedSink in m out) }

43 / 58

Meta ByteString Builder Conduit Next

Conduit

Sinks

A simple sink which counts the number of inputs:

count = Sink $ do

r <- newRef 0

return $ PreparedSink

{ sinkClose = readRef r

, sinkPush _ = do

n <- readRef r

writeRef r (n+1)

return Processing

}

44 / 58

Meta ByteString Builder Conduit Next

Conduit

Sinks

� Helpers for state state and IO. e.g.:

sinkState :: Resource m

=> s

-> (s -> in -> ResourceT m

(s, SinkResult in out))

-> (s -> ResourceT m out)

-> Sink in m out

� So:

count’ = sinkState 0

(\s _ -> return (s+1,Processing))

(\s -> return s)
45 / 58

Meta ByteString Builder Conduit Next

Conduit

Sinks

� The Data.Conduit.List module provides a useful
source:

sourceList :: Resource m => [a]

-> Source m a

� and many useful sinks, such as

fold :: Resource m => (b -> a -> b)

-> b -> Sink a m b

take :: Resource m => Int -> Sink a m [a]

drop :: Resource m => Int -> Sink a m ()

46 / 58

Meta ByteString Builder Conduit Next

Conduit

Sinks

And (ta-da): Sinks are Monads!

� What does that even mean?

47 / 58

Meta ByteString Builder Conduit Next

Conduit

Sinks

And (ta-da): Sinks are Monads!

� What does that even mean?

� It means we can compose sinks together!

SinkMonadEx.hs

import Data.Conduit.List as CL

foo b = do

xs <- CL.take 5

CL.drop 5

CL.fold (+) (foldr (*) b xs)

47 / 58

Meta ByteString Builder Conduit Next

Conduit

Combining Sources and Sinks

A first example: sum up the entries in a list.
(ConduitSumList.hs)

� Source: sourceList.
� Sink:

sinkSum = CL.fold (+) 0

� Glue them together with ($$):

pipe l = sourceList l $$ sinkSum

� Then run it:

main = runResourceT $ (pipe [1,2,3])

>>= print

48 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

� We’d like to do something more interesting,

49 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

� We’d like to do something more interesting,

� Maybe

� Read from a file.
� Decode UTF-8.
� Chunk file into lines.
� Accumulate each Int into the total
� Write the stream of totals to file.

49 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

� We’d like to do something more interesting,

� Maybe

� Read from a file.
� Decode UTF-8.
� Chunk file into lines.
� Accumulate each Int into the total
� Write the stream of totals to file.

� Middle three stages are data transformers, or Conduits.

49 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

Let’s look at the types:

data ConduitResult i o =

Producing [o] | Finished (Maybe i) [o]

data PreparedConduit i m o = PreparedConduit

{ conduitPush :: i

-> ResourceT m (ConduitResult i o)

, conduitClose :: ResourceT m [o] }

newtype Conduit i m o = Conduit

{ prepareConduit :: ResourceT m

(PreparedConduit i m o) }
50 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

� A pass-through conduit is straightforward:

pt = Conduit $ return $ PreparedConduit

{ conduitPush = \i -> return (Producing [i])

, conduitClose = return [] }

� So is a one-to-one mapper:

mapM f = Conduit $ return $ PreparedConduit

{ conduitPush = \i -> do

fi <- lift $ f i

return (Producing [fi])

, conduitClose = return [] }

51 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

� A pass-through conduit is straightforward:

pt = Conduit $ return $ PreparedConduit

{ conduitPush = \i -> return (Producing [i])

, conduitClose = return [] }

� So is a one-to-one mapper:

mapM f = Conduit $ return $ PreparedConduit

{ conduitPush = \i -> do

fi <- lift $ f i

return (Producing [fi])

, conduitClose = return [] }

� Available as map in Data.Conduit.List.
51 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

� But conduits may produce many outputs for a given
input:

� Consider taking a stream of strings and producing a
stream of characters.

� Or may require many inputs for a given output.

� Such as a filter

52 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

� But conduits may produce many outputs for a given
input:

� Consider taking a stream of strings and producing a
stream of characters.

� Or may require many inputs for a given output.

� Such as a filter

� That’s why they produce lists of output.

52 / 58

Meta ByteString Builder Conduit Next

Conduit

Conduits

� Even better: conduits can maintain state.

� And we have the usual helper functions conduitState
and conduitIO.

� And, of course, the libraries often save us.

� Longer, out-of-slide example: ConduitSumFile.hs

53 / 58

Meta ByteString Builder Conduit Next

Conduit

Buffered Sources

Summary of the world thus far:

� Traditional I/O monad:

� Open a file.
� Read a line from the file.
� Do something to that line and adjust state.
� Do those for a while.
� Close the file.

� Conduits:

� Write a custom sink, source, or conduit.
� Glue it into a pipeline.
� Run the pipeline.

54 / 58

Meta ByteString Builder Conduit Next

Conduit

Buffered Sources

But there’s a problem:

� Go back to our easier example:

pipe l = sourceList l $$ sinkSum

� What if sinkSum stops after, say, the sum is ≥ 5?

55 / 58

Meta ByteString Builder Conduit Next

Conduit

Buffered Sources

But there’s a problem:

� Go back to our easier example:

pipe l = sourceList l $$ sinkSum

� What if sinkSum stops after, say, the sum is ≥ 5?

� There might be stuff left in the list!

55 / 58

Meta ByteString Builder Conduit Next

Conduit

Buffered Sources

But there’s a problem:

� Go back to our easier example:

pipe l = sourceList l $$ sinkSum

� What if sinkSum stops after, say, the sum is ≥ 5?

� There might be stuff left in the list!

� Maybe even stuff we care about!

55 / 58

Meta ByteString Builder Conduit Next

Conduit

Buffered Sources

But there’s a problem:

� Go back to our easier example:

pipe l = sourceList l $$ sinkSum

� What if sinkSum stops after, say, the sum is ≥ 5?

� There might be stuff left in the list!

� Maybe even stuff we care about!

� How do we get at it?

55 / 58

Meta ByteString Builder Conduit Next

Conduit

Buffered Sources

Enter BufferedSources.

data BufferedSource m a = BufferedSource

{ bsourcePull :: ResourceT m (SourceResult a)

, bsourceUnpull :: a -> ResourceT m ()

, bsourceClose :: ResourceT m ()

}

� Just like sources, but now with unpull.

56 / 58

Meta ByteString Builder Conduit Next

Conduit

Buffered Sources

Enter BufferedSources.

data BufferedSource m a = BufferedSource

{ bsourcePull :: ResourceT m (SourceResult a)

, bsourceUnpull :: a -> ResourceT m ()

, bsourceClose :: ResourceT m ()

}

� Just like sources, but now with unpull.

� Puts things back so that they will be read next.

56 / 58

Meta ByteString Builder Conduit Next

Conduit

Buffered Sources

� If we run two pipelines on a buffered source,

� And the first stops early,

� We’ll get the left-over data on the second.

runResourceT $ do

bsrc <- bufferSource $ sourceList [1,2,3]

bsrc $$ drop 2

x <- bsrc $$ take 1

print x

57 / 58

Meta ByteString Builder Conduit Next

Next time

� Web development using Yesod.

� I will send out instructions tonight for bringing the stack
up to “hello world” stage.

� (I will also bring enough power strips to class for
everybody to plug in.)

� Intended to be a mixture of lecture and workshop.

� Rough plan: walk through mechanics of Yesod.
� Then you guys group up or work alone and I float

around answering questions.

� Seem reasonable?

58 / 58

Meta ByteString Builder Conduit Next

Bib

Simon Meier.
A guided tour through the bytestring library, January
2012.
Available from: http://meiersi.github.com/
HaskellerZ/meetups/2012%2001%2019%20-%20The

%20bytestring%20library/slides.html.

Bryan O’Sullivan, John Goerzen, and Don Stewart.
Real World Haskell.
O’Reilly Media, Inc., 1st edition, 2008.
Available from: http://book.realworldhaskell.org/.

Michael Snoyman.
Conduits, December 2011.

58 / 58

http://meiersi.github.com/HaskellerZ/meetups/2012%2001%2019%20-%20The%20bytestring%20library/slides.html
http://meiersi.github.com/HaskellerZ/meetups/2012%2001%2019%20-%20The%20bytestring%20library/slides.html
http://meiersi.github.com/HaskellerZ/meetups/2012%2001%2019%20-%20The%20bytestring%20library/slides.html
http://book.realworldhaskell.org/

Meta ByteString Builder Conduit Next

Available from: http://www.yesodweb.com/blog/
2011/12/conduits.

Michael Snoyman.
Conduits, part 5: Buffering, January 2012.
Available from: http://www.yesodweb.com/blog/
2012/01/conduits-buffering.

58 / 58

http://www.yesodweb.com/blog/2011/12/conduits
http://www.yesodweb.com/blog/2011/12/conduits
http://www.yesodweb.com/blog/2012/01/conduits-buffering
http://www.yesodweb.com/blog/2012/01/conduits-buffering

	Metadata
	Overview of today

	ByteString
	What's wrong with String?
	What's wrong with |[Word8]|, then?
	Strict ByteStrings
	Lazy ByteStrings
	Do these solve all our problems?

	Builder
	Difference Lists
	Building Builders

	Conduit
	What are they?
	Sources
	Sources with State
	Sinks
	Combining Sources and Sinks
	Conduits
	Buffered Sources

	Next time

