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Metadata

Overview of today

Today I want to give an overview of some of the plumbing
used in at-scale Haskell programs.

� bytestring for chunked handling of strings.

� Builders (e.g. blaze-builder) for efficient construction
of output.

� conduit package for managing streaming data.

� (Replacement for enumerator.)

(In particular, all of these are used by Yesod.)
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ByteString

� Suppose my goal is to fling bytes around as fast as
possible.
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ByteString

� Suppose my goal is to fling bytes around as fast as
possible.

� Not a crazy goal: lots of bytes out there.
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ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

> import Data.Char

> minBound :: Char

’\NUL’

> ord maxBound

1114111
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ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

> import Data.Char

> minBound :: Char

’\NUL’

> ord maxBound

1114111

� What is that�

� 0x10FFFF.
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� It’s an abstract unicode code point.
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What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

� It’s an abstract unicode code point.

� Unicode is sort of a figment of everybody’s imagination.

� It’s great for what it is, but:
� No canonical mapping to/from reality.
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ByteString

What’s wrong with String?

� Recall: type String = [Char].

� What is Char, anyway?

� It’s an abstract unicode code point.

� Unicode is sort of a figment of everybody’s imagination.

� It’s great for what it is, but:
� No canonical mapping to/from reality.

� Importantly: it’s not a byte.
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ByteString

What’s wrong with [Word8], then?

� Haskell has Data.Word.

� So: use [Word8]?

� What does a list look like, anyway?
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ByteString

What’s wrong with [Word8], then?

Consider [1,2,3]:

� Each node here is a
separate thing on the
heap!

� Each arrow is a pointer,
maybe with bad locality.

� 5 machine words of data
for each byte!
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ByteString

What’s wrong with [Word8], then?

OW!
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ByteString

What’s wrong with [Word8], then?

Probably fine for toy programs. What do we want for real?

� A structure with good cache performance:

� Amortize pointer overhead and chases by giving us lots of
data each time.
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ByteString

Strict ByteStrings

� Anybody know any data structures like that?
� Maybe even a structure that doesn’t use pointers
internally?
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ByteString

Strict ByteStrings

� Anybody know any data structures like that?
� Maybe even a structure that doesn’t use pointers
internally?

� (Strict) Arrays!
� Since they’re strings we also want offset and length
information.

� Behold! A Data.ByteString:

data ByteString = PS

{-# UNPACK #-} !(ForeignPtr Word8) -- payload

{-# UNPACK #-} !Int -- offset

{-# UNPACK #-} !Int -- length
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ByteString

Strict ByteStrings

data ByteString = PS

{-# UNPACK #-} !(ForeignPtr Word8) -- payload

{-# UNPACK #-} !Int -- offset

{-# UNPACK #-} !Int -- length

� Lots of fanciness we haven’t covered (sorry!)
� But: this is essentially just what you’d do in C.

� Pointer to memory
� Current position
� Total length

� Implemented using all kinds of neat IO tricks.

� Hidden behind a much nicer interface.
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ByteString

Strict ByteStrings

� OK, scary stuff off the screen.

� ByteStrings are Eq, Ord, Show, so on.

� Constructors and destructors; empty and singleton and

pack :: [Word8] -> ByteString

unpack :: ByteString -> [Word8]

� API has everything we might want: maps, folds, search by
Word8, search by substring, IO, etc.
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ByteString

Lazy ByteStrings

� Good so far, right?
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ByteString

Lazy ByteStrings

� Good so far, right?

� Anything not so great about arrays?

� Do a lot of copying to maintain purity.

� Suggestions for what we might do instead?

� List of array chunks!

� Behold: Data.ByteString.Lazy!

import qualified Data.ByteString.Internal as S

data ByteString =

Empty

| Chunk {-# UNPACK #-} S.ByteString ByteString
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ByteString

Lazy ByteStrings

import qualified Data.ByteString.Internal as S

data ByteString =

Empty

| Chunk {-# UNPACK #-} S.ByteString ByteString

� Ah ha, a lazy list of strict ByteString Chunks.
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ByteString

Lazy ByteStrings

� Same API as last time, but different complexities for calls.

� Most O(n) now down to O(n/c + c).

� length a little more expensive, but that’s OK.
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ByteString

Do these solve all our problems?

� (Answer: no.)
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Do these solve all our problems?

� (Answer: no.)

� If I try to produce output, what operation am I likely to
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� Append! Suppose I do n appends on

� A strict ByteString: O(n) copies of at least O(n) data.
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ByteString
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� (Answer: no.)

� If I try to produce output, what operation am I likely to
do over and over?

� Append! Suppose I do n appends on

� A strict ByteString: O(n) copies of at least O(n) data.
� A list? O(n) copies of O(n) data.
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ByteString

Do these solve all our problems?

� (Answer: no.)

� If I try to produce output, what operation am I likely to
do over and over?

� Append! Suppose I do n appends on

� A strict ByteString: O(n) copies of at least O(n) data.
� A list? O(n) copies of O(n) data.
� A lazy ByteString? Also quadratic.
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ByteString

Do these solve all our problems?

� Strict byte strings are great if you can get them.

� They might stink to build, however.
� Managing lots of long-lived ones might lead to leaks.

� Lazy byte strings a little better:

� Stink a little less to build.
� Can produce them chunk-at-a-time, lazily.
� Can collect them in pieces.
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ByteString

Do these solve all our problems?

� Often, really need to do lots of appends.

� Especially of small objects!

� Implies a lot of copies of arrays and/or list spines.

� What are we to do?

� Those imperative people are laughing at us. :(
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Builder

Difference Lists

� Wait, we do have a trick up our sleeve!

� Function composition! :)
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Builder

Difference Lists

� Why is (++) quadratic in the first place?

� Consider x = ([1,2] ++ [3,4]) ++ [5].

� Recall (++):

(++) [] ys = ys

(++) (x:xs) ys = x : xs ++ ys
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Builder

Difference Lists

(++) (x:xs) ys = x : xs ++ ys

(([1,2] ++ [3,4]) ++ [5])

(1:([2] ++ [3,4]) ++ [5]) -- visit 1

(1:2:([] ++ [3,4]) ++ [5]) -- visit 2

(1:2:[3,4] ++ [5])

1:(2:[3,4] ++ [5]) -- visit 1 again

1:2:([3,4] ++ [5]) -- visit 2 again

1:2:3:([4] ++ [5]) -- visit 3

1:2:3:4:([] ++ [5]) -- visit 4

1:2:3:4:[5]
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Builder

Difference Lists

� So: want to avoid visiting things over and over.

� Try this:

� Build a function which takes the “rest of the list” and
returns the “whole list”

� A prefix-concatenation function.
� :: [a] -> [a]

� [1,2] == (\t -> 1:2:t) []
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Builder

Difference Lists

� So: want to avoid visiting things over and over.

� Try this:

� Build a function which takes the “rest of the list” and
returns the “whole list”

� A prefix-concatenation function.
� :: [a] -> [a]

� [1,2] == (\t -> 1:2:t) []

� Easy to append:

append da db t = da (db t)
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Builder

Difference Lists

� So what happens when we evaluate this one?

append (\t -> 1:2:t)

(append (\t -> 3:4:t) (\t -> 5:t))

x

� It turns out to be pretty quick!

append (\t -> 1:2:t)

(append (\t -> 3:4:t) (\t -> 5:t))

x

1:2:(append (\t -> 3:4:t) (\t -> 5:t) x)

1:2:3:4:((\t -> 5:t) x)

1:2:3:4:5:x
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Builder

� Moral of the story: sometimes you can get what you want
by building a recipe and then invoking it.

� So, what did we want, again?
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Builder

� Moral of the story: sometimes you can get what you want
by building a recipe and then invoking it.

� So, what did we want, again?

� Fast concatenation of small objects.

� But big buffers for amortization (e.g. syscalls).

� Builders capture this for us.
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Builder

� There are a few lurking around Hackage.

� blaze-builder currently popular.

� Provides Blaze.ByteString.Builder modules.
� Uses UTF-8 encodings to get bytes.

� Once you have built your recipe, you run it with

toLazyByteString :: Builder -> ByteString

toByteString :: Builder -> ByteString

-- other, more fancy forms
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Builder

� There are a few lurking around Hackage.

� blaze-builder currently popular.

� Provides Blaze.ByteString.Builder modules.
� Uses UTF-8 encodings to get bytes.
� (Likely replaced by a new builder in the bytestring

library in the next release.)

� Once you have built your recipe, you run it with

toLazyByteString :: Builder -> ByteString

toByteString :: Builder -> ByteString

-- other, more fancy forms

25 / 58



Meta ByteString Builder Conduit Next

Builder

Building Builders

� OK, so...
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Builder

Building Builders

� OK, so...

� Oh right, appending them.

� Builder is a Monoid, so use

mappend :: Monoid a => a -> a -> a

� or a Writer monad (transformer).
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Builder

Building Builders

� Ah, getting one in the first place.
� Blaze.ByteString.Builder.Char.Utf8:

fromChar :: Char -> Builder

fromString :: String -> Builder

fromShow :: Show a => a -> Builder

� Blaze.ByteString.Builder.Int:

fromInt8 :: Int8 -> Builder

{- ... -}

fromInt64sle :: [Int64] -> Builder

� Other builtins, and mechanisms for adding your own.
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Builder

Building Builders

BuilderTest.hs

import Data.Char

import Data.Monoid

import Blaze.ByteString.Builder

import Blaze.ByteString.Builder.Char.Utf8

main = print $ toByteString $

fromString "I would like to show you: "

‘mappend‘

fromShow (6*5)

‘mappend‘

fromInt8 (fromIntegral $ ord ’!’)
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More on This

If this has piqued your interest, and you want more detail:

� Real World Haskell [2, ch. 8,13].

� Simon Meier’s Guided Tour Through The ByteString
Library [1].

� Hackage documentation for ByteString and
blaze-builder.

� The upcoming ByteString-builder in ByteString
0.10.0.0.
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Conduit

What are they?

“[a] solution to the streaming data problem” [3]. What’s the
problem?

� Imagine writing the zgrep tool.
� Need to read a chunk of compressed data, expand it, and
grep through it.

� And: don’t forget the boundary cases.
� Who thinks manual buffer management is fun? (more
than once?)
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Conduit

What are they?

“[a] solution to the streaming data problem” [3]. What’s the
problem?

� Imagine writing the zgrep tool.
� Need to read a chunk of compressed data, expand it, and
grep through it.

� And: don’t forget the boundary cases.
� Who thinks manual buffer management is fun? (more
than once?)

� Want, instead, a logical abstraction of streams of data:
� grep asks the decompressor for data
� the decompressor asks the file for data
� Eventually, maybe, grep is done and closes the stream or

the file ends.
30 / 58
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Conduit

What are they?

� “[a] solution to the streaming data problem” [3].

� Generic Source and Sink abstractions.
� Transformations in the middle: gzip, UTF-8 codec, ...
� Deterministic resource management (e.g. file

descriptors)
� All in a relatively simple API.

� Disclaimer: I am “borrowing” from Michael Snoyman’s
(the package author) blog. [4] and prior in the series.
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Conduit

What are they?

Glossary:

� Source: whence data comes.

� Sink: whither data goes.

� Conduit: A (stateful) data manipulation function.

� Looks like a sink on one side, and a source on the other.

� Fuse: The act of combining a conduit to . . .

� a source; results in a source. ($=)
� a sink; results in a sink. (=$)
� a conduit; results in a conduit. (=$=)

� Combine: Joining a source and a sink ($$); causes data
to flow until either (or both) are done.
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Conduit

What are they?

Why do we need “resource management” in this story at all?

� Sources and sinks might want to open files.
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Conduit

What are they?

Why do we need “resource management” in this story at all?

� Sources and sinks might want to open files.

� Conduits might also!

� Want to close files as soon as we’re done with them
(don’t want to wait for all references to go away and the
GC to run “finalizers”).

� Want to free resources on exceptions.

� Including asynchronous exceptions, so we can kill off
long-running threads by timeouts, etc.
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Conduit

Sources

� Sources are relatively simple:

data SourceResult a = Open a | Closed

data PreparedSource m a = PreparedSource

{ sourcePull :: ResourceT m (SourceResult a)

, sourceClose :: ResourceT m ()

}

� Only two things you can do to PreparedSources:
� Close the source
� Ask for more data (“pull”)
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Conduit

Sources

� Sources are relatively simple:

data SourceResult a = Open a | Closed

data PreparedSource m a = PreparedSource

{ sourcePull :: ResourceT m (SourceResult a)

, sourceClose :: ResourceT m ()

}

� Only two things you can do to PreparedSources:
� Close the source
� Ask for more data (“pull”)

� The source will respond to a pull either with data (Open
a) or by signaling the end.
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Conduit

Sources

Consider a source which forever returns the same piece of data:

repeat :: Monad m => a -> PreparedSource m a

repeat a = PreparedSource

{ sourcePull = return $ Open a

, sourceClose = return ()

}

What would the source eof which never returned any data
look like?

35 / 58
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Conduit

Sources

Invariants of the system for Sources

� Won’t ask for another pull after one returns Closed.

� Don’t close a source after it has said it was closed.

� Don’t close a source multiple times.

(These invariants are not enforced but may be assumed by all
Sources and should be maintained by all other bits of code.)
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Conduit

Sources with State

� The source “methods” are monadic actions.
� Suppose we want a source which streams all Nats:
� Make a PreparedSource that closes over an IORef:

mkNatSource = do

r <- newRef 0 -- provided by ResourceT

return $ PreparedSource

{ sourceClose = return ()

, sourcePull = do

next <- readRef r

writeRef r (next+1)

return next

}
37 / 58
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Conduit

Sources with State

� Very frequently have a monadic action to make a
PreparedSource.

� Conduit calls these actions Sources:

newtype Source m a = Source

{ prepareSource :: ResourceT m

(PreparedSource m a) }

� So should have

mkNatSource = Source $ do

{- ... -}
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Conduit

Sources with State

� Utility function for stateful sources:

sourceState :: Resource m

=> state

-> (state -> ResourceT m (state

,SourceResult output))

-> Source m output

� And one for IO state:

sourceIO :: ResourceIO m

=> IO state -- open

-> (state -> IO ()) -- close

-> (state -> m (SourceResult output))

-> Source m output 39 / 58
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Conduit

Sources with State

These curious ResourceT and such are how conduit

manages to track and free resources.
� Register some cleanup action:

register :: IO () -> ResourceT IO ReleaseKey

� Explicitly call some cleanup (guaranteed to happen at
most once):

release :: ReleaseKey -> ResourceT IO ()

� Run a computation ensuring that everything gets released:

runResourceT :: ResourceT IO a -> IO a
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Conduit

Sources with State

These curious ResourceT and such are how conduit

manages to track and free resources.
� Register some cleanup action:

register :: IO () -> ResourceT IO ReleaseKey

� Explicitly call some cleanup (guaranteed to happen at
most once):

release :: ReleaseKey -> ResourceT IO ()

� Run a computation ensuring that everything gets released:

runResourceT :: ResourceT IO a -> IO a

� (Actually more polymorphic than slideware allows)
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Conduit

Sinks

� OK, now we can produce data.

� Could actually use sources directly in monadic code (call
sourcePull and sourceClose ourselves).

� Sinks take a stream of input and produce exactly one

output.

� As with sources, sinks can be in two states:

data SinkResult in out =

Processing

| Done (Maybe in) out

� (When it’s Done it may have some input left over.)
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Conduit

Sinks

� Sinks come in one of two flavors:

data PreparedSink in m out =

SinkNoData out

| SinkData

{ sinkPush :: in

-> ResourceT m (SinkResult in out)

, sinkClose :: ResourceT m out

}

� Some sinks are trivial and need no data.
� The rest need to be fed some input.

� May return a result before the end of the stream.
� Obligated to return a result when the stream ends.
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Conduit

Sinks

� And, as before, a Sink is really a monadic computation
returning a prepared Sink:

newtype Sink in m out = Sink

{ prepareSink :: ResourceT m

(PreparedSink in m out) }
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Conduit

Sinks

A simple sink which counts the number of inputs:

count = Sink $ do

r <- newRef 0

return $ PreparedSink

{ sinkClose = readRef r

, sinkPush _ = do

n <- readRef r

writeRef r (n+1)

return Processing

}
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Conduit

Sinks

� Helpers for state state and IO. e.g.:

sinkState :: Resource m

=> s

-> (s -> in -> ResourceT m

(s, SinkResult in out))

-> (s -> ResourceT m out)

-> Sink in m out

� So:

count’ = sinkState 0

(\s _ -> return (s+1,Processing))

(\s -> return s)
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Conduit

Sinks

� The Data.Conduit.List module provides a useful
source:

sourceList :: Resource m => [a]

-> Source m a

� and many useful sinks, such as

fold :: Resource m => (b -> a -> b)

-> b -> Sink a m b

take :: Resource m => Int -> Sink a m [a]

drop :: Resource m => Int -> Sink a m ()

46 / 58
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Conduit

Sinks

And (ta-da): Sinks are Monads!

� What does that even mean?
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Conduit

Sinks

And (ta-da): Sinks are Monads!

� What does that even mean?

� It means we can compose sinks together!

SinkMonadEx.hs

import Data.Conduit.List as CL

foo b = do

xs <- CL.take 5

CL.drop 5

CL.fold (+) (foldr (*) b xs)
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Conduit

Combining Sources and Sinks

A first example: sum up the entries in a list.
(ConduitSumList.hs)

� Source: sourceList.
� Sink:

sinkSum = CL.fold (+) 0

� Glue them together with ($$):

pipe l = sourceList l $$ sinkSum

� Then run it:

main = runResourceT $ (pipe [1,2,3])

>>= print
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Conduit

Conduits

� We’d like to do something more interesting,
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� We’d like to do something more interesting,

� Maybe

� Read from a file.
� Decode UTF-8.
� Chunk file into lines.
� Accumulate each Int into the total
� Write the stream of totals to file.
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Conduit

Conduits

� We’d like to do something more interesting,

� Maybe

� Read from a file.
� Decode UTF-8.
� Chunk file into lines.
� Accumulate each Int into the total
� Write the stream of totals to file.

� Middle three stages are data transformers, or Conduits.
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Conduit

Conduits

Let’s look at the types:

data ConduitResult i o =

Producing [o] | Finished (Maybe i) [o]

data PreparedConduit i m o = PreparedConduit

{ conduitPush :: i

-> ResourceT m (ConduitResult i o)

, conduitClose :: ResourceT m [o] }

newtype Conduit i m o = Conduit

{ prepareConduit :: ResourceT m

(PreparedConduit i m o) }
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Conduit

Conduits

� A pass-through conduit is straightforward:

pt = Conduit $ return $ PreparedConduit

{ conduitPush = \i -> return (Producing [i])

, conduitClose = return [] }

� So is a one-to-one mapper:

mapM f = Conduit $ return $ PreparedConduit

{ conduitPush = \i -> do

fi <- lift $ f i

return (Producing [fi])

, conduitClose = return [] }
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Conduit

Conduits

� A pass-through conduit is straightforward:

pt = Conduit $ return $ PreparedConduit

{ conduitPush = \i -> return (Producing [i])

, conduitClose = return [] }

� So is a one-to-one mapper:

mapM f = Conduit $ return $ PreparedConduit

{ conduitPush = \i -> do

fi <- lift $ f i

return (Producing [fi])

, conduitClose = return [] }

� Available as map in Data.Conduit.List.
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Conduit

Conduits

� But conduits may produce many outputs for a given
input:

� Consider taking a stream of strings and producing a
stream of characters.

� Or may require many inputs for a given output.

� Such as a filter
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Conduit

Conduits

� But conduits may produce many outputs for a given
input:

� Consider taking a stream of strings and producing a
stream of characters.

� Or may require many inputs for a given output.

� Such as a filter

� That’s why they produce lists of output.
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Conduit

Conduits

� Even better: conduits can maintain state.

� And we have the usual helper functions conduitState
and conduitIO.

� And, of course, the libraries often save us.

� Longer, out-of-slide example: ConduitSumFile.hs
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Conduit

Buffered Sources

Summary of the world thus far:

� Traditional I/O monad:

� Open a file.
� Read a line from the file.
� Do something to that line and adjust state.
� Do those for a while.
� Close the file.

� Conduits:

� Write a custom sink, source, or conduit.
� Glue it into a pipeline.
� Run the pipeline.
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Conduit

Buffered Sources

But there’s a problem:

� Go back to our easier example:

pipe l = sourceList l $$ sinkSum

� What if sinkSum stops after, say, the sum is ≥ 5?
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Conduit

Buffered Sources

But there’s a problem:

� Go back to our easier example:

pipe l = sourceList l $$ sinkSum

� What if sinkSum stops after, say, the sum is ≥ 5?

� There might be stuff left in the list!

� Maybe even stuff we care about!

� How do we get at it?
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Conduit

Buffered Sources

Enter BufferedSources.

data BufferedSource m a = BufferedSource

{ bsourcePull :: ResourceT m (SourceResult a)

, bsourceUnpull :: a -> ResourceT m ()

, bsourceClose :: ResourceT m ()

}

� Just like sources, but now with unpull.
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Conduit

Buffered Sources

Enter BufferedSources.

data BufferedSource m a = BufferedSource

{ bsourcePull :: ResourceT m (SourceResult a)

, bsourceUnpull :: a -> ResourceT m ()

, bsourceClose :: ResourceT m ()

}

� Just like sources, but now with unpull.

� Puts things back so that they will be read next.
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Conduit

Buffered Sources

� If we run two pipelines on a buffered source,

� And the first stops early,

� We’ll get the left-over data on the second.

runResourceT $ do

bsrc <- bufferSource $ sourceList [1,2,3]

bsrc $$ drop 2

x <- bsrc $$ take 1

print x
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Next time

� Web development using Yesod.

� I will send out instructions tonight for bringing the stack
up to “hello world” stage.

� (I will also bring enough power strips to class for
everybody to plug in.)

� Intended to be a mixture of lecture and workshop.

� Rough plan: walk through mechanics of Yesod.
� Then you guys group up or work alone and I float

around answering questions.

� Seem reasonable?
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