A Rewriting Prolog Semantics (Kulas, 2000)

Nathaniel Wesley Filardo

April 8, 2008

1/70

Outline

Real Fast Prolog Refresher
Representing Prolog Programs

Interpreting Prolog Programs Via Rewrites

2/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Real Fast Prolog Refresher
|—Terms, Substitution, and Unification

» Prolog deals in Terms.
» Recursive tree structures. Arms of recursive definition:
» Variable (e.g. X).
» Functor and subtrees (edge(-,-,-)).
» Substitutions on terms send variables to terms:
» edge(X,X,0) subject to [1/X] is edge(1,1,0).
» Two terms unify to produce a substitution which sends both
of them to the same term:
» edge(X,X,Y) unifies with edge (A,B,B) to produce
[X/A] [X/B] [X/Y] and edge (X,X,X).
» edge(1,X,3) unifies with edge(A,Y,B) to produce
[1/A] [X/Y] [3/B] and edge(1,X,3).

70

» Horn Clause:

» Let x; be positive literals.
» A Horn clause is then any disjunction of x; with at most one
positive literal:

x1VaxoVoxges VX,
» This can be interpreted as

(1 AX2a Axz3A L)X,

4/70

v

A Prolog program is a collection of Horn clauses.
Written head :- subgoall, subgoal2, ...
» The , character acts conjunctively.

v

v

Disjunct thusly: head :- wayl. head :- way2.
Evaluation is top-down, left-to-right.
» The semantics of Prolog in one sentence.

v

v

Base case: p(1) :- true. or just p(1).

5/70

» Given some subset ¢ of a program, the resolvent of X is the
right hand side of the first rule in ¢ whose head unifies with X.

» In this context, X is termed a “goal”

» The driving force of a Prolog program is the initial goal.

6/70

» Prolog can be queried about failure of a goal (might not
halt!).
» Called “failure as negation”, denoted \+.
» Can have somewhat odd effects with non-ground queries:
in(X) :- \+(out(X)).
out (alice).
» out(alice) and in(bob) succeed.
» in(X) fails!

> because out(alice) is true, out(X) is true for some X.

7/70

Oh, sigh, the cut.
The cut is a primitive operator which inhibits backtracking,
denoted !.
r :-pX , ! , qX.
p(D).
p(2).
q(2).
In the above program, r will fail:
» X will be set to 1.
q(1) is not provable.
So we will backtrack...
Across a cut, which fails.
This is said to be a "red cut” (alters semantics).
» Alternative is a “green cut”

v

\4

v
vVYyy

v

8/70

» Meta-call exists to encapsulate the behavior of cuts.
» Consider: r :- call((p(X) , !, q(X))), r(X).
» It is OK for r(X) to fail, in which case the call will be retried.

» It is not OK for q(X) to fail — this will fail the call, and r by
extension.

9/70

» Transfer of control up the stack (generalized cut).
» Similar try/except/raise or raise/handle in other languages.

» Catch with catch (Goal, Catcher, Recover).
» Throw with throw (Ball).
» Ball is unified with Catcher to see if the pattern matches.
» If so, the substitution is used to process Recover.
» If not, control moves further up the stack, to the outer catch
goal.

10/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Real Fast Prolog Refresher
L Findall and friends

» findall (Instance, Goal, List) succeds if List is unifiable with
the list of all terms unifiable with Instance which make Goal
provable.

» bagof (Instance, Goal, List) similar, except considers
free variables in Goal (not occuring in Instance). Can be
backtracked into to get new Lists for each grounding of free
variables.

» setof (Instance, Goal, List) is like bagof except sorted
and without duplicates.

11/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Real Fast Prolog Refresher
|—Dynamic Updates

» asserta (X) alters the program to behave as if X had been a
rule.

» retract (X) alters the program to remove (the first ocurrence
of) X.

» Note that choice points made earlier do not get updated in
either case!

» That is, upon backtracking, we will not consider newly
asserted rules until we begin a new subgoals; even then the
consideration will be confined to subgoals.

» Also, deleting a rule we used to get to the current state does
not alter the current state.

12 /70

» repeatis a built-in, definable as
repeat. repeat:- repeat.

» Disjunctive syntactic sugar: x :- X; Y; Zsameasx :- X.
x := Y. x :- Z except that cuts effect the whole rule.

» If-then-else syntactic sugar: x :— If -> Then; Else same
asx :- If, !, Then. x :- Else. except that any cuts

in Then or Else extend beyond the if-then-else.

13/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Representing Prolog Programs
L Notation

o; is a substitution.
u undoes a substitution.
€ denotes the identity substitution.
A denotes the empty string.
P[] is the prolog program under definition.
Go is the top-level goal (G; are subgoals).
Dy, [Gj] is the “derivation operator” with current goal G; and context
;-
Cs, [Gj] is a continuation for goal G; with context ¢;.
e denotes the end of the world.

14 /70

» Goals inside derivations may be lists of derivations.
» Pattern match head, tail as X, Y.
» Rules sometimes write C(4) [G] to mean that ¢ is optional.

» That is that the rewrite happens to both continuations with
and without a context ¢.

15/70

» Contexts are subsets of the database whose rules obey some
property.
» Used to filter rules down to the set not yet tried.

16 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Representing Prolog Programs
L Primitives

» The algorithm we'll discuss later assumes a few primitives.

» The most general of these are

builtin (X) is true if X is a builtin goal of the language.
var (X) is true if X is a variable.

suffix (X, Y) is true if Y unifies with a suffix of X.

fresh (X) returns a copy of X with all variables new.

unify (X, Y) returns the unifier substitution of X and Y.
resolve (X, ¢) resolves a goal X in context ¢.
» Resolution returns:

» The resolvent (that is, an additional list of goals).
» The substitution required to continue.
» The remaining context.

17/70

» Also assume the exitence of primitives for manipulating the
program.

» addclause (X,) returns a new program obtained by adding
clause X at the end of program I1.

» delfirstclause (X, 1) retuns a new program obtained by
removing the first instance of rule X from 1.

18/70

» Xo means “apply o to term X."
» o010, composes left to right.

» ou is equivalent to e.

19/70

» We start the derivation of Gg in Il with the string
PINID[Go] e

» Unless important, frequently omit P [[].

» A successful derivation looks like

P[M]o102---0nCy,_, [Gn-1]--- Cg, [G1] Cy, [Gol

» Derivations with answers, or failure, are stable
» they do not rewrite further

20/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Representing Prolog Programs
|—Some Notes

» The strings generated here will tend to look like this:

PN] gicuos---0quDy, [GK] Cyy, [Gk-1]- - Cy, [Gol o

program substitutions derivation continuations end

» The rewrite rules will all be global substitutions.
» But there will be only one place they can apply.
» For example, any rule of the form oDy [Y] = --- can only
apply at the interface of the substitutions and the derivation.
» Similarly, cC4 [Y] = - - can only apply when there is no
derivation.

21/70

» Given a stable state S, define ExtractAnswer(S) as the
exhaustive application of

ou = A, C(¢) [Xl=A

» That is:

» erase all cancelled substitutions (backtracking).
» erase all continuations (remaining options).

22/70

» Given a stable state S, define StartBacktracking(S) as the
rewrite

0C(¢) |[X]| = O'I.IC(¢) |[X]|

» That is, undo the last substitution
» This can only apply at the unique interface of substitutions
and continuations.

» This will now rewrite and will return subsequent answers.

23/70

» Three rules for user predicates.

» First, contextualization:
D [[x, ?]] =D, [[X, \7]]
Where

» Requires X not a builtin predicate.
» ¢ is the definition of the predicate X.

24/70

» Three rules for user predicates.

» Second, resolution:
Dy [[X, \7]] — oD [[(R, ?)a]] Co [[X, \7]]

Where
» Resolving X in context ¢ yielded

» a substitution o,
» a resolvent R,
> a remaining context ¢'.

25/70

» Three rules for user predicates.
» Third, the possibility of failure:

Dy [X, V] = u

Where
» Resolving X in context ® failed (yielded u for the substitution).

26/70

» Backtracking happens when there is no derivation and the last
substitution is u.

» That is, the derivation has failed.

» No options left (backtrack further) :
uCy [X] = uu
» No context (start fresh derivation of X):
uC [X] = uD [X]

» Try again:
UC¢ |[X]] = UD¢ |[X]]

27/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites

I—True, Fail, Halt

» Easy to take care of some simple builtins of Prolog.

» Can also raise errors on variable goals, as with Prolog.

» Let Halt and Error be strings that do not rewrite.

true D
fail D
halt D

D

—

true, Y

[fail, v
halt, Y

[x7]

=D [[?H “no operation”
=u cf. StartBacktracking.
= Halt

= Error if X is a variable.

» Empty derivations vanish: D [A] = A.

28 /70

» At this point, we can give an example of a simple program (cf.

Section 4.1).
p(1) - p(2), pB). % Ki
p(2) :- p(4). % Ko
p(4). % Ks

» K; are clause labels (for contexts).

» Our toplevel goal will be p(X).

29/70

p(1) :- p(2), p(3). % Ki
» p(2) :- p(4). ho K
p(4). % Ks

» Contextualize the derivation:

D [p(X)]e
= Dk, ko, k) [P(X)] @

30/70

p(1) :-p2), pB. » K

» p(2) :- p(d). % K>
p(4). % Kz
» Apply Ki:
D [p(X)] e

= Dk, koK) [P(X)] @
= [1/X] D [p(2), P(3)] Cike, k53 [P(X)] @

31/70

p(1) :- p(2), p(3). % Ki
> p(2) :- p4). h Ko
p(4). % Ks

» Contextualize and apply Ks:

D [p(X)] e

=" [1/X] D [p(2), p(3)] Cyk,, k33 [P(X)] @

= [1/X] Dk k.33 [P(2), P(3)] Ciry 5y [P(X)]

= [1/X]eD [p(4), p(3)] Ciksy [P(2), P(3)] Cik, i3y [P(X)] @

32/70

p(1) - p(2), pA. % K
> p(2) - p(4). % Ko
p(4) . % Ks

» Contextualize and apply K3:

D [p(X)] e

=" [1/X]eD [p(4), P(3)] Ciksy [P(2), P(3)] Cikr sy [P(X)] @
= [1/X] €Dk, ko,k5) [P(4), P(3)] Cykisy [P(2), P(3)] - - -

= [1/X]eeD [true, p(3)] Cy [p(4), p(3)] Cyksy [P(2), P(3)] - - -

33/70

p(1) - p(2), p(3). % Ki
» p(2) :- p(4). % K>
p(4). % Kz

» Apply the rule for true:

D [p(X)] ®
=" [1/X] eeD [true, p(3)] Cy [p(4), p(3)] Cikyy [P(2), P(3)] - - -
= [1/X]eeD [p(3)1 Cp [p(4), P(3)] Cyksy [P(2), P(3)] - - -

34/70

p(1) :- p(2), p(3). % Ki
» p(2) :- p4). h Kz
p(4). % Ks

» Contextualize and fail (no derivation of p(3)):

D [p(X)] e

=" [1/X]eeD [p(3)] Cy [p(4), P(3)] Cyksy [P(2), P(3)] - --
= [1/X] €Dy k,k53 [P Co [P(4), P(3)] - - -

= [1/X]eeuCqy[p(4), p(3)] - .-

35/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Example of the Basics

p(1) :- p(2), p(3). % Ki
» p(2) :- p4). h Ko
p(4). h K

» Backtrack, fail, and backtrack again:

D [p(X)] e

=" [1/X] eeuCy [p(4), P(3)] Cikiy [P(2), P(3)] Ciky i) [P(X)] @
= [1/X] ecuuCyiy [P(2), pP(3)] Cisy iy [P(X)] @

= [1/X] ecuuDy;y [p(2), P(3)] Ciir k53 [P(X)] @

= [1/X] ecuuuCyy, s,y [P(X)] ®

= [1/X] ecuuuDx, xy) [P(X)] ®

36 /70

p(1) - p(2), p(3). % Ki
» p(2) :- p(4). % K>
p(4). % Kz

» Invoke K3 (from top-level goal, having failed Kj):

D [p(X)] e
=" [1/X] eeuuuDy, k1 [P(X)] ®

= [1/X] ecuuu [2/X] D [p(4)] Cixiy [P(X)] @

37/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Example of the Basics

p(1) :- p(2), p(3). % Ki
» p(2) :- p4). h Ko
p(4). h K

» Contextualize and apply K3 and rule for true:

Dp(X)] e

=" [1/X] ceuuu [2/X] D [p(4)] i) [p(X)] o

— [1/X] ceunu [2/X] D s,) [P(4)] C i) [p(X)] @
= [1/X] ecuuu[2/X] €D [true] Cy [p(4)] Cyx,) [P(X)] @
= [1/X] ccuun [2/X] ¢Co [p(4)] Cie [P(X)] o

» This does not step. It therefore represents an answer.

38/70

p(1) :- p(2), p(3). % K
» p(2) :- p(4). h Kz
p(4). % Ks

» So let's extract it!
D [p(X)] e =" [1/X] ceuuu[2/X]eCy [p(4)] C i,y [P(X)] ®

[1/X] ceuuu [2/X] €Cy [p(4)] Cyx; [P(X)]
[1/X] ecuuu[2/X] eo

[1/X]euu[2/X] co

[1/X]u[2/X]eo

[2/X] e

39/70

p(1) (- p(2), pA. % Ki
» p(2) :- p4). %h K>
p(4). h Ks

» Let's get the next answer.

Dp(X)] e
=" [1/X] eeunu [2/X]€Cy [p(4)] Cyscsy [P(X)] @

StartBacktracking(- - -)
= [1/X]ecuuu [2/X] euCy [p(4)] Cikyy [P(X)] @

40/70

p(1) - p(2), pB). % Ki
> p(2) :- p4). h Ko

P(4). % Ké
» Backtrack

StartBacktracking(- - -)

= [1/X]eeuuu[2/X] euCy [p(4)] Ciisy [P(X)] @
= [1/X]ecuuu [2/X] euuCyx,y [p(X)] @

= [1/X]ecuuu[2/X] euuDk,; [p(X)] @

41/70

p(1) :- p(2), p(3). % K
» p(2) :- p(4). h Kz
p(4). % Ks

» Apply K3 and the rule for true:

StartBacktracking(- - -)

=" [1/X] ceuuu [2/X] euuD 4,y [p(X)] ®

= [1/X] ecuuu[2/X] cuu[4/X] D [true] Cy [p(X)] o
= [1/X] ecuuu[2/X] euu[4/X] Cy [p(X)] @

42/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Example of the Basics

p(1) - p(2), p3). % Ki
» p(2) :- p(4). % K>
p(4) . % K3
» Extract the second answer:
StartBacktracking(- - -)

=" [1/X] ecuuu [2/X] euu [4/X] Cy [p(X)] ®

[1/X] ecuuu [2/X] euu [4/X] Cy [p(X)] ®
[1/X] ecuuu [2/X] euu [4/X] o
[1/X]euu[2/X] euu[4/X] o
[1/X]euu[2/X]u[4/X] e
[1/X]euu[d/X] e

[1/X]ul4/X]e

[4/X]

43 /70

p(l) - p(2), p3). % Ki
» p(2) :- p(4). h Kz

p4). % Ks
» Backtrack once more?

StartBacktracking(- - -)
=" [1/X] eeuuu[2/X] euu [4/X] Cy [p(X)] ®

StartBacktracking(- - -)
= [1/X]ecuuu[2/X] euu[4/X]uCy [p(X)] ®
= [1/X] ecuuu [2/X] euu[4/X] uue

» This reduces to ue. There are no more answers.

44/70

» Unification either
» fails (triggering backtracking), or
» provides a substitution which applies to the answer and
subsequent goals.

D [[(X - Y),Zﬂ
N oD[Zo]Cy (X =Y),Z] ifunify(X,Y)=0
u if unify(X,Y) failed

45 /70

» Suffix criterion:

» Given that the current goal is X, Y, the parent of X is the
leftmost continuation whose argument does not have a suffix
unifiable with X, Y.

» Basic idea:
» Empty all continuation contexts up until the parent of the cut.

» Example:

D[, p(X)] Co, [a(Y), 1 p(Y)] Cg, [a(X)] @

parent

46 /70

A Rewriting Prolog Semantics (Kulas, 2000)

I—Inl:erpreting Prolog Programs Via Rewrites
L Cut

» To do this in rewrite rules, we first want some markers:
Pending (X) Placeholder marker for rewrite in progress.

Parent (Y) Rightwards-moving search and replace marker.
Return Leftwards-moving completion marker.

» The rules are as expected from these definitions:

D [[!, VH = Pending (D [[\7}]) Parent <(!, 7))
Parent (G) Cyy) [L] = Cy [L] Parent (G) if SUffIX.(L, G)
ReturnCy [L] otherwise

Parent (G) ¢ = Returne
Cy [X] Return = ReturnCy [X]
Pending (G) Return = G

47 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites

Lcut
» Actually, this has a bug. Anybody see it?
» What if
» the program was a(X) :- q(X), !, p(X) and
» the initial goal was call(a(Y)), !, p(Y)?
» We would mistakenly conclude that the ! in the a rule had no
parent!
» We would empty all contexts back to e.
» Failure on the inside of the near cut would cause the entire
program to fail.
» (We can fix this by using something like gensyms for !.)

48 /70

» “Ought” to be as simple as
D [[can (X), ?]] =D [[X, \7]]

» Except that that is transparent to a cut.

» Use “insulating layer” (empty continuation):

D [[call (X), ?ﬂ) [[x, \7]] Cy [[can (X), \7]]

49 /70

» once (G) takes the first possible solution to G and prohibits
backtracking into other options.

» It may be thought of as once(G) :- G, !.
» As a builtin,

D [[once (X), ?]] =D [[call (X, 1), ﬂ]

» Want to ensure that the cut won't interfere with parent of
once (X).

50/70

» Expanding once more,
D Honce (X), ﬂ]
=2¢D [[x,) \7]] Cy [[can (X,1)), \7]]

» The cut's parent is the continuation shown.

» Therefore, if we backtrack out of Y, we will keep going to the
parent of the once (X).
» Rather than just aborting, as we would with

D [[once (X), ?ﬂ) [[X,) \7]]

51/70

» Repeat
D [[repeat, \7]] = eD [[\7]] C [[repeat7 \7]]
» Failure-as-negation:

D [[\ +(6), ?]] = eD [call (G), 1, fail] € [[Y/]]

52/70

» Failure-as-negation isn’t so obvious.
> Let's say G is true (succeeds):

D [[\ + (true) ?]]

= D [call (true), !, fail] C [[?]]

= eeD [true, !, fail] Cy [call (G), !, fail] C [[\7]]
=* eeD [, fail] C [call (G), !, fail] C [[?]]

=* eeD [fail] C [call (G) , 1, fail] C; [M]

= eeuCy[call (G), !, fail] Cy [M]

= eeuuC [[?ﬂ

= €euuu

53/70

> Let's say G is fail:
D [\ + (fail), V]
= D [call (fail), !, fail] C [M]
= eeD [fail, !, fail] Cy [call (G) !, fail] C [[\7]]
=* ecuCy [call (G) , 1, fail] € [[\7]]
= ecuuC [[\7]]
= ceeuuD [[\7]]

54 /70

» Prolog: catch (Goal, Catcher, Recover) and throw (Ball).
» Introduce one more marker, ThrowAnc (-,).

» The rules are similar to those for cut:

D [catch (G, B, R,,,X)] = eD[G, X] C[catch (G, B, R, ,, X)]
D [throw (B), X] = ThrowAnc(Z, 2Z)
where Z is (throw (B), X)
ThrowAnc (T, X)e = Error

55 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
L Catch & Throw

ThrowAnc (T, X) C(4) [C]

uThrowAnc (T, X)
uoD[(R, Z)o] Cy [C]

uThrowAnc (T, C)
\

if suffix (C, X)
if —suffix (C, X)

&T = (throw (B),Y)

& C = (catch(G,B', R) Z)
&unify (fresh (B), B') =
otherwise

» The freshening operation here is to ensure that unifications
into Ball that have happened so far are undone. (i.e. can only
pass ground structure up the stack).

56

70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Throw & Catch Example

» Simplified example from Section 4.2 (which is unnecessarily
complex).

r(X) :- throw(X).
p :- catch(true, _, fail), r(qg).
» The goal here will be catch(p, C, true). Here goes:

D [catch (p, C,true)] o

=" eD [p] Cp [catch (p, C,true)] e

=" eeD [catch (true, _, fail), r(q)] Cy [p] Cy [catch (p, C, true)]
=" eeeD [true, r(q)] C [catch (true, _, fail), r(q)] Cy [p] - - -

=" eeeD [r(q)] C [catch (true, _, fail), r(q)] Cy [P] - - -

=" eeeD [throw (¢)] Cp [r(q)] C [catch (true, _, fail), r(q)] - . .

57 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Inl:erpreting Prolog Programs Via Rewrites
|—Throw & Catch Example

r(X) :- throw(X).
p :- catch(true, _, fail), r(q).
» Empty suffixes do not count, so the default rule matches
repeatedly:
D [catch (p, C,true)] o
=" eeeD [throw ()] Cp [r(9)]
C [catch (true, _, fail) , r(q)] Cy [p] Cp [catch (p, C,true)] o
= eeeThrowAnc ((throw (() g)), (throw (() 9))) Cp [r(q)]
C [catch (true, _, fail) , r(q)] Cy [P] Cp [catch (p, C,true)] o
= eeeuThrowAnc ((throw (() q)), r(q))
C [catch (true, _, fail) , r(q)] Cy [p] Cy [catch (p, C, true)] o
= eeceuuThrowAnc ((throw (() g)), catch (true, _, fail), r(q))
Cy [Pl Cy [catch (p, C,true)] e
= ececuuuThrowAnc ((throw (() q)), p)
Cy [catch (p, C,true)] o o

r(X) :- throw(X).
p :- catch(true, _, fail), r(q).

» Now the catch rule applies:

=" eccuuuThrowAnc ((throw (() q)), p)
Cy [catch (p, C,true)] o

= eeeuuuu[q/C]D [true[q/C]] Cy [C] »

= eceuuuu[q/C|Cy [C] @

» The substitution [g/C] tells us that all went as anticipated

59/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Inl:erpreting Prolog Programs Via Rewrites
|—Dynamic Updates
» Dynamic updates are another of these marker-moving rewrite
games.

» Markers:
Pending (X) Placeholder marker for rewrite in progress.

Update (X) Carrier of an update to the program store.
Return (X) Return message from program store.
» Rules for derivation:

D [[asserta (K), \7]]

= Update (asserta (K)) Pending (D [[asserta (K), ?ﬂ)

D Hretract (K), ?ﬂ

= Update (retract (K)) Pending (D [[retract(K) , ?ﬂ)

60 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Inl:erpreting Prolog Programs Via Rewrites
|—Dynamic Updates

» Rules for updates:

P [M] Update (asserta (K))
= P[] Return (¢)

P [M] Update (retract (K))
= P[] Return (o)

P [M] Update (retract (K))
= P[] Return (u)
XUpdate (H)

= Update (H) X

if addclause (K, M) =1’
if delfirstclause (K, M) = (o, 1)
if delfirstclause (K, 1) failed

if X # P[N]

61/70

» Rules for returns:

Return (o) Pending (D [asserta (K) , X])

= D[X]

Return (o) Pending (D [retract (K) , X])

= oD [Xo] C[retract (K), X]

Return (u) Pending (D [retract (K), X])

=u

Return (o) X

= XReturn (o) if X # Pending (-)

62/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
L Findall and friends

» A twist on the marker game which leaves markers in the

derivation!
» Markers:
Mark (X) Leave answer that X.
SetMark (X) Metacommand to produce a mark.
Collect (X) Label inside continuations.
SweepMarks (X) Left-moving marker to collect answers.
Return (L) Right-moving marker with answer list.

» Core rules:
D [[findall (X,6,1), ?ﬂ = StartMarkeD [call (G) , SetMark (X) , fail] C [[Collect (findall (X, G, L)), ?ﬂ
D [[SetMark x), ?ﬂ =D [[\?ﬂ where X; = fresh (X)

D [[cwlect (findall (X, G, L)), ?ﬂ = SweepMarks ([]) Pending (D [[findau (X,6,1L), 37]])
SweepMarks (L) = SweepMarks ([X|L])
StartMarkSweepMarks (L) = Return (L)
oD [[?a] Co HfindaII(X, G, L), ?ﬂ if unify (L, L1) = &

Return (L1) =
u if unify (L, L1) failed

63 /70

» Disjunction would be easy, except for the transparency of cuts

internal.
» The solution is using a disolved syntax as markers.
» The paper creatively uses markers '(", ;', and ')'.
» Rules:

[[(X,:,Y,),R] =D [[x,,,v,),ﬁ]]c[[XY,),ﬁﬂ

c[[X,,,Y)R__:>D[[

64/70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Disjunction Example

» (For those following along, this is Section 4.4.)
» A popular idiom in Prolog is the repeat/cut/fail loop:
q :- repeat, p(X), (X = b, !; fail).
p(a).
p(b).
p(c).

» What this program ought to do is iterate over p(X) until X =
b, then abort.

» It will never consider p(c).

» Let's get this started using the basic rule:

D[qg] = €D [repeat, p(X),(X = b, !;fail)] Cy [4]

q :- repeat, p(X), (X = b, !; fail).
p(a).
p(b).
pe).
» Apply the rule for repeat, then find p(A):

D [4]

= €D [repeat, p(X), (X = b, !; fail)] Cy [4q]

= eeD [p(X), (X = b, !;fail)] C[repeat,...] Cy[q]

= eela/X]D [true,(a = b, !;fail)] Cy [p(X), (X = b, !;fail)] ...
= eela/X]D[(a = b, 1;fail)] Cy [p(X), (X = b, 1;fail)] . ..

66 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Disjunction Example

q :- repeat, p(X), (X = b, !; fail).
pa).
p(b).
p(c).
» Apply the rule for '(" then backtrack because a # b:

D [q]

=" ee[la/X]D [(a = b, !; fail)] Cy [p(X), (X = b, !; fail)] ...

= ee[a/X]eD[a=b,};fail)]C[;a= b, !;fail)] ...

= eela/X]euC[;a = b, !;fail)] Cy [p(X), (X = b, !;fail)] ...
= ee[a/X]euD [fail)] Cy [p(X), (X = b, fail)] ...

=2 ec[a/X]euuDy, [p(X), (X = b, !; fail)] C [repeat, . . .] Cy [q]

67 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Disjunction Example

q :- repeat, p(X), (X = b, !; fail).
p(a).
p(®).
p(c).
» Find p(b), apply rule for (", unification succeeds:

D[]

=" ee[a/X]euuDy, [p(X), (X = b, !;fail)] C [repeat, ...] Cy [q]
= ee[a/X]euu[b/X]D [(b = b, !; fail)] Cy [p(X), (X = b, !; fail)] ...
eela/X]euu[b/ XD [(b = b, !; fail)] Cy [p(X), (X = b, !;fail)] . ..
ee[a/X]euu[b/X]eD [b = b, !; fail)] C[b = b, !; fail)] ...
ee[a/X]euu[b/X]eeD [!; fail)] C[b = b, !; fail)]

Pl

68 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Disjunction Example

q :- repeat, p(X), (X = b, !; fail).
p(a).
p(b).
p(c).
» Apply the rule for cut; see how high it goes:

D [4]
=" ee[a/X]euu[b/X]eeD [!; fail)] C[b = b, !; fail)]
Cy [p(X), (X = b, !; fail)] C[repeat,...] Cy [4]
=" ee[a/X]euu[b/X]eeD [; fail)] Cy [b = b, !; fail)]
Co [p(X), (X = b, !; fail)] Cy [repeat, ...] Cy[q]
=2 ee[a/X]euu[b/X]ecCy [b = b, !; fail)]
Cy [p(X), (X = b, !; fail)] Cy [repeat, .. .] Cy[q]

69 /70

A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
L f-Then-Else

» Mostly to show we can; nothing new here.

» More markers (just two new ones):

Pending (X) Placeholder marker for rewrite in progress.
Return Leftwards-moving completion marker.
ThisBranch (P) Marker of conditional branch in progress.
The (R, O) Rightwards-moving marker for C-rewriting.

» Uses exploded syntax of disjunction; has higher precendence
than previous disjunction rules to deal with If/Then.
» The rules are as expected:

D (. 1f — Then,:, Eise,), V]| = D [(, once (If) , ThisBranch (once (If)) , Then, ;, Else,), Y
D [[ThisBram:h (() Pre), \7}] = Pending (D [[?ﬂ) The (Pre7 \7)
The (Pre, Post) C |:[; s \7] = ReturnCy [[; s ?ﬂ if append(Pre, [ThisBranch (Pre) |Post]) = Y

The (Pre, Post) C H?ﬂ =C [[\7]} The (Pre, Post) otherwise

70/70

	Real Fast Prolog Refresher
	Terms, Substitution, and Unification
	Horn Clauses
	Resolvents
	Failure As Negation
	Cuts
	Throw and Catch
	Findall and friends
	Dynamic Updates
	Miscellany

	Representing Prolog Programs
	Notation
	Contexts
	Primitives
	Composing Substitutions
	Representations
	Some Notes
	Extracting an Answer
	Backtracking

	Interpreting Prolog Programs Via Rewrites
	User-defined predicates
	Backtracking
	True, Fail, Halt
	Example of the Basics
	Unification
	Cut
	Meta-call
	Once
	Repeat and Negation
	Catch & Throw
	Throw & Catch Example
	Dynamic Updates
	Findall and friends
	Disjunction
	Disjunction Example
	If-Then-Else

