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A Rewriting Prolog Semantics (Kulas, 2000)
I—Real Fast Prolog Refresher
|—Terms, Substitution, and Unification

» Prolog deals in Terms.
» Recursive tree structures. Arms of recursive definition:
» Variable (e.g. X).
» Functor and subtrees (edge(-,-,-)).
» Substitutions on terms send variables to terms:
» edge(X,X,0) subject to [1/X] is edge(1,1,0).
» Two terms unify to produce a substitution which sends both
of them to the same term:
» edge(X,X,Y) unifies with edge (A,B,B) to produce
[X/A] [X/B] [X/Y] and edge (X,X,X).
» edge(1,X,3) unifies with edge(A,Y,B) to produce
[1/A] [X/Y] [3/B] and edge(1,X,3).
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» Horn Clause:

» Let x; be positive literals.
» A Horn clause is then any disjunction of x; with at most one
positive literal:

x1VaxoVoxges VX,
» This can be interpreted as

(1 AX2a Axz3A L)X,
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A Prolog program is a collection of Horn clauses.
Written head :- subgoall, subgoal2, ...
» The , character acts conjunctively.

v

v

Disjunct thusly: head :- wayl. head :- way2.
Evaluation is top-down, left-to-right.
» The semantics of Prolog in one sentence.

v

v

Base case: p(1) :- true. or just p(1).
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» Given some subset ¢ of a program, the resolvent of X is the
right hand side of the first rule in ¢ whose head unifies with X.

» In this context, X is termed a “goal”

» The driving force of a Prolog program is the initial goal.
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» Prolog can be queried about failure of a goal (might not
halt!).
» Called “failure as negation”, denoted \+.
» Can have somewhat odd effects with non-ground queries:
in(X) :- \+(out(X)).
out (alice).
» out(alice) and in(bob) succeed.
» in(X) fails!

> because out(alice) is true, out(X) is true for some X.
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Oh, sigh, the cut.
The cut is a primitive operator which inhibits backtracking,
denoted !.
r :-pX , ! , qX.
p(D).
p(2).
q(2).
In the above program, r will fail:
» X will be set to 1.
q(1) is not provable.
So we will backtrack...
Across a cut, which fails.
This is said to be a "red cut” (alters semantics).
» Alternative is a “green cut”

v

\4

v
vVYyy

v
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» Meta-call exists to encapsulate the behavior of cuts.
» Consider: r :- call((p(X) , !, q(X))), r(X).
» It is OK for r(X) to fail, in which case the call will be retried.

» It is not OK for q(X) to fail — this will fail the call, and r by
extension.
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» Transfer of control up the stack (generalized cut).
» Similar try/except/raise or raise/handle in other languages.

» Catch with catch (Goal, Catcher, Recover).
» Throw with throw (Ball).
» Ball is unified with Catcher to see if the pattern matches.
» If so, the substitution is used to process Recover.
» If not, control moves further up the stack, to the outer catch
goal.
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Real Fast Prolog Refresher
L Findall and friends

» findall (Instance, Goal, List) succeds if List is unifiable with
the list of all terms unifiable with Instance which make Goal
provable.

» bagof (Instance, Goal, List) similar, except considers
free variables in Goal (not occuring in Instance). Can be
backtracked into to get new Lists for each grounding of free
variables.

» setof (Instance, Goal, List) is like bagof except sorted
and without duplicates.

11/70



A Rewriting Prolog Semantics (Kulas, 2000)
I—Real Fast Prolog Refresher
|—Dynamic Updates

» asserta (X) alters the program to behave as if X had been a
rule.

» retract (X) alters the program to remove (the first ocurrence
of) X.

» Note that choice points made earlier do not get updated in
either case!

» That is, upon backtracking, we will not consider newly
asserted rules until we begin a new subgoals; even then the
consideration will be confined to subgoals.

» Also, deleting a rule we used to get to the current state does
not alter the current state.
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» repeatis a built-in, definable as
repeat. repeat:- repeat.

» Disjunctive syntactic sugar: x :- X; Y; Zsameasx :- X.
x := Y. x :- Z except that cuts effect the whole rule.

» If-then-else syntactic sugar: x :— If -> Then; Else same
asx :- If, !, Then. x :- Else. except that any cuts

in Then or Else extend beyond the if-then-else.
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Representing Prolog Programs
L Notation

o; is a substitution.
u undoes a substitution.
€ denotes the identity substitution.
A denotes the empty string.
P[] is the prolog program under definition.
Go is the top-level goal (G; are subgoals).
Dy, [Gj] is the “derivation operator” with current goal G; and context
;-
Cs, [Gj] is a continuation for goal G; with context ¢;.
e denotes the end of the world.
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» Goals inside derivations may be lists of derivations.
» Pattern match head, tail as X, Y.
» Rules sometimes write C(4) [G] to mean that ¢ is optional.

» That is that the rewrite happens to both continuations with
and without a context ¢.
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» Contexts are subsets of the database whose rules obey some
property.
» Used to filter rules down to the set not yet tried.
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Representing Prolog Programs
L Primitives

» The algorithm we'll discuss later assumes a few primitives.

» The most general of these are

builtin (X) is true if X is a builtin goal of the language.
var (X) is true if X is a variable.

suffix (X, Y) is true if Y unifies with a suffix of X.

fresh (X) returns a copy of X with all variables new.

unify (X, Y)  returns the unifier substitution of X and Y.
resolve (X, ¢) resolves a goal X in context ¢.
» Resolution returns:

» The resolvent (that is, an additional list of goals).
» The substitution required to continue.
» The remaining context.
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» Also assume the exitence of primitives for manipulating the
program.

» addclause (X, ) returns a new program obtained by adding
clause X at the end of program I1.

» delfirstclause (X, 1) retuns a new program obtained by
removing the first instance of rule X from 1.
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» Xo means “apply o to term X."
» o010, composes left to right.

» ou is equivalent to e.
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» We start the derivation of Gg in Il with the string
PINID[Go] e

» Unless important, frequently omit P [[].

» A successful derivation looks like

P[M]o102---0nCy,_, [Gn-1]--- Cg, [G1] Cy, [Gol

» Derivations with answers, or failure, are stable
» they do not rewrite further
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Representing Prolog Programs
|—Some Notes

» The strings generated here will tend to look like this:

PN] gicuos---0quDy, [GK] Cyy, [Gk-1]- - Cy, [Gol o

program  substitutions derivation continuations end

» The rewrite rules will all be global substitutions.
» But there will be only one place they can apply.
» For example, any rule of the form oDy [Y] = --- can only
apply at the interface of the substitutions and the derivation.
» Similarly, cC4 [Y] = - - can only apply when there is no
derivation.
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» Given a stable state S, define ExtractAnswer(S) as the
exhaustive application of

ou = A, C(¢) [Xl=A

» That is:

» erase all cancelled substitutions (backtracking).
» erase all continuations (remaining options).
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» Given a stable state S, define StartBacktracking(S) as the
rewrite

0C(¢) |[X]| = O'I.IC(¢) |[X]|

» That is, undo the last substitution
» This can only apply at the unique interface of substitutions
and continuations.

» This will now rewrite and will return subsequent answers.
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» Three rules for user predicates.

» First, contextualization:
D [[x, ?]] =D, [[X, \7]]
Where

» Requires X not a builtin predicate.
» ¢ is the definition of the predicate X.
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» Three rules for user predicates.

» Second, resolution:
Dy [[X, \7]] — oD [[(R, ?)a]] Co [[X, \7]]

Where
» Resolving X in context ¢ yielded

» a substitution o,
» a resolvent R,
> a remaining context ¢'.
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» Three rules for user predicates.
» Third, the possibility of failure:

Dy [X, V] = u

Where
» Resolving X in context ® failed (yielded u for the substitution).
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» Backtracking happens when there is no derivation and the last
substitution is u.

» That is, the derivation has failed.

» No options left (backtrack further) :
uCy [X] = uu
» No context (start fresh derivation of X):
uC [X] = uD [X]

» Try again:
UC¢ |[X]] = UD¢ |[X]]
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites

I—True, Fail, Halt

» Easy to take care of some simple builtins of Prolog.

» Can also raise errors on variable goals, as with Prolog.

» Let Halt and Error be strings that do not rewrite.

true D
fail D
halt D

D

—

true, Y

[fail, v
halt, Y

[x7]

=D [[?H “no operation”
=u cf. StartBacktracking.
= Halt

= Error if X is a variable.

» Empty derivations vanish: D [A] = A.
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» At this point, we can give an example of a simple program (cf.

Section 4.1).
p(1) - p(2), pB). % Ki
p(2) :- p(4). % Ko
p(4). % Ks

» K; are clause labels (for contexts).

» Our toplevel goal will be p(X).
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p(1) :- p(2), p(3). % Ki
» p(2) :- p(4). ho K
p(4). % Ks

» Contextualize the derivation:

D [p(X)]e
= Dk, ko, k) [P(X)] @
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p(1) :-p2), pB. » K

» p(2) :- p(d). % K>
p(4). % Kz
» Apply Ki:
D [p(X)] e

= Dk, koK) [P(X)] @
= [1/X] D [p(2), P(3)] Cike, k53 [P(X)] @
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p(1) :- p(2), p(3). % Ki
> p(2) :- p4). h Ko
p(4). % Ks

» Contextualize and apply Ks:

D [p(X)] e

=" [1/X] D [p(2), p(3)] Cyk,, k33 [P(X)] @

= [1/X] Dk k.33 [P(2), P(3)] Ciry 5y [P(X)]

= [1/X]eD [p(4), p(3)] Ciksy [P(2), P(3)] Cik, i3y [P(X)] @
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p(1) - p(2), pA. % K
> p(2) - p(4). % Ko
p(4) . % Ks

» Contextualize and apply K3:

D [p(X)] e

=" [1/X]eD [p(4), P(3)] Ciksy [P(2), P(3)] Cikr sy [P(X)] @
= [1/X] €Dk, ko,k5) [P(4), P(3)] Cykisy [P(2), P(3)] - - -

= [1/X]eeD [true, p(3)] Cy [p(4), p(3)] Cyksy [P(2), P(3)] - - -
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p(1) - p(2), p(3). % Ki
» p(2) :- p(4). % K>
p(4). % Kz

» Apply the rule for true:

D [p(X)] ®
=" [1/X] eeD [true, p(3)] Cy [p(4), p(3)] Cikyy [P(2), P(3)] - - -
= [1/X]eeD [p(3)1 Cp [p(4), P(3)] Cyksy [P(2), P(3)] - - -
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p(1) :- p(2), p(3). % Ki
» p(2) :- p4). h Kz
p(4). % Ks

» Contextualize and fail (no derivation of p(3)):

D [p(X)] e

=" [1/X]eeD [p(3)] Cy [p(4), P(3)] Cyksy [P(2), P(3)] - --
= [1/X] €Dy k,k53 [P Co [P(4), P(3)] - - -

= [1/X]eeuCqy[p(4), p(3)] - .-
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Example of the Basics

p(1) :- p(2), p(3). % Ki
» p(2) :- p4). h Ko
p(4). h K

» Backtrack, fail, and backtrack again:

D [p(X)] e

=" [1/X] eeuCy [p(4), P(3)] Cikiy [P(2), P(3)] Ciky i) [P(X)] @
= [1/X] ecuuCyiy [P(2), pP(3)] Cisy iy [P(X)] @

= [1/X] ecuuDy;y [p(2), P(3)] Ciir k53 [P(X)] @

= [1/X] ecuuuCyy, s,y [P(X)] ®

= [1/X] ecuuuDx, xy) [P(X)] ®
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p(1) - p(2), p(3). % Ki
» p(2) :- p(4). % K>
p(4). % Kz

» Invoke K3 (from top-level goal, having failed Kj):

D [p(X)] e
=" [1/X] eeuuuDy, k1 [P(X)] ®

= [1/X] ecuuu [2/X] D [p(4)] Cixiy [P(X)] @
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Example of the Basics

p(1) :- p(2), p(3). % Ki
» p(2) :- p4). h Ko
p(4). h K

» Contextualize and apply K3 and rule for true:

Dp(X)] e

=" [1/X] ceuuu [2/X] D [p(4)] i) [p(X)] o

— [1/X] ceunu [2/X] D s, ) [P(4)] C i) [p(X)] @
= [1/X] ecuuu[2/X] €D [true] Cy [p(4)] Cyx,) [P(X)] @
= [1/X] ccuun [2/X] ¢Co [p(4)] Cie [P(X)] o

» This does not step. It therefore represents an answer.
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p(1) :- p(2), p(3). % K
» p(2) :- p(4). h Kz
p(4). % Ks

» So let's extract it!
D [p(X)] e =" [1/X] ceuuu[2/X]eCy [p(4)] C i,y [P(X)] ®

[1/X] ceuuu [2/X] €Cy [p(4)] Cyx; [P(X)]
[1/X] ecuuu[2/X] eo

[1/X]euu[2/X] co

[1/X]u[2/X]eo

[2/X] e
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p(1) (- p(2), pA. % Ki
» p(2) :- p4). %h K>
p(4). h Ks

» Let's get the next answer.

Dp(X)] e
=" [1/X] eeunu [2/X]€Cy [p(4)] Cyscsy [P(X)] @

StartBacktracking(- - -)
= [1/X]ecuuu [2/X] euCy [p(4)] Cikyy [P(X)] @
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p(1) - p(2), pB). % Ki
> p(2) :- p4). h Ko

P(4). % Ké
» Backtrack

StartBacktracking(- - -)

= [1/X]eeuuu[2/X] euCy [p(4)] Ciisy [P(X)] @
= [1/X]ecuuu [2/X] euuCyx,y [p(X)] @

= [1/X]ecuuu[2/X] euuDk,; [p(X)] @

41/70



p(1) :- p(2), p(3). % K
» p(2) :- p(4). h Kz
p(4). % Ks

» Apply K3 and the rule for true:

StartBacktracking(- - -)

=" [1/X] ceuuu [2/X] euuD 4,y [p(X)] ®

= [1/X] ecuuu[2/X] cuu[4/X] D [true] Cy [p(X)] o
= [1/X] ecuuu[2/X] euu[4/X] Cy [p(X)] @
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Example of the Basics

p(1) - p(2), p3). % Ki
» p(2) :- p(4). % K>
p(4) . % K3
» Extract the second answer:
StartBacktracking(- - - )

=" [1/X] ecuuu [2/X] euu [4/X] Cy [p(X)] ®

[1/X] ecuuu [2/X] euu [4/X] Cy [p(X)] ®
[1/X] ecuuu [2/X] euu [4/X] o
[1/X]euu[2/X] euu[4/X] o
[1/X]euu[2/X]u[4/X] e
[1/X]euu[d/X] e

[1/X]ul4/X]e

[4/X]
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p(l) - p(2), p3). % Ki
» p(2) :- p(4). h Kz

p4). % Ks
» Backtrack once more?

StartBacktracking(- - - )
=" [1/X] eeuuu[2/X] euu [4/X] Cy [p(X)] ®

StartBacktracking(- - -)
= [1/X]ecuuu[2/X] euu[4/X]uCy [p(X)] ®
= [1/X] ecuuu [2/X] euu[4/X] uue

» This reduces to ue. There are no more answers.
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» Unification either
» fails (triggering backtracking), or
» provides a substitution which applies to the answer and
subsequent goals.

D [[(X - Y),Zﬂ
N oD[Zo]Cy (X =Y),Z] ifunify(X,Y)=0
u if unify(X,Y) failed
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» Suffix criterion:

» Given that the current goal is X, Y, the parent of X is the
leftmost continuation whose argument does not have a suffix
unifiable with X, Y.

» Basic idea:
» Empty all continuation contexts up until the parent of the cut.

» Example:

D[, p(X)] Co, [a(Y), 1 p(Y)] Cg, [a(X)] @

parent
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A Rewriting Prolog Semantics (Kulas, 2000)

I—Inl:erpreting Prolog Programs Via Rewrites
L Cut

» To do this in rewrite rules, we first want some markers:
Pending (X) Placeholder marker for rewrite in progress.

Parent (Y) Rightwards-moving search and replace marker.
Return Leftwards-moving completion marker.

» The rules are as expected from these definitions:

D [[!, VH = Pending (D [[\7}]) Parent <(!, 7))
Parent (G) Cyy) [L] = Cy [L] Parent (G) if SUffIX.(L, G)
ReturnCy [L] otherwise

Parent (G) ¢ = Returne
Cy [X] Return = ReturnCy [X]
Pending (G) Return = G
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites

Lcut
» Actually, this has a bug. Anybody see it?
» What if
» the program was a(X) :- q(X), !, p(X) and
» the initial goal was call(a(Y)), !, p(Y)?
» We would mistakenly conclude that the ! in the a rule had no
parent!
» We would empty all contexts back to e.
» Failure on the inside of the near cut would cause the entire
program to fail.
» (We can fix this by using something like gensyms for !.)
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» “Ought” to be as simple as
D [[can (X), ?]] =D [[X, \7]]

» Except that that is transparent to a cut.

» Use “insulating layer” (empty continuation):

D [[call (X), ?ﬂ ) [[x, \7]] Cy [[can (X), \7]]
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» once (G) takes the first possible solution to G and prohibits
backtracking into other options.

» It may be thought of as once(G) :- G, !.
» As a builtin,

D [[once (X), ?]] =D [[call (X, 1), ﬂ]

» Want to ensure that the cut won't interfere with parent of
once (X).
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» Expanding once more,
D Honce (X), ﬂ]
=2¢D [[x, ) \7]] Cy [[can (X,1)), \7]]

» The cut's parent is the continuation shown.

» Therefore, if we backtrack out of Y, we will keep going to the
parent of the once (X).
» Rather than just aborting, as we would with

D [[once (X), ?ﬂ ) [[X, ) \7]]
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» Repeat
D [[repeat, \7]] = eD [[\7]] C [[repeat7 \7]]
» Failure-as-negation:

D [[\ +(6), ?]] = eD [call (G), 1, fail] € [[Y/]]
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» Failure-as-negation isn’t so obvious.
> Let's say G is true (succeeds):

D [[\ + (true) ?]]

= D [call (true), !, fail] C [[?]]

= eeD [true, !, fail] Cy [call (G), !, fail] C [[\7]]
=* eeD [, fail] C [call (G), !, fail] C [[?]]

=* eeD [fail] C [call (G) , 1, fail] C; [M]

= eeuCy[call (G), !, fail] Cy [M]

= eeuuC [[?ﬂ

= €euuu
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> Let's say G is fail:
D [\ + (fail), V]
= D [call (fail), !, fail] C [M]
= eeD [fail, !, fail] Cy [call (G) !, fail] C [[\7]]
=* ecuCy [call (G) , 1, fail] € [[\7]]
= ecuuC [[\7]]
= ceeuuD [[\7]]
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» Prolog: catch (Goal, Catcher, Recover) and throw (Ball).
» Introduce one more marker, ThrowAnc (-, ).

» The rules are similar to those for cut:

D [catch (G, B, R,,,X)] = eD[G, X] C[catch (G, B, R, ,, X)]
D [throw (B), X] = ThrowAnc(Z, 2Z)
where Z is (throw (B), X)
ThrowAnc (T, X)e = Error
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
L Catch & Throw

ThrowAnc (T, X) C(4) [C]

uThrowAnc (T, X)
uoD[(R, Z)o] Cy [C]

uThrowAnc (T, C)
\

if suffix (C, X)
if —suffix (C, X)

&T = (throw (B),Y)

& C = (catch(G,B', R ) Z)
&unify (fresh (B), B') =
otherwise

» The freshening operation here is to ensure that unifications
into Ball that have happened so far are undone. (i.e. can only
pass ground structure up the stack).
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Throw & Catch Example

» Simplified example from Section 4.2 (which is unnecessarily
complex).

r(X) :- throw(X).
p :- catch(true, _, fail), r(qg).
» The goal here will be catch(p, C, true). Here goes:

D [catch (p, C,true)] o

=" eD [p] Cp [catch (p, C,true)] e

=" eeD [catch (true, _, fail), r(q)] Cy [p] Cy [catch (p, C, true)]
=" eeeD [true, r(q)] C [catch (true, _, fail), r(q)] Cy [p] - - -

=" eeeD [r(q)] C [catch (true, _, fail), r(q)] Cy [P] - - -

=" eeeD [throw (¢)] Cp [r(q)] C [catch (true, _, fail), r(q)] - . .
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Inl:erpreting Prolog Programs Via Rewrites
|—Throw & Catch Example

r(X) :- throw(X).
p :- catch(true, _, fail), r(q).
» Empty suffixes do not count, so the default rule matches
repeatedly:
D [catch (p, C,true)] o
=" eeeD [throw ()] Cp [r(9)]
C [catch (true, _, fail) , r(q)] Cy [p] Cp [catch (p, C,true)] o
= eeeThrowAnc ((throw (() g)), (throw (() 9))) Cp [r(q)]
C [catch (true, _, fail) , r(q)] Cy [P] Cp [catch (p, C,true)] o
= eeeuThrowAnc ((throw (() q)), r(q))
C [catch (true, _, fail) , r(q)] Cy [p] Cy [catch (p, C, true)] o
= eeceuuThrowAnc ((throw (() g)), catch (true, _, fail), r(q))
Cy [Pl Cy [catch (p, C,true)] e
= ececuuuThrowAnc ((throw (() q)), p)
Cy [catch (p, C,true)] o o



r(X) :- throw(X).
p :- catch(true, _, fail), r(q).

» Now the catch rule applies:

=" eccuuuThrowAnc ((throw (() q)), p)
Cy [catch (p, C,true)] o

= eeeuuuu[q/C]D [true[q/C]] Cy [C] »

= eceuuuu[q/C|Cy [C] @

» The substitution [g/C] tells us that all went as anticipated
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Inl:erpreting Prolog Programs Via Rewrites
|—Dynamic Updates
» Dynamic updates are another of these marker-moving rewrite
games.

» Markers:
Pending (X) Placeholder marker for rewrite in progress.

Update (X) Carrier of an update to the program store.
Return (X)  Return message from program store.
» Rules for derivation:

D [[asserta (K), \7]]

= Update (asserta (K)) Pending (D [[asserta (K), ?ﬂ)

D Hretract (K), ?ﬂ

= Update (retract (K)) Pending (D [[retract(K) , ?ﬂ)
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Inl:erpreting Prolog Programs Via Rewrites
|—Dynamic Updates

» Rules for updates:

P [M] Update (asserta (K))
= P[] Return (¢)

P [M] Update (retract (K))
= P[] Return (o)

P [M] Update (retract (K))
= P[] Return (u)
XUpdate (H)

= Update (H) X

if addclause (K, M) =1’
if delfirstclause (K, M) = (o, 1)
if delfirstclause (K, 1) failed

if X # P[N]
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» Rules for returns:

Return (o) Pending (D [asserta (K) , X])

= D[X]

Return (o) Pending (D [retract (K) , X])

= oD [Xo] C[retract (K), X]

Return (u) Pending (D [retract (K), X])

=u

Return (o) X

= XReturn (o) if X # Pending (-)
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
L Findall and friends

» A twist on the marker game which leaves markers in the

derivation!
» Markers:
Mark (X) Leave answer that X.
SetMark (X) Metacommand to produce a mark.
Collect (X) Label inside continuations.
SweepMarks (X) Left-moving marker to collect answers.
Return (L) Right-moving marker with answer list.

» Core rules:
D [[findall (X,6,1), ?ﬂ = StartMarkeD [call (G) , SetMark (X) , fail] C [[Collect (findall (X, G, L)), ?ﬂ
D [[SetMark x), ?ﬂ =D [[\?ﬂ where X; = fresh (X)

D [[cwlect (findall (X, G, L)), ?ﬂ = SweepMarks ([]) Pending (D [[findau (X,6,1L), 37]])
SweepMarks (L) = SweepMarks ([X|L])
StartMarkSweepMarks (L) = Return (L)
oD [[?a] Co HfindaII(X, G, L), ?ﬂ if unify (L, L1) = &

Return (L1) =
u if unify (L, L1) failed

63 /70



» Disjunction would be easy, except for the transparency of cuts

internal.
» The solution is using a disolved syntax as markers.
» The paper creatively uses markers '(", ;', and ')'.
» Rules:

[[( X,:,Y,),R] =D [[x,,,v,),ﬁ]]c[[ XY, ),ﬁﬂ

c[[ X,,,Y)R__:>D[[
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Disjunction Example

» (For those following along, this is Section 4.4.)
» A popular idiom in Prolog is the repeat/cut/fail loop:
q :- repeat, p(X), (X = b, !; fail).
p(a).
p(b).
p(c).

» What this program ought to do is iterate over p(X) until X =
b, then abort.

» It will never consider p(c).

» Let's get this started using the basic rule:

D[qg] = €D [repeat, p(X),(X = b, !;fail)] Cy [4]



q :- repeat, p(X), (X = b, !; fail).
p(a).
p(b).
pe).
» Apply the rule for repeat, then find p(A):

D [4]

= €D [repeat, p(X), (X = b, !; fail)] Cy [4q]

= eeD [p(X), (X = b, !;fail)] C[repeat,...] Cy[q]

= eela/X]D [true,(a = b, !;fail)] Cy [p(X), (X = b, !;fail)] ...
= eela/X]D[(a = b, 1;fail)] Cy [p(X), (X = b, 1;fail)] . ..
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
|—Disjunction Example

q :- repeat, p(X), (X = b, !; fail).
pa).
p(b).
p(c).
» Apply the rule for '(" then backtrack because a # b:

D [q]

=" ee[la/X]D [(a = b, !; fail)] Cy [p(X), (X = b, !; fail)] ...

= ee[a/X]eD[a=b,};fail)]C[;a= b, !;fail)] ...

= eela/X]euC[;a = b, !;fail)] Cy [p(X), (X = b, !;fail)] ...
= ee[a/X]euD [fail)] Cy [p(X), (X = b, fail)] ...

=2 ec[a/X]euuDy, [p(X), (X = b, !; fail)] C [repeat, . . .] Cy [q]
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I—Interpreting Prolog Programs Via Rewrites
|—Disjunction Example

q :- repeat, p(X), (X = b, !; fail).
p(a).
p(®).
p(c).
» Find p(b), apply rule for (", unification succeeds:

D[]

=" ee[a/X]euuDy, [p(X), (X = b, !;fail)] C [repeat, ...] Cy [q]
= ee[a/X]euu[b/X]D [(b = b, !; fail)] Cy [p(X), (X = b, !; fail)] ...
eela/X]euu[b/ XD [(b = b, !; fail)] Cy [p(X), (X = b, !;fail)] . ..
ee[a/X]euu[b/X]eD [b = b, !; fail)] C[b = b, !; fail)] ...
ee[a/X]euu[b/X]eeD [!; fail)] C[b = b, !; fail)] . ...

Pl
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I—Interpreting Prolog Programs Via Rewrites
|—Disjunction Example

q :- repeat, p(X), (X = b, !; fail).
p(a).
p(b).
p(c).
» Apply the rule for cut; see how high it goes:

D [4]
=" ee[a/X]euu[b/X]eeD [!; fail)] C[b = b, !; fail)]
Cy [p(X), (X = b, !; fail)] C[repeat,...] Cy [4]
=" ee[a/X]euu[b/X]eeD [; fail)] Cy [b = b, !; fail)]
Co [p(X), (X = b, !; fail)] Cy [repeat, ...] Cy[q]
=2 ee[a/X]euu[b/X]ecCy [b = b, !; fail)]
Cy [p(X), (X = b, !; fail)] Cy [repeat, .. .] Cy[q]
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A Rewriting Prolog Semantics (Kulas, 2000)
I—Interpreting Prolog Programs Via Rewrites
L f-Then-Else

» Mostly to show we can; nothing new here.

» More markers (just two new ones):

Pending (X) Placeholder marker for rewrite in progress.
Return Leftwards-moving completion marker.
ThisBranch (P) Marker of conditional branch in progress.
The (R, O) Rightwards-moving marker for C-rewriting.

» Uses exploded syntax of disjunction; has higher precendence
than previous disjunction rules to deal with If/Then.
» The rules are as expected:

D (. 1f — Then,:, Eise,), V]| = D [(, once (If) , ThisBranch (once (If)) , Then, ;, Else, ), Y
D [[ThisBram:h (() Pre), \7}] = Pending (D [[?ﬂ) The (Pre7 \7)
The (Pre, Post) C |:[; s \7] = ReturnCy [[; s ?ﬂ if append(Pre, [ThisBranch (Pre) |Post]) = Y

The (Pre, Post) C H?ﬂ =C [[\7]} The (Pre, Post) otherwise
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