
Meta Misc Monads Effects Next

Fun With Haskell: Effects, Purely

Nathaniel Wesley Filardo

January 13, 2012

1 / 48

Meta Misc Monads Effects Next

Metadata

� Anybody have questions from last time?

2 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Another Word On Laziness

� The Debug.Trace module offers

trace :: String -> a -> a

� When evaluated, trace prints out its first argument and
then returns the second.

� trace is unsafe.
� It should only be used for debugging.

� Why use it at all, then?

� Reveals the act of computation.
� Try: map (+1) [1,2,trace "Hi" 3]

3 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Deriving Instances

� There’s often an obvious way to ascribe to an instance.

data Count = None | One | Few | Many

� Haskell can often derive instances.

4 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Deriving Instances

� There’s often an obvious way to ascribe to an instance.

data Count = None | One | Few | Many

� Haskell can often derive instances.

� Support for six classes in the Haskell 98 standard:

DerivingEx.hs

data Count = None | One | Few | Many

deriving (Bounded, Enum, Eq, Ord, Read, Show)

4 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Records

� data-types as defined so far are nice,

� but maybe not always what we want.

� Thanks to LYAHFGG [7] for the example.

� A person has a first and last name, age, height.

data Person = Person String String Int Float

� And accessor functions:

firstName :: Person -> String

firstName (Person n _ _ _) = n

� Who wants to write all of those?

5 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Records

� A person has a first and last name, age, height.

PersonRecord.hs

data Person = Person

{ firstName :: String

, lastName :: String

, age :: Int

, height :: Float

}

deriving (Eq, Ord, Show)

� Accessors for free:

*Main> :type age

age :: Person -> Int
6 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Records

� Old-style constructors still work:

*Main> Person "N" "F" 27 170

� Cooler: pattern matching by label:

PersonRecord.hs

canVote (Person {age = x}) = x >= 18

� Record “update” syntax (clunky):

PersonRecord.hs

birthday p = p {age = (age p) + 1}

7 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Type Aliases and Newtypes

� Type Aliases provide alternative names:

type String = [Char]

type AssocList k v = [(k,v)]

� (Originally) Exact substitutability.

� Strings are Eq-able because lists of Eq-able things are
Eq-able and Char is Eq-able.

� GHC language extension TypeSynonymInstances allow non-default semantics; don’t worry about

it.

8 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Type Aliases and Newtypes

� Suppose I wanted a type that’s mostly like Int [4]:

data MyInt = MyInt Int deriving (Eq, Show)

instance Ord MyInt where {- ... -}

� Works, mostly.

� Technically: The existence of both MyInt ⊥ and ⊥

means that MyInt is not isomorphic to Int.

� Inefficient: boxed (again)!

9 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Type Aliases and Newtypes

� newtype directives intended to give “mostly isomorphic”
types.

� Try instead:

newtype MyInt = MyInt Int

deriving (Eq, Read, Show)

instance Ord MyInt where {- ... -}

� Works!

� Constructed and destructed like data MyInt.

� Efficient: MyInt box exists only at compile time.

10 / 48

Meta Misc Monads Effects Next

More Intro Stuff

Type Aliases and Newtypes

� newtype directives intended to give “mostly isomorphic”
types.

� Can have only one constructor, with exactly one
argument.

� These don’t work:

newtype NTBool = True | False

newtype NTSPair a = NTSPair a a

newtype NTPair a b = NTPair a b

11 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads have been said to be . . .

� Burritos

� Elephants

� “Just a monoid in the category of endofunctors, what’s
the problem?” [5] paraphrasing [6].

� Also: “A monad is just a lax functor from a terminal
bicategory, duh. fuck that monoid in category of
endofunctors shit” [2]

� Trees With Grafting [3]

There are at least 35 known “monad tutorials” of various
shapes and sizes; http://www.haskell.org/haskellwiki/
Monad_tutorials_timeline.

12 / 48

http://www.haskell.org/haskellwiki/Monad_tutorials_timeline
http://www.haskell.org/haskellwiki/Monad_tutorials_timeline

Meta Misc Monads Effects Next

Enter: Monads

Computations Which Might Abort

� Consider a set of functions

foo, bar, baz :: Int -> Int

� That we want to compose:

fbb x = baz (bar (foo x))

-- Shorter, "point-free" form:

fbb’ = baz . bar . foo

13 / 48

Meta Misc Monads Effects Next

Enter: Monads

Computations Which Might Abort

� Now consider a set of “failable” functions

foo, bar, baz :: Int -> Maybe Int

� Challenge: compose these.

fbb x = case foo x of

Nothing -> Nothing

Just fx -> case bar fx of

Nothing -> {- aaaaa! -}

� There’s gotta be a better way.

� A first example of “the monad pattern.”

14 / 48

Meta Misc Monads Effects Next

Enter: Monads

Computations Which Might Abort

� Consider a set of functions

foo, bar, baz :: Int -> Maybe Int

� Insight: potential successes combine.
� Like case analysis above!

� Want a combinator

bindMaybe Nothing _ = Nothing

bindMaybe (Just a) f = f a

15 / 48

Meta Misc Monads Effects Next

Enter: Monads

Computations Which Might Abort

� Consider a set of functions

foo, bar, baz :: Int -> Maybe Int

� Insight: potential successes combine.
� Like case analysis above!

� Want a combinator

bindMaybe Nothing _ = Nothing

bindMaybe (Just a) f = f a

� Type is going to become familiar:

bindMaybe :: Maybe a -> (a -> Maybe b)

-> Maybe b

15 / 48

Meta Misc Monads Effects Next

Enter: Monads

Computations Which Might Abort

� Given

foo, bar, baz :: Int -> Maybe Int

bindMaybe :: Maybe a -> (a -> Maybe b)

-> Maybe b

bindMaybe Nothing _ = Nothing

bindMaybe (Just a) f = f a

� Now

fbb x = (foo x) ‘bindMaybe‘ bar

‘bindMaybe‘ baz

16 / 48

Meta Misc Monads Effects Next

Enter: Monads

Computations Which Might Abort

� Is anybody else bothered by this?

fbb x = (foo x) ‘bindMaybe‘ bar

‘bindMaybe‘ baz

17 / 48

Meta Misc Monads Effects Next

Enter: Monads

Computations Which Might Abort

� Is anybody else bothered by this?

fbb x = (foo x) ‘bindMaybe‘ bar

‘bindMaybe‘ baz

� Why is foo so different?

17 / 48

Meta Misc Monads Effects Next

Enter: Monads

Computations Which Might Abort

� Is anybody else bothered by this?

fbb x = (foo x) ‘bindMaybe‘ bar

‘bindMaybe‘ baz

� Why is foo so different?

� Would rather have uniformity in steps.

fbb x = (Just x)

‘bindMaybe‘ foo

‘bindMaybe‘ bar

‘bindMaybe‘ baz

17 / 48

Meta Misc Monads Effects Next

Enter: Monads

Environments

� Sometimes, we want to have read-only state available to
us.

� e.g. command line arguments

� Say that code is running in an environment.

� If f :: a -> b needs access to environment, make it
f :: e -> a -> b or f :: a -> e -> b.

18 / 48

Meta Misc Monads Effects Next

Enter: Monads

Environments

� What if we realize that our functions need access to the
environment?

type Env = -- ...

foo, bar, baz :: Int -> Env -> Int

fbb = -- ... ?

� Challenge: compose them!

19 / 48

Meta Misc Monads Effects Next

Enter: Monads

Environments

� Have made

foo, bar, baz :: Int -> Env -> Int

� Composing:

fbb x e = baz (bar (foo x e) e) e

� Still not so much fun, is it?

20 / 48

Meta Misc Monads Effects Next

Enter: Monads

Environments

� Have made

foo, bar, baz :: Int -> Env -> Int

� Insight: Env -> ... all handled the same.

� Fed same environment to each one.

� Define an alias

newtype Reader e a = Reader

{ runReader :: e -> a }

� Now need to compose readers together.

21 / 48

Meta Misc Monads Effects Next

Enter: Monads

Environments

� Now need to compose readers together.

22 / 48

Meta Misc Monads Effects Next

Enter: Monads

Environments

� Now need to compose readers together.

� That is, we want something like

bindReader :: Reader e a -> (a -> Reader e b)

-> Reader e b

� Look familiar?

22 / 48

Meta Misc Monads Effects Next

Enter: Monads

Environments

� Defined

newtype Reader e a = Reader

{ runReader :: e -> a }

bindReader :: Reader e a -> (a -> Reader e b)

-> Reader e b

� Read off the types to guide implementation:

bindReader (Reader a) f =

Reader (\e -> (runReader (f (a e))) e)

23 / 48

Meta Misc Monads Effects Next

Enter: Monads

Environments

� Defined

newtype Reader e a = Reader

{ runReader :: e -> a }

bindReader :: Reader e a -> (a -> Reader e b)

-> Reader e b

� Now compose:

fbb :: Int -> Reader Env Int

fbb x = (foo x) ‘bindReader‘ bar ‘bindReader‘ baz

� Or, for uniformity:

fbb x = (Reader (const x)) ‘bindReader‘ foo

‘bindReader‘ bar ‘bindReader‘ baz
24 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

� Let’s say we’ve defined

ExpensiveFib.hs

fib 0 = 1

fib 1 = 1

fib n | n >= 2 = fib (n-1) + fib (n-2)

fib _ = error "negative fib"

� And we want to measure just how many calls are made
� One way: thread a counter through.
� (May be better ways we can talk about later)

� Need to change the type:

type Ctr = Int

fibCtr :: Int -> Ctr -> (Int, Ctr)
25 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

� Also need a new implementation:

fibCtr :: Int -> Ctr -> (Int, Ctr)

fibCtr 0 c = (1, c+1)

fibCtr 1 c = (1, c+1)

fibCtr n c = -- ...

� Hm. Clearly, I need to call fibCtr on (n-1) and (n-2).
� What do I do about the counter?

26 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

� Also need a new implementation:

fibCtr :: Int -> Ctr -> (Int, Ctr)

fibCtr 0 c = (1, c+1)

fibCtr 1 c = (1, c+1)

fibCtr n c = -- ...

� Hm. Clearly, I need to call fibCtr on (n-1) and (n-2).
� What do I do about the counter?
� This mess:

fibCtr n c = let

(a, c’) = fibCtr (n-1) c

(b, c’’) = fibCtr (n-2) c’

in (a+b, c’’ + 1).
26 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

� Yuck!

fibCtr 0 c = (1, c+1)

fibCtr 1 c = (1, c+1)

fibCtr n c = let

(a, c’) = fibCtr (n-1) c

(b, c’’) = fibCtr (n-2) c’

in (a+b, c’’ + 1).

� Insight: State is like an environment where the previous

functions get a chance to change it.

27 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

� Insight: State is like an environment where the previous

functions get a chance to change it.
� So:

newtype State s a = State

{ runState :: s -> (a,s) }

get :: State s s

get = State (\s -> (s,s))

put :: s -> State s ()

put s = State (_ -> ((),s))

28 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

� Insight: State is like an environment where the previous

functions get a chance to change it.
� So:

newtype State s a = State

{ runState :: s -> (a,s) }

get :: State s s

get = State (\s -> (s,s))

put :: s -> State s ()

put s = State (_ -> ((),s))

� What’s the other thing we want?
28 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

� Insight: State is like an environment where the previous

functions get a chance to change it.

� A State bind combinator:

bindState :: State s a -> (a -> State s b)

-> State s b

29 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

� Insight: State is like an environment where the previous

functions get a chance to change it.

� A State bind combinator:

bindState :: State s a -> (a -> State s b)

-> State s b

� Sure:

bindState sa f = State (\s -> let

(a, s’) = runState sa s in

runState (f a) s’)

29 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

newtype State s a = State

{ runState :: s -> (a,s) }

� Thusly armed, define a utility function:

constState :: a -> State s a

constState x = State (\s -> (x, s))

30 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

newtype State s a = State

{ runState :: s -> (a,s) }

� Thusly armed, define a utility function:

constState :: a -> State s a

constState x = State (\s -> (x, s))

� And now a trickier one:

modify :: (s -> s) -> State s ()

modify f = get

‘bindState‘ (\s -> constState (f s))

‘bindState‘ put

30 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

Now revisit fibCtr.

� Base cases:

fibSCtr 0 = modify (+1)

‘bindState‘ \() -> constState 1

� “First, adjust the counter by +1.”

� “Then, ignore the counter and return 1.”

� Haskell is a funny dialect of English: “and then” is
pronounced “bind.”

31 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

Now revisit fibCtr.
� Inductive case:

fibSCtr n = modify (+1)

‘bindState‘ \() -> fibSCtr (n-1)

‘bindState‘ \a -> fibSCtr (n-2)

‘bindState‘ \b -> constState (a+b)

� “First, adjust the counter by +1.”
� “Then, call fibSCtr (n-1) and call the result a.”
� “Then, call fibSCtr (n-2) and call the result b.”
� “Then, ignore the counter and return a+b.”

32 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

Now revisit fibCtr.
� Inductive case:

fibSCtr n = modify (+1)

‘bindState‘ \() -> fibSCtr (n-1)

‘bindState‘ \a -> fibSCtr (n-2)

‘bindState‘ \b -> constState (a+b)

� “First, adjust the counter by +1.”
� “Then, call fibSCtr (n-1) and call the result a.”
� “Then, call fibSCtr (n-2) and call the result b.”
� “Then, ignore the counter and return a+b.”
� (Don’t worry, idiomatic Haskell is much cleaner. We’ll get
there.)

32 / 48

Meta Misc Monads Effects Next

Enter: Monads

Keeping Counts

So, now we have:

fibSCtr :: Int -> State Int Int

fibSCtr 0 = modify (+1)

‘bindState‘ \() -> constState 1

fibSCtr 1 = modify (+1)

‘bindState‘ \() -> constState 1

fibSCtr n = modify (+1)

‘bindState‘ \() -> fibSCtr (n-1)

‘bindState‘ \a -> fibSCtr (n-2)

‘bindState‘ \b -> constState (a+b)

And we can actually run the thing with

*Main> runState (fibSCtr 20) 0

(10946,21891) 33 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

Everybody ready for the real definition of monads?

34 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

� A monad is

� an endofunctor T : C → C with
� a natural transformation η : 1C → T and
� a natural transformation µ : T 2

→ T

� such that

T 3
Tµ

//

µT

��

T 2

µ

��

T 2
µ

// T

T
ηT

//

Tη

��

T 2

µ

��

T 2
µ

// T

35 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

� A monad is

� an endofunctor T : C → C with
� a natural transformation η : 1C → T and
� a natural transformation µ : T 2

→ T

� such that

T 3
Tµ

//

µT

��

T 2

µ

��

T 2
µ

// T

T
ηT

//

Tη

��

T 2

µ

��

T 2
µ

// T

� Uh. . . can I call a friend?

35 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

� Let’s try that again. A Monad is a type class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

{- ... -}

36 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

� Let’s try that again. A Monad is a type class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

{- ... -}

� Monad instances should obey
� Left and right identity:

return a >>= f === f a

m >>= return === m

� Associativity:

(m >>= f) >>= g === m >>= (\x -> f x >>= g)

36 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

� Maybe is a Monad:

instance Monad Maybe where

return = Just

Nothing >>= _ = Nothing -- bindMaybe

(Just a) >>= f = f a

� Check the identity laws:

Just a >>= f === f a

Nothing >>= Just === Nothing

(Just a) >>= Just === Just a

� Associativity similarly easy to check.
37 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

� Reader e is a Monad:

instance Monad (Reader e) where

return x = Reader (const x)

ra >>= f =

Reader (\e -> (runReader (f (a e))) e)

38 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

� Reader e is a Monad:

instance Monad (Reader e) where

return x = Reader (const x)

ra >>= f =

Reader (\e -> (runReader (f (a e))) e)

� State s is a Monad:

instance Monad (State s) where

return x = State (\s -> (x,s))

sa >>= f = State (\s ->

let (a, s’) = runState sa s

in runState (f a) s’)

38 / 48

Meta Misc Monads Effects Next

Enter: Monads

Monads For Real

� >> is like >>= but ignores the result.
� First computation run entirely for effects.

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

� Revisiting fibSCtr:

fibSCtr 0 = alter (+1) >> return 1

fibSCtr 1 = alter (+1) >> return 1

fibSCtr n = alter (+1)

>> fibSCtr (n-1)

>>= \a -> fibSCtr (n-2)

>>= \b -> return (a+b)

� Still sort of ugly, right? 39 / 48

Meta Misc Monads Effects Next

Enter: Monads

Do Notation

� Haskell provides the wonderful and amazing do notation
� Sometimes called “reprogrammable semicolon”

� Let’s try that again:

fibSCtr 0 = do

alter (+1)

return 1

�

40 / 48

Meta Misc Monads Effects Next

Enter: Monads

Do Notation

� Haskell provides the wonderful and amazing do notation
� Sometimes called “reprogrammable semicolon”

� Let’s try that again:

fibSCtr 0 = do

alter (+1)

return 1

� And the induction step?

fibSCtr n = do

alter (+1)

a <- fibSCtr (n-1)

b <- fibSCtr (n-2)

return (a+b)

�

40 / 48

Meta Misc Monads Effects Next

Monads for Effect

What, exactly, are effects?

� Anything which depends on. . .

� The Real World.
� The order of execution.

� Things like

� Ordered state
� Mutable references
� I/O: (Files, User, Network, Time, Random numbers, . . .)
� Catching exceptions

41 / 48

Meta Misc Monads Effects Next

Monads for Effect

A Historical Parenthetical

� Haskell originally used lists for I/O:

� Programs given an infinite list of input events
� Programs produced a list of output events

� “The User” is a (particularly slow) thunk.

� Sort of worked, but extremely unpleasant.

� Not a crazy idea in all cases.
� Infinite, lazy list of random numbers?

42 / 48

Meta Misc Monads Effects Next

Monads for Effect

IO Monad

� “The One-stop Sin Bin”

� Contains all sorts of goodies:

� Mutable references
� Multiple threads and thread-safe mutable references
� StableNames,
� Exception catching,
� Files, Sockets, X11,
� ...

43 / 48

Meta Misc Monads Effects Next

Monads for Effect

IO Monad

(With apologies to The Matrix, http://matrix.wikia.com)
44 / 48

http://matrix.wikia.com

Meta Misc Monads Effects Next

Monads for Effect

IO Monad

� OK, it’s not so bad as all that.

� Functions which do IO can

� interrogate the real world
� make changes to the real world

45 / 48

Meta Misc Monads Effects Next

Monads for Effect

IO Monad

� OK, it’s not so bad as all that.

� Functions which do IO can

� interrogate the real world
� make changes to the real world

� IO is (essentially) State RealWorld.

� Without get and put.
� With other functions instead.

45 / 48

Meta Misc Monads Effects Next

Monads for Effect

Revisiting Hello World

� Remember this?

HelloWorld.hs

main = putStrLn "Hello, World"

� Well

*Main> :type main

main :: IO ()

� Change to real world: “Hello, World!” now on screen.

46 / 48

Meta Misc Monads Effects Next

Monads for Effect

Revisiting Hello World

� No safe way to “run IO and get the result” in pure code.

� With good reason!
� I/O can see the order of execution.
� Lazy, pure code is supposed to be independent of

evaluation order!
� (We can talk about “benign effects” later.)

� Type of entire Haskell program is IO ():

� An I/O computation being run entirely for its effects.

47 / 48

Meta Misc Monads Effects Next

Next time

� More on Monads and Effects

� More on I/O in particular

� Programming with IO actions.
� Brain teaser for next time:

twice a = a >> a

main = twice (putStrLn "Hello, World")

� Monads Atop Monads (“Monad Transformers”)

48 / 48

Meta Misc Monads Effects Next

Bib

Available from: http://courses.cms.caltech.edu/
cs11/material/haskell/index.html.

Haskell weekly news: Issue 149.
Available from: http://www.haskell.org/pipermail/
haskell-cafe/2010-February/072986.html.

Monads are trees with grafting, 2010.
Available from: http://blog.sigfpe.com/2010/01/
monads-are-trees-with-grafting.html.

Hal Daumé III.
Yet another haskell tutorial.
2002–2006.
Available from: http://www.cs.utah.edu/~hal/htut/.

48 / 48

http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://www.haskell.org/pipermail/haskell-cafe/2010-February/072986.html
http://www.haskell.org/pipermail/haskell-cafe/2010-February/072986.html
http://blog.sigfpe.com/2010/01/monads-are-trees-with-grafting.html
http://blog.sigfpe.com/2010/01/monads-are-trees-with-grafting.html
http://www.cs.utah.edu/~hal/htut/

Meta Misc Monads Effects Next

James Iry.
A brief, incomplete, and mostly wrong history of
programming languages, May 2009.
Available from: http://james-iry.blogspot.com/
2009/05/brief-incomplete-and-mostly-wrong.

html.

Saunders Mac Lane.
Categories for the Working Mathematician.
Springer, 1998.

Mirian Lipovača.
Learn You A Haskell For Great Good!

No Starch Press, April 2011.
Available from: http://learnyouahaskell.com/.

48 / 48

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://learnyouahaskell.com/

	Metadata
	More Intro Stuff
	Another Word On Laziness
	Deriving Instances
	Records
	Type Aliases and Newtypes

	Enter: Monads
	Computations Which Might Abort
	Environments
	Keeping Counts
	Monads For Real
	Do Notation

	Monads for Effect
	What, exactly, are effects?
	A Historical Parenthetical
	IO Monad
	Revisiting Hello World

	Next time

