META Misc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()

000 000000000 000

0000 000000 (o]e}
(o]

Fun With Haskell: Effects, Purely

Nathaniel Wesley Filardo

January 13, 2012

META

Misc MONADS EFFECTS NEXT
o 00000 o
o 0000000 o
000 000000000 000
0000 000000 oo
o

Metadata

e Anybody have questions from last time?

o
%

META Misc MONADS EFFECTS NEXT
. 00000 o

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

More Intro Stuff
Another Word On Laziness

The Debug.Trace module offers

trace :: String -> a -> a

When evaluated, trace prints out its first argument and
then returns the second.
trace is unsafe.
e |t should only be used for debugging.
Why use it at all, then?

e Reveals the act of computation.
e Try: map (+1) [1,2,trace "Hi" 3]

META

Misc MONADS EFFECTS

[e] 00000 ()

o 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

More Intro Stuff
Deriving Instances

e There's often an obvious way to ascribe to an instance.

data Count = None | One | Few | Many

e Haskell can often derive instances.

NEXT

META Misc MONADS EFFECTS NEXT
o 00000 o

o 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

More Intro Stuff
Deriving Instances

e There's often an obvious way to ascribe to an instance.

data Count = None | One | Few | Many

e Haskell can often derive instances.

e Support for six classes in the Haskell 98 standard:

DerivingEx.hs

data Count = None | One | Few | Many
deriving (Bounded, Enum, Eq, Ord, Read, Show

META

Misc MONADS

[e] 00000

[e] 0000000
@00 000000000
0000 000000

(o]

More Intro Stuff
Records

data-types as defined so far are nice,

but maybe not always what we want.

EFFECTS

()

()
000
(o]e}

e Thanks to LYAHFGG [7] for the example.

A person has a first and last name, age, height.

data Person = Person String String Int Float [

And accessor functions:

firstName :: Person -> String
firstName (Personn _ _ _) = n

e Who wants to write all of those?

NEXT

META

e A person has a first and last name, age, height.

Misc

oeo
0000

MONADS

00000
0000000
000000000
000000

(o]

EFFECTS
o

o

000

oo

More Intro Stuff

Records

PersonRecord.hs

data Person

A

b

3

Person
firstName
lastName
age
height

String
String
Int
Float

deriving (Eq, Ord, Show)

Accessors for free:

*Main> :type age

age

Person

-> Int

NEXT

META Misc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()
ooe 000000000 000
0000 000000 (o]e}

(o]

More Intro Stuff
Records

e QOld-style constructors still work:

*Main> Person "N" "F" 27 170 [

e Cooler: pattern matching by label:

PersonRecord.hs

canVote (Person {age = x}) = x >= 18 [

e Record “update” syntax (clunky):

PersonRecord.hs

birthday p = p {age = (age p) + 1} [

META

Misc MONADS EFFECTS

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
@000 000000 (o]e}

(o]

More Intro Stuff
Type Aliases and Newtypes

e Type Aliases provide alternative names:

type String = [Char]
type AssocList k v = [(k,v)]

e (Originally) Exact substitutability.
e Strings are Eg-able because lists of Eg-able things are
Eg-able and Char is Eg-able.

® GHC language extension TypeSynonyminstances allow non-default semantics; don’t worry about

it.

NEXT

META Misc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()
000 000000000 000
0e00 000000 (o]e}

(o]

More Intro Stuff
Type Aliases and Newtypes

e Suppose | wanted a type that's mostly like Int [4]:

data MyInt = MyInt Int deriving (Eq, Show)
instance Ord MyInt where {- ... -}

e Works, mostly.

e Technically: The existence of both MyInt L and L
means that MyInt is not isomorphic to Int.

e Inefficient: boxed (again)!

META Misc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()
000 000000000 000
[e]e] o] 000000 (o]e}

(o]

More Intro Stuff
Type Aliases and Newtypes

e newtype directives intended to give “mostly isomorphic”
types.
e Try instead:

newtype MyInt = MyInt Int
deriving (Eq, Read, Show)
instance Ord MyInt where {- ... -}

e Works!
e Constructed and destructed like data MyInt.

e Efficient: Mylnt box exists only at compile time.

META Misc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()
000 000000000 000
oooe 000000 (o]e}

(o]

More Intro Stuff
Type Aliases and Newtypes

e newtype directives intended to give “mostly isomorphic”
types.

e Can have only one constructor, with exactly one
argument.

e These don't work:

newtype NTBool = True | False
newtype NTSPair a = NTSPair a a
newtype NTPair a b = NTPair a b

11 /48

META

MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()

000 000000000 000

0000 000000 (o]e}
(o]

Enter: Monads

Monads have been said to be ...
e Burritos
e Elephants
e “Just a monoid in the category of endofunctors, what's
the problem?” [5] paraphrasing [6].
e Also: “A monad is just a lax functor from a terminal

bicategory, duh. fuck that monoid in category of
endofunctors shit” [2]

e Trees With Grafting [3]

There are at least 35 known “monad tutorials” of various
shapes and sizes; http://www.haskell.org/haskellwiki/
Monad_tutorials_timeline.

12 /48

http://www.haskell.org/haskellwiki/Monad_tutorials_timeline
http://www.haskell.org/haskellwiki/Monad_tutorials_timeline

META

MIsc MONADS EFFECTS

[e] @0000 ()

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Computations Which Might Abort

e Consider a set of functions

foo, bar, baz :: Int -> Int

That we want to compose:

fbb x = baz (bar (foo x))

—-— Shorter, "point-free" form:
fbb’ = baz . bar . foo

NEXT

META

MIsc MONADS EFFECTS

[e] 0@000 ()

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Computations Which Might Abort

Now consider a set of “failable” functions

foo, bar, baz :: Int -> Maybe Int

Challenge: compose these.

fbb x = case foo x of

Nothing -> Nothing
Just fx -> case bar fx of
Nothing -> {- aaaaal -}

There's gotta be a better way.
A first example of “the monad pattern.”

NEXT

14 /48

META MIsc MONADS EFFECTS NEXT

[e] 00e00 ()

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Computations Which Might Abort

e Consider a set of functions

foo, bar, baz :: Int -> Maybe Int [

e Insight: potential successes combine.
o Like case analysis above!
e Want a combinator

bindMaybe (Just a) f = f a

bindMaybe Nothing = Nothing {

15 /48

META

Misc

000
0000

MONADS EFFECTS
00e00 [e]

0000000 o]
000000000 000
000000 [e]e)
o

Enter: Monads

Computations Which Might Abort

Consider a set of functions

foo, bar, baz :: Int

-> Maybe Int

Insight: potential successes combine.
o Like case analysis above!
Want a combinator

bindMaybe
bindMaybe

Nothing _
(Just a) £

= Nothing
f a

Type is going to become familiar:

bindMaybe ::

-> Maybe b

Maybe a -> (a -> Maybe b)

NEXT

META MIsc MONADS EFFECTS NEXT

[e] [e]e]e] e} ()

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Computations Which Might Abort

e Given

foo, bar, baz :: Int -> Maybe Int

bindMaybe :: Maybe a -> (a -> Maybe b)

—-> Maybe b
bindMaybe Nothing _ = Nothing
bindMaybe (Just a) f = f a

e Now

fob x = (foo x) ‘bindMaybe‘ bar
‘bindMaybe‘ baz

META

Misc MONADS EFFECTS
o 0000e o

o 0000000 o

000 000000000 000
0000 000000 oo

(o]

Enter: Monads
Computations Which Might Abort

e Is anybody else bothered by this?

fbb x

= (foo x) ‘bindMaybe‘ bar
‘bindMaybe‘ baz

NEXT

META MIsc MONADS EFFECTS NEXT

[e] [e]e]ele] } ()

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Computations Which Might Abort

e Is anybody else bothered by this?

fob x = (foo x) ‘bindMaybe‘ bar
‘bindMaybe‘ baz

e Why is foo so different?

META MIsc MONADS EFFECTS NEXT

[e] [e]e]ele] } ()

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Computations Which Might Abort

e Is anybody else bothered by this?

fob x = (foo x) ‘bindMaybe‘ bar
‘bindMaybe‘ baz

e Why is foo so different?
e Would rather have uniformity in steps.

fbb x = (Just x)
‘bindMaybe‘ foo
‘bindMaybe‘ bar
‘bindMaybe‘ baz

META MIsc MONADS EFFECTS

[e] 00000 ()

[e] ©000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Environments

e Sometimes, we want to have read-only state available to
us.

e e.g. command line arguments
e Say that code is running in an environment.

e If f :: a -> b needs access to environment, make it
f ::e->a->borf :: a->e ->hb.

NEXT

META

MIsc MONADS EFFECTS

[e] 00000 ()

[e] 0O@00000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Environments

e What if we realize that our functions need access to the

environment?

NEXT

type Env = —— ...
foo, bar, baz :: Int -> Env -> Int
fbb = —— ... 7

Challenge: compose them!

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 00@0000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads

Environments
e Have made
foo, bar, baz :: Int -> Env -> Int [
e Composing:

fbb x e = baz (bar (foo x e) e) e [

e Still not so much fun, is it?

20 /48

META

MIsc MONADS EFFECTS

[e] 00000 ()

[e] 000e000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Environments

Have made

foo, bar, baz :: Int -> Env -> Int

Insight: Env -> ... all handled the same.
e Fed same environment to each one.

Define an alias

newtype Reader e a = Reader

{ runReader :: e -> a }

Now need to compose readers together.

NEXT

META Misc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000e00 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Environments

e Now need to compose readers together.

META MIsc MONADS EFFECTS

[e] 00000 ()

[e] 0000e00 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Environments

e Now need to compose readers together.

e That is, we want something like

bindReader :: Reader e a -> (a -> Reader e b)
-> Reader e b

NEXT

e Look familiar?

META MIsc MONADS EFFECTS NEXT
o 00000 o

[e] 0000080 ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Environments

e Defined
newtype Reader e a = Reader
{ runReader :: e -> a }
bindReader :: Reader e a -> (a -> Reader e b)

-> Reader e b

e Read off the types to guide implementation:

bindReader (Reader a) f =
Reader (\e -> (runReader (f (a e))) e)

META

MIsc MONADS EFFECTS
o] 00000 [e]

[e] O00000e ()
000 000000000 000
0000 000000 (o]e}

(o]

Enter: Monads

NEXT

Environments
e Defined
newtype Reader e a = Reader
{ runReader :: e -> a }
bindReader :: Reader e a -> (a -> Reader e b)

-> Reader e b

Now compose:

fbb :: Int -> Reader Env Int
fbb x = (foo x) ‘bindReader‘ bar ‘bindReader

baz

Or, for uniformity:

fbb x = (Reader (const x)) ‘bindReader‘ foo
‘pindReader‘ bar ‘bindReader‘ baz

META MIsc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()
000 ®00000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Keeping Counts

e Let's say we've defined

ExpensiveFib.hs

fib 0 = 1
fib1 =1
fibn | n > 2 = fib (n-1) + fib (n-2)

fib error "mnegative fib"

e And we want to measure just how many calls are made
e One way: thread a counter through.
¢ (May be better ways we can talk about later)

e Need to change the type:

type Ctr = Int
fibCtr :: Int -> Ctr —> (Int, Ctr)

META MIsc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()
000 O@0000000 000
0000 000000 (o]e}

(o]

Enter: Monads
Keeping Counts

e Also need a new implementation:

fibCtr :: Int -> Ctr —> (Int, Ctr)
fibCtr 0 ¢ = (1, c+1)

fibCtr 1 ¢ (1, c+1)

fibCtr n ¢ = --

e Hm. Clearly, | need to call fibCtr on (n-1) and (n-2).
e What do | do about the counter?

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 O@0000000 000
0000 000000 (o]e}

Enter: Monads
Keeping Counts
e Also need a new implementation:

fibCtr :: Int -> Ctr —> (Int, Ctr)

fibCtr 0 ¢ = (1, c+1)
fibCtr 1 ¢ = (1, c+1)
fibCtr n ¢ = —-

e Hm. Clearly, | need to call fibCtr on (n-1) and (n-2).
e What do | do about the counter?
e This mess:

fibCtr n ¢ = let
(a, ¢’) = fibCtr (n-1) c
(b, ¢’’) = fibCtr (n-2) ¢’
in (a+b, c¢’’ + 1).

META

MIsc MONADS EFFECTS
o] 00000 [e]
o] 0000000 [e]
[e]e]e} 00@000000 000
0000 000000 00

(o]

Enter: Monads
Keeping Counts

e Yuck!
fibCtr 0 ¢ = (1, c+1)
fibCtr 1 ¢ = (1, c+1)
fibCtr n ¢ = let

(a, ¢’) = fibCtr (n-1) c
(b, c’’) = fibCtr (n-2) ¢’
in (a+b, ¢’’’ + 1).

e Insight: State is like an environment where the previous
functions get a chance to change it.

NEXT

27 /48

META

Misc MONADS

[e] 00000

[e] 0000000
000 000e00000
0000 000000

(o]

Enter: Monads
Keeping Counts

e Insight: State is like an environment where the previous
functions get a chance to change it.

e So:

EFFECTS
o

o

000

oo

NEXT

newtype State s a = State
{ runState

get :: State s s
get = State (\s -> (s,s))

put :: s -> State s ()
put s = State (_ -> (O,s))

s —> (a,s) }

28 /48

META

Misc MONADS

[e] 00000

[e] 0000000
000 000e00000
0000 000000

(o]

Enter: Monads
Keeping Counts

e Insight: State is like an environment where the previous
functions get a chance to change it.

e So:

EFFECTS
o

o

000

oo

NEXT

newtype State s a = State
{ runState

get :: State s s
get = State (\s -> (s,s))

put :: s -> State s ()
put s = State (_ -> (O,s))

s —> (a,s) }

e What's the other thing we want?

28 /48

META

MIsc MONADS EFFECTS

[e] 00000 ()

[e] 0000000 ()
000 O0000@0000 000
0000 000000 (o]e}

(o]

Enter: Monads
Keeping Counts

e Insight: State is like an environment where the previous
functions get a chance to change it.

e A State bind combinator:

bindState :: State s a -> (a -> State s b)
-> State s b

NEXT

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 O0000@0000 000
0000 000000 (o]e}

(o]

Enter: Monads
Keeping Counts

e Insight: State is like an environment where the previous
functions get a chance to change it.

e A State bind combinator:

bindState :: State s a -> (a -> State s b)
-> State s b

e Sure;

bindState sa f = State (\s -> let
(a, s8’) = runState sa s in
runState (f a) s’)

29 /48

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 O00000e000 000
0000 000000 (o]e}

(o]

Enter: Monads
Keeping Counts

newtype State s a = State
{ runState :: s -> (a,s) }

Thusly armed, define a utility function:

constState :: a -> State s a
constState x = State (\s —> (x, s))

30 /48

META

MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 O00000e000 000
0000 000000 (o]e}

(o]

Enter: Monads
Keeping Counts

newtype State s a = State
{ runState :: s -> (a,s) }

Thusly armed, define a utility function:

constState :: a -> State s a
constState x = State (\s —> (x, s))

And now a trickier one:

modify :: (s -> s) -> State s ()
modify f = get
‘bindState‘ (\s -> constState (f s))
‘bindState‘ put

META

MIsc MONADS EFFECTS

[e] 00000 ()

[e] 0000000 ()

000 0O00000e00 000

0000 000000 (o]e}
(o]

Enter: Monads
Keeping Counts

Now revisit £ibCtr.

e Base cases:

fibSCtr 0 = modify (+1)
‘bindState‘ \() -> constState 1

e “First, adjust the counter by +1."
e “Then, ignore the counter and return 1.”

e Haskell is a funny dialect of English: “and then" is
pronounced “bind.”

NEXT

META MIsc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()
000 000000080 000
0000 000000 (o]e}

(o]

Enter: Monads

Keeping Counts
Now revisit fibCtr.
e Inductive case:

fibSCtr n = modify (+1)
‘bindState‘ \() -> fibSCtr (n-1)
‘bindState‘ \a -> fibSCtr (n-2)
‘bindState‘ \b -> constState (a+b)

e “First, adjust the counter by +1."

e “Then, call £ibSCtr (n-1) and call the result a.”
e "“Then, call £ibSCtr (n-2) and call the result b.”
e “Then, ignore the counter and return a+b."

META MIsc MONADS EFFECTS NEXT
o 00000 o

[e] 0000000 ()
000 000000080 000
0000 000000 (o]e}

(o]

Enter: Monads
Keeping Counts
Now revisit fibCtr.
e Inductive case:
fibSCtr n = modify (+1)
‘bindState‘ \() -> fibSCtr (n-1)
‘bindState‘ \a -> fibSCtr (n-2)
‘bindState‘ \b -> constState (a+b)

e “First, adjust the counter by +1."

e “Then, call £ibSCtr (n-1) and call the result a.”

e "“Then, call £ibSCtr (n-2) and call the result b.”

e “Then, ignore the counter and return a+b."

e (Don't worry, idiomatic Haskell is much cleaner. We'll get
there.)

META

MIsc MONADS EFFECTS

[e] 00000 ()

[e] 0000000 ()
000 0O0000000e 000
0000 000000 (o]e}

(o]

Enter: Monads
Keeping Counts

So, now we have:

fibSCtr :: Int -> State Int Int
fibSCtr 0 = modify (+1)
‘bindState‘ \() -> constState 1
£ibSCtr 1 = modify (+1)
‘bindState‘ \() -> constState 1
fibSCtr n = modify (+1)
‘bindState‘ \() -> fibSCtr (n-1)
‘bindState‘ \a -> fibSCtr (n-2)
‘bindState‘ \b -> constState (a+b)

And we can actually run the thing with

*Main> runState (fibSCtr 20) O
(10946,21891)

NEXT

META Misc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 @00000 (o]e}

(o]

Enter: Monads
Monads For Real

Everybody ready for the real definition of monads?

META Misc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 O@0000 (o]e}

(o]

Enter: Monads
Monads For Real

e A monad is

an endofunctor T : C — C with

a natural transformation n: 1¢ — T and
a natural transformation p: T2 = T
such that

B TR

iwi lu irn iu

T2——>T T2-—">T

META Misc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 O@0000 (o]e}

(o]

Enter: Monads
Monads For Real

e A monad is

an endofunctor T : C — C with

a natural transformation n: 1¢ — T and
a natural transformation p: T2 = T
such that

B TR

iwi lu i” iu

T2——>T T2-—">T

e Uh...can | call a friend?

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 00@000 (o]e}

(o]

Enter: Monads
Monads For Real

e Let's try that again. A Monad is a type class:

class Monad m where
return :: a -> m a
>>=) ::ma->(a->mb) ->mb

{- ... -}

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 00@000 (o]e}

(o]

Enter: Monads
Monads For Real

e Let's try that again. A Monad is a type class:

class Monad m where

return :: a -> m a
>>=) ::ma->(a->mb) ->mb
{- ... -}

e Monad instances should obey
o Left and right identity:

return a >>= f === f a
m >>= return ===

Associativity:

(m >>=f) >>=g === >>= (\x > f x >>= g)[

36 / 48

META

Misc MONADS EFFECTS
Enter: Monads
Monads For Real
e Maybe is a Monad:
instance Monad Maybe where
return = Just
Nothing >>= _ = Nothing -- bindMaybe
(Just a) >=f = f a
e Check the identity laws:
Just a >>= f === f a
Nothing >>= Just === Nothing
(Just a) >>= Just === Just a

e Associativity similarly easy to check.

NEXT

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 0000e0 (o]e}

(o]

Enter: Monads
Monads For Real

e Reader e is a Monad:

instance Monad (Reader e) where
return x = Reader (const x)
ra >=f =
Reader (\e -> (runReader (f (a e))) e)

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 0000e0 (o]e}

(o]

Enter: Monads
Monads For Real

e Reader e is a Monad:

instance Monad (Reader e) where
return x = Reader (const x)
ra >=f =
Reader (\e -> (runReader (f (a e))) e)

e State s is a Monad:

instance Monad (State s) where
return x = State (\s —> (x,s))
sa >>= f = State (\s —>
let (a, s’) = runState sa s
in runState (f a) s’)

META

MIsc MONADS EFFECTS

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 O0000e (o]e}

(o]

Enter: Monads
Monads For Real

>> is like >>= but ignores the result.
e First computation run entirely for effects.

(>>=) ::ma->((aa->mb) >mb
(>>) ::ma->mb->mb

Revisiting £ibSCtr:

fibSCtr 0 = alter (+1) >> return 1
fibSCtr 1 = alter (+1) >> return 1
fibSCtr n = alter (+1)

>> fibSCtr (n-1)

>>= \a -> fibSCtr (n-2)
>>= \b -> return (a+b)

e Still sort of ugly, right?

NEXT

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

Enter: Monads
Do Notation
e Haskell provides the wonderful and amazing do notation
e Sometimes called “reprogrammable semicolon”

e Let's try that again:
fibSCtr 0 = do

alter (+1)

return 1

10 / 48

NEXT

META MIsc MONADS EFFECTS
o 00000 o
o 0000000 o
000 000000000 000
0000 000000 00

Enter: Monads
Do Notation
e Haskell provides the wonderful and amazing do notation
e Sometimes called “reprogrammable semicolon”
e Let's try that again:

fibSCtr 0 = do
alter (+1)
return 1

And the induction step?

fibSCtr n = do
alter (+1)
a <- fibSCtr (n-1)
b <- fibSCtr (n-2)
return (a+b)

META

MIsc MONADS EFFECTS

o] 00000 °
o] 0000000 [e]
[e]e]e} 000000000 000
0000 000000 00
(o]
Monads for Effect

What, exactly, are effects?

e Anything which depends on. ..
e The Real World.
e The order of execution.
e Things like
e Ordered state
e Mutable references

e |/O: (Files, User, Network, Time, Random numbers, ...

e Catching exceptions

NEXT

META

MIsc MONADS EFFECTS

[e] 00000 o

[e] 0000000 (]
000 000000000 000
0000 000000 (o]e}

(o]

Monads for Effect
A Historical Parenthetical

e Haskell originally used lists for 1/0:
e Programs given an infinite list of input events
e Programs produced a list of output events

e "“The User" is a (particularly slow) thunk.

e Sort of worked, but extremely unpleasant.

e Not a crazy idea in all cases.
e Infinite, lazy list of random numbers?

NEXT

META

Misc MONADS

o] 00000
o] 0000000
[e]e]e} 000000000
0000 000000
(o]
Monads for Effect
10 Monad

e “The One-stop Sin Bin"
e Contains all sorts of goodies:

Mutable references

Multiple threads and thread-safe mutable references

StableNames,

Exception catching,
Files, Sockets, X11,

EFFECTS
[e]

[e]

000

00

NEXT

META

Misc MONADS EFFECTS
o 00000 o
o 0000000 o
000 000000000 0e0
0000 000000 00

(o]

Monads for Effect
10 Monad

(With apologies to The Matrix, http://matrix.wikia.com)

NEXT

http://matrix.wikia.com

META MIsc MONADS EFFECTS
o 00000 o

[e] 0000000 o
000 000000000 ocoe
0000 000000 (o]e}

(o]

Monads for Effect
10 Monad

e OK, it's not so bad as all that.
e Functions which do 10 can

e interrogate the real world
e make changes to the real world

NEXT

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 o
000 000000000 ocoe
0000 000000 (o]e}

(o]

Monads for Effect
10 Monad

e OK, it's not so bad as all that.
e Functions which do 10 can

e interrogate the real world
e make changes to the real world

e 10 is (essentially) State RealWorld.

e Without get and put.
e With other functions instead.

5/48

META

MIsc MONADS EFFECTS

o] 00000 [e]
o] 0000000 [e]
[e]e]e} 000000000 000
0000 000000 [Je]
(o]
Monads for Effect

Revisiting Hello World

e Remember this?

HelloWorld.hs

main = putStrLn "Hello, World"

Well

*Main> :type main
main :: I0 ()

e Change to real world: “Hello, World!" now on screen.

NEXT

META MIsc MONADS EFFECTS NEXT

[e] 00000 ()

[e] 0000000 ()
000 000000000 000
0000 000000 oce

(o]

Monads for Effect
Revisiting Hello World

e No safe way to “run |O and get the result” in pure code.
e With good reason!
¢ 1/O can see the order of execution.

e Lazy, pure code is supposed to be independent of
evaluation order!

e (We can talk about “benign effects” later.)
e Type of entire Haskell program is 10 ():

e An 1/O computation being run entirely for its effects.

7/48

META

MIsc MONADS EFFECTS

o] 00000 o]
o] 0000000 o]
000 000000000 000
0000 000000 00
o
Next time

e More on Monads and Effects

e More on I/O in particular
e Programming with 10 actions.
e Brain teaser for next time:

NEXT

twice a = a >> a
main = twice (putStrLn "Hello, World")

e Monads Atop Monads (“Monad Transformers”)

8

META

Bib

Misc MONADS EFFECTS
o 00000 o

[e] 0000000 ()
000 000000000 000
0000 000000 (o]e}

(o]

Available from: http://courses.cms.caltech.edu/
csll/material/haskell/index.html.

Haskell weekly news: Issue 149.
Available from: http://www.haskell.org/pipermail/
haskell-cafe/2010-February/072986.html.

Monads are trees with grafting, 2010.
Available from: http://blog.sigfpe.com/2010/01/
monads-are-trees-with-grafting.html.

Hal Daumé II.

Yet another haskell tutorial.

2002—-2006.

Available from: http://www.cs.utah.edu/~hal/htut/.

http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://www.haskell.org/pipermail/haskell-cafe/2010-February/072986.html
http://www.haskell.org/pipermail/haskell-cafe/2010-February/072986.html
http://blog.sigfpe.com/2010/01/monads-are-trees-with-grafting.html
http://blog.sigfpe.com/2010/01/monads-are-trees-with-grafting.html
http://www.cs.utah.edu/~hal/htut/

META Misc MONADS EFFECTS NEXT
o 00000 o

o] 0000000 [e]
[e]e]e} 000000000 000
0000 000000 00
(o]
[James Iry.

A brief, incomplete, and mostly wrong history of
programming languages, May 2009.

Available from: http://james-iry.blogspot.com/
2009/05/brief-incomplete-and-mostly-wrong.
html.

[4 Saunders Mac Lane.
Categories for the Working Mathematician.
Springer, 1998.

[Mirian Lipovaca.
Learn You A Haskell For Great Good!
No Starch Press, April 2011.
Available from: http://learnyouahaskell.com/.

18 /48

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://learnyouahaskell.com/

	Metadata
	More Intro Stuff
	Another Word On Laziness
	Deriving Instances
	Records
	Type Aliases and Newtypes

	Enter: Monads
	Computations Which Might Abort
	Environments
	Keeping Counts
	Monads For Real
	Do Notation

	Monads for Effect
	What, exactly, are effects?
	A Historical Parenthetical
	IO Monad
	Revisiting Hello World

	Next time

