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What does it mean to be lazy?

This is your instructor being lazy.

Any questions?
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What does it mean to be lazy?

� Consider this Java function call:

System.out.println("foo"+"bar");

� What happens?

� I mean, what really happens?
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What does it mean to be lazy?

� How about this?

public int explode() {

throw new RuntimeException("Kablooie");

}

/* ... */

System.out.println(explode());

� What happens?

� I mean, what really happens?

� Is System.out.println in the stack trace?

� Important: exceptions let us see evaluation order.
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What does it mean to be lazy?

� Eager (strict, call-by-value) languages evaluate
arguments first.

� That is, to call a function, the caller evaluates all the
arguments (in some order) and then calls the function
with the results.

� Non-strict languages leave it to the callee to evaluate
their arguments, if they need them.

� Which means they might not.
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What does it mean to be lazy?

� Consider a Haskell function like

cube x = x * x * x

� Suppose I call cube (10+3).

� How many additions will the system perform?
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What does it mean to be lazy?

� Consider a Haskell function like

cube x = x * x * x

� Suppose I call cube (10+3).

� How many additions will the system perform?

� A subtle point of distinction between call-by-name and
call-by-need languages.

� Haskell is call-by-need:

� Only one addition performed.
� The first need computes the value and overwrites the

passed-in expression (called a thunk).

6 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

Blowing Up in Haskell

� Haskell has (relatively fancy) exceptions.

� Because exceptions let us see evaluation order,

� Exceptions cannot be caught in pure code.

� But that doesn’t stop us from throwing them.

� The easiest way to blow up is

error :: String -> a

� Isn’t that an odd type?
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What does it mean to be lazy?

Weak Head Normal Form

� Haskell evaluates as little as possible.

� Consider the expression

case (error "Bang", 3) of (_,x) -> x

� If I evaluate this expression, what pieces got evaluated?
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What does it mean to be lazy?

Weak Head Normal Form

� Haskell evaluation successively expands thunks into
WHNFs, which contain pointers to other thunks.

� The full normal form is reached once there are no more
thunks in a chunk of data.

� Consider evaluating (1,"Hi"):

[THUNK]

([THUNK], [THUNK])

(1, [THUNK])

(1, ’H’:[THUNK])

(1, ’H’:’i’:[THUNK])

(1, ’H’:’i’:[])
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Why might laziness be good?

� Lazy evaluation can do everything strict evaluation can.

� And more:

� Improves compositionality of programs.
� Reason about some control flow as data dependence.
� Lets us write infinite definitions.
� Enables (amortized) efficient persistent data structures

(See Okasaki, e.g. “Purely Functional Data Structures”
[2]).

� Clever tricks for automated reasoning (e.g.
LazySmallCheck).

� Longer, worked examples in Hughes’ “Why Functional
Programming Matters” [1].
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Going with the flow

� Consider the definition of (&&):

True && x = x

False && _ = False

� If the left argument is True, then think about the right
argument.

� If the left argument is False, return False.

� This is called Short-circuit evaluation.
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Going with the flow

� Recall and = foldr (&&) True

� Consider and [True,False,error "stop"].

� Some equational reasoning is in order:

and [True,False,error "stop"]

foldr (&&) True [True,False,error "stop"]

foldr (&&) True [True,False,error "stop"]

True && (foldr (&&) True [False,error "stop"])

foldr (&&) True [False,error "stop"]

False && (foldr (&&) True [error "stop"])

False

� Lazy evaluation means that short-circuiting behavior
persists through composition.
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Dynamic Programming

Immutable Arrays

� Haskell has, among other forms, immutable non-strict
arrays, available in Data.Array module.

� What does such a thing look like?
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Dynamic Programming

Immutable Arrays

� Arrays are indexed by “Ix”-able types:

class (Ord a) => Ix a where

range :: (a, a) -> [a]

index :: (a, a) -> a -> Int

{- ... -}

� Usual suspects: Int, Integer, Char,

� More interesting: pairs, triples, quads, quintuples,

� Seemingly screwy: Ordering, Bool, ()
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Dynamic Programming

Immutable Arrays

� Build one with this odd-looking function:

array :: Ix i => (i,i) -> [(i,e)] -> Array i e

� Takes bounds and an association list.

� Or maybe this one:

listArray :: Ix i => (i,i) -> [e] -> Array i e
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Dynamic Programming

Immutable Arrays

� Index one with the (!) operator:

(!) :: (Ix i) => Array i e -> i -> e

test = (listArray (0,4) "abcde") ! 3

� Update an array (inefficient):

(//) :: Ix i => Array i e

-> [(i, e)] -> Array i e

test = (listArray (0,4) "abcde" // [(3,’x’)])

! 3
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Dynamic Programming

Dynamic Programming

� Dynamic Programming means

� Recursive problem decomposition
� Memoization of subproblems

� Consider Fibonacci numbers. Natural recursive definition:

ExpensiveFib.hs

fib 0 = 1

fib 1 = 1

fib n | n >= 2 = fib (n-1) + fib (n-2)

fib _ = error "negative fib"

� Slow to evaluate directly.
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Dynamic Programming

Dynamic Programming

� Slow to evaluate directly:

fib 5

fib 4 + fib 3

(fib 3 + fib 2) + (fib 2 + fib 1)

((fib 2 + fib 1) + (fib 1 + fib 0))

+ ((fib 1 + fib 0) + fib 1)

(((fib 1 + fib 0) + fib 1) + (fib 1 + fib 0))

+ ((fib 1 + fib 0) + fib 1)
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Dynamic Programming

Dynamic Programming

� Better: for all n, compute fib n only once!

� How?
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Dynamic Programming

Dynamic Programming

� Better: for all n, compute fib n only once!

� How?

� One possible way would be

FibsArray.hs

import Data.Array

fib n | n >= 0 = let

fibsN = listArray (0,n)

(1:1:map fibDefn [2..n])

fibDefn n = (fibsN ! (n - 1))

+ (fibsN ! (n - 2))

in fibsN ! n
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Dynamic Programming

Dynamic Programming

� One possible way would be

FibsArray.hs

import Data.Array

fib n | n >= 0 = let

fibsN = listArray (0,n)

(1:1:map fibDefn [2..n])

fibDefn n = (fibsN ! (n - 1))

+ (fibsN ! (n - 2))

in fibsN ! n

� Builds an array of thunks which all have references to the
array.
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To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� What would a strict language do?

� What does Haskell do?

� Think about WHNF!
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To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� What would a strict language do?

� What does Haskell do?

� Think about WHNF!

� Function in the standard library: zeros = repeat 0
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To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� OK, that’s nice; can I see the list?
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To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� OK, that’s nice; can I see the list?

� Well you could ask GHCi to show it...
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To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� OK, that’s nice; can I see the list?

� Well you could ask GHCi to show it...

� If you just did that, hit Control-C.
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To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� OK, that’s nice; can I see the list?

� Well you could ask GHCi to show it...

� If you just did that, hit Control-C.

� Try this: take 10 zeros.
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To Infinity. . .

Eating Your Own Tail

� List of all natural numbers?
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To Infinity. . .

Eating Your Own Tail

� List of all natural numbers?

� nats = 0 : map (+1) nats

23 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� List of all natural numbers?

� nats = 0 : map (+1) nats

� Again, standard library function

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

nats = iterate (+1) 0

� In fact, since Ints are Enumable, new syntax:
nats = [0..].
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To Infinity. . .

Frame Shifts Aren’t Always Bad

� A very useful function:

zip :: [a] -> [b] -> [(a,b)]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zip = zipWith (\a b -> (a,b))

= zipWith (,)

� Some examples:

Prelude> zip [0..4] [1..5]

[(0,1),(1,2),(2,3),(3,4),(4,5)]

Prelude> zipWith (+) [0..4] [1..5]

[1,3,5,7,9]
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To Infinity. . .

Frame Shifts Aren’t Always Bad

� Even works on infinite lists:

Prelude> take 5 $ zipWith (+) [0..] [0..]

[0,2,4,6,8]
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To Infinity. . .

Frame Shifts Aren’t Always Bad

� Even works on infinite lists:

Prelude> take 5 $ zipWith (+) [0..] [0..]

[0,2,4,6,8]

� Another definition of fibs:

fibs = 1 : 1 : (zipWith (+) fibs (tail fibs))

fib n = fibs !! n

� Draw the thunks!

25 / 26



Lazy? Use Flow DP ∞ Next

Next time

� Effects in a lazy system, or “How I Learned to Stop
Worrying and Love Monads”:

� I/O
� Mutation
� Exceptional control flow
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