
Lazy? Use Flow DP ∞ Next

Fun With Haskell: The Benefits of

Being Lazy

Nathaniel Wesley Filardo

January 11, 2012

1 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

This is your instructor being lazy.

Any questions?

2 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

� Consider this Java function call:

System.out.println("foo"+"bar");

� What happens?

� I mean, what really happens?

3 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

� How about this?

public int explode() {

throw new RuntimeException("Kablooie");

}

/* ... */

System.out.println(explode());

� What happens?

� I mean, what really happens?

� Is System.out.println in the stack trace?

� Important: exceptions let us see evaluation order.

4 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

� Eager (strict, call-by-value) languages evaluate
arguments first.

� That is, to call a function, the caller evaluates all the
arguments (in some order) and then calls the function
with the results.

� Non-strict languages leave it to the callee to evaluate
their arguments, if they need them.

� Which means they might not.

5 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

� Consider a Haskell function like

cube x = x * x * x

� Suppose I call cube (10+3).

� How many additions will the system perform?

6 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

� Consider a Haskell function like

cube x = x * x * x

� Suppose I call cube (10+3).

� How many additions will the system perform?

� A subtle point of distinction between call-by-name and
call-by-need languages.

� Haskell is call-by-need:

� Only one addition performed.
� The first need computes the value and overwrites the

passed-in expression (called a thunk).

6 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

Blowing Up in Haskell

� Haskell has (relatively fancy) exceptions.

� Because exceptions let us see evaluation order,

� Exceptions cannot be caught in pure code.

� But that doesn’t stop us from throwing them.

� The easiest way to blow up is

error :: String -> a

� Isn’t that an odd type?

7 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

Weak Head Normal Form

� Haskell evaluates as little as possible.

� Consider the expression

case (error "Bang", 3) of (_,x) -> x

� If I evaluate this expression, what pieces got evaluated?

8 / 26



Lazy? Use Flow DP ∞ Next

What does it mean to be lazy?

Weak Head Normal Form

� Haskell evaluation successively expands thunks into
WHNFs, which contain pointers to other thunks.

� The full normal form is reached once there are no more
thunks in a chunk of data.

� Consider evaluating (1,"Hi"):

[THUNK]

([THUNK], [THUNK])

(1, [THUNK])

(1, ’H’:[THUNK])

(1, ’H’:’i’:[THUNK])

(1, ’H’:’i’:[])

9 / 26



Lazy? Use Flow DP ∞ Next

Why might laziness be good?

� Lazy evaluation can do everything strict evaluation can.

� And more:

� Improves compositionality of programs.
� Reason about some control flow as data dependence.
� Lets us write infinite definitions.
� Enables (amortized) efficient persistent data structures

(See Okasaki, e.g. “Purely Functional Data Structures”
[2]).

� Clever tricks for automated reasoning (e.g.
LazySmallCheck).

� Longer, worked examples in Hughes’ “Why Functional
Programming Matters” [1].

10 / 26



Lazy? Use Flow DP ∞ Next

Going with the flow

� Consider the definition of (&&):

True && x = x

False && _ = False

� If the left argument is True, then think about the right
argument.

� If the left argument is False, return False.

� This is called Short-circuit evaluation.

11 / 26



Lazy? Use Flow DP ∞ Next

Going with the flow

� Recall and = foldr (&&) True

� Consider and [True,False,error "stop"].

� Some equational reasoning is in order:

and [True,False,error "stop"]

foldr (&&) True [True,False,error "stop"]

foldr (&&) True [True,False,error "stop"]

True && (foldr (&&) True [False,error "stop"])

foldr (&&) True [False,error "stop"]

False && (foldr (&&) True [error "stop"])

False

� Lazy evaluation means that short-circuiting behavior
persists through composition.

12 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Immutable Arrays

� Haskell has, among other forms, immutable non-strict
arrays, available in Data.Array module.

� What does such a thing look like?

13 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Immutable Arrays

� Arrays are indexed by “Ix”-able types:

class (Ord a) => Ix a where

range :: (a, a) -> [a]

index :: (a, a) -> a -> Int

{- ... -}

� Usual suspects: Int, Integer, Char,

� More interesting: pairs, triples, quads, quintuples,

� Seemingly screwy: Ordering, Bool, ()

14 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Immutable Arrays

� Build one with this odd-looking function:

array :: Ix i => (i,i) -> [(i,e)] -> Array i e

� Takes bounds and an association list.

� Or maybe this one:

listArray :: Ix i => (i,i) -> [e] -> Array i e

15 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Immutable Arrays

� Index one with the (!) operator:

(!) :: (Ix i) => Array i e -> i -> e

test = (listArray (0,4) "abcde") ! 3

� Update an array (inefficient):

(//) :: Ix i => Array i e

-> [(i, e)] -> Array i e

test = (listArray (0,4) "abcde" // [(3,’x’)])

! 3

16 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Dynamic Programming

� Dynamic Programming means

� Recursive problem decomposition
� Memoization of subproblems

� Consider Fibonacci numbers. Natural recursive definition:

ExpensiveFib.hs

fib 0 = 1

fib 1 = 1

fib n | n >= 2 = fib (n-1) + fib (n-2)

fib _ = error "negative fib"

� Slow to evaluate directly.

17 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Dynamic Programming

� Slow to evaluate directly:

fib 5

fib 4 + fib 3

(fib 3 + fib 2) + (fib 2 + fib 1)

((fib 2 + fib 1) + (fib 1 + fib 0))

+ ((fib 1 + fib 0) + fib 1)

(((fib 1 + fib 0) + fib 1) + (fib 1 + fib 0))

+ ((fib 1 + fib 0) + fib 1)

18 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Dynamic Programming

� Better: for all n, compute fib n only once!

� How?

19 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Dynamic Programming

� Better: for all n, compute fib n only once!

� How?

� One possible way would be

FibsArray.hs

import Data.Array

fib n | n >= 0 = let

fibsN = listArray (0,n)

(1:1:map fibDefn [2..n])

fibDefn n = (fibsN ! (n - 1))

+ (fibsN ! (n - 2))

in fibsN ! n

19 / 26



Lazy? Use Flow DP ∞ Next

Dynamic Programming

Dynamic Programming

� One possible way would be

FibsArray.hs

import Data.Array

fib n | n >= 0 = let

fibsN = listArray (0,n)

(1:1:map fibDefn [2..n])

fibDefn n = (fibsN ! (n - 1))

+ (fibsN ! (n - 2))

in fibsN ! n

� Builds an array of thunks which all have references to the
array.

20 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� What would a strict language do?

� What does Haskell do?

� Think about WHNF!

21 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� What would a strict language do?

� What does Haskell do?

� Think about WHNF!

� Function in the standard library: zeros = repeat 0

21 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� OK, that’s nice; can I see the list?

22 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� OK, that’s nice; can I see the list?

� Well you could ask GHCi to show it...

22 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� OK, that’s nice; can I see the list?

� Well you could ask GHCi to show it...

� If you just did that, hit Control-C.

22 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� Let’s define an infinitely long list of zeros:

Prelude> let zeros = 0 : zeros

� OK, that’s nice; can I see the list?

� Well you could ask GHCi to show it...

� If you just did that, hit Control-C.

� Try this: take 10 zeros.

22 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� List of all natural numbers?

23 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� List of all natural numbers?

� nats = 0 : map (+1) nats

23 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Eating Your Own Tail

� List of all natural numbers?

� nats = 0 : map (+1) nats

� Again, standard library function

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

nats = iterate (+1) 0

� In fact, since Ints are Enumable, new syntax:
nats = [0..].

23 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Frame Shifts Aren’t Always Bad

� A very useful function:

zip :: [a] -> [b] -> [(a,b)]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zip = zipWith (\a b -> (a,b))

= zipWith (,)

� Some examples:

Prelude> zip [0..4] [1..5]

[(0,1),(1,2),(2,3),(3,4),(4,5)]

Prelude> zipWith (+) [0..4] [1..5]

[1,3,5,7,9]

24 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Frame Shifts Aren’t Always Bad

� Even works on infinite lists:

Prelude> take 5 $ zipWith (+) [0..] [0..]

[0,2,4,6,8]

25 / 26



Lazy? Use Flow DP ∞ Next

To Infinity. . .

Frame Shifts Aren’t Always Bad

� Even works on infinite lists:

Prelude> take 5 $ zipWith (+) [0..] [0..]

[0,2,4,6,8]

� Another definition of fibs:

fibs = 1 : 1 : (zipWith (+) fibs (tail fibs))

fib n = fibs !! n

� Draw the thunks!

25 / 26



Lazy? Use Flow DP ∞ Next

Next time

� Effects in a lazy system, or “How I Learned to Stop
Worrying and Love Monads”:

� I/O
� Mutation
� Exceptional control flow

26 / 26



Lazy? Use Flow DP ∞ Next

Bib

J. Hughes.
Why Functional Programming Matters.
Computer Journal, 32(2):98–107, 1989.

Chris Okasaki.
Purely Functional Data Structures.
Cambridge University Press, 1998.

26 / 26


	What does it mean to be lazy?
	Blowing Up in Haskell
	Weak Head Normal Form

	Why might laziness be good?
	Going with the flow
	Dynamic Programming
	Immutable Arrays
	Dynamic Programming

	To Infinity…
	Eating Your Own Tail
	Frame Shifts Aren't Always Bad

	Next time

