Rigid Tree Automata With Isolation

Nathaniel Wesley Filardo and Jason Eisner

May 9, 2017

Introduction

We want to analyse Prolog-style programs.
» We're designing a programming language in that school.
Use cases we want to consider:

» Efficient storage of recursive structures with equalities
inside. (e.g., [(A,A),(B,B),...] stored as [A,B,...].)

» Improved analysis through recursive structures with
equality. (e.g., track aliases into and out of lists)

Review of Rigid Tree Automata

RTA (Jacquemard et al., 2011) are like regular automata
» Set of states Q, Qr € Q “final” states,
» Transition rules of the form £(q1,...,¢,) = qo
but impose global equality constraints:
» Add “rigid states” Qr € Q.
» A run is accepted iff

» All transitions are permitted (as with regular TAs)

» The root is annotated with a final state (ditto)

» For each rigid state g € QR, all nodes annotated with g
dominate equal trees.

Review of Rigid Tree Automata
Example of RTA (but non-TAC+) language:
» trees over ranked alphabet {f/2,g/2,h/2,s/1,2/0,b/0},

» where all g-dominated trees are equal (so, too, h).

f® Q:{tvgab}ual::{t}
T Qr ={g,b}
40)) f®
/\

Sg\a({) f® h(H)
a® 40 s® b® a® a() >t
VN b{) >t
s® a® h® s{q) > t|qe@
| N (g1, q2) > t| g€ Q
a® b® a® g{q1,q) ~> 9] qie@

h(qi,q) > b|qgie@

Review of Rigid Tree Automata
Example of RTA (but non-TAC+) language:
» trees over ranked alphabet {f/2,g/2,h/2,s/1,2/0,b/0},

» where all g-dominated trees are equal (so, too, h).

f® Q: {t7gvh}7QF = {t}
QR = {g7h}
30 f®
o N 0 10
a® NG s® _|b® a® a() -t
N b{) ~ ¢
s® a® | hd s(q) >t|qe@
| N g, q) > t] g€ @
a® b® a® g(q,) >0 qieq

h(g1,q2) > b | qieQ

Review of Rigid Tree Automata

Finitely many rigid states means no ability to capture
languages like...

> {[]7 [p<n17 nl)]v [p(nla n1>7p<n27 n2)]’"' | n;j € Ln}
> {[]7['717”1]7[nlanlan2an2]>"'|nIELn}
with L, regular and |L,| = oo.

» For finite L,,, can absorb equalities into the state space.

Isolation

Isolating RTA adds controlled reuse of rigid states:

» New rule form: £(q1,...,qn) EN go with | € QR.
» Each g €/ is “forgotten” when traversing this rule.

» Two trees annotated with the same rigid state must be equal,
unless the path between them has an isolation of that state.

» | = & everywhere: RTA.

Isolation

Positive Examples
Lists of equal pairs:

{[]a [p<n17 n1>]7 [p<n1, nl)vp(n27 n2>]7"' | nj € N}

Q={n,n' p t}
Qr={t} Qr={n'}

Isolation

Positive Examples
Not limited to “arms length”:
L={#,t(nl,n)y|leL neN}

Q={nn' t}
Qr={t} Qr={n'}

Isolation

Positive Examples
Can mix isolated and non-isolated states:

{[]a [p(no, ny, nl)]? [p(no, ny, n1>,p<no, nz, n2)]>"' | ni € N}:
Q={n,n',n" pt}
Qr={t} Qr={n".n"}

Isolation

Negative Examples

No IRTA for TAC+ language L={[n,n-1,...,0] | ne N},

» Claimed IRTA with k states?
» Take n = k. ////\\\\
s cogs
T
s S cons
K A
s S s cons
I 2N
s S s s cons
I N BN
z z z z z nil

Isolation

Negative Examples

No IRTA for TAC+ language L={[n,n-1,...,0] | ne N},

: . cons
» Claimed IRTA with k states? /\
» Take n= k.
_ S cons
» Pigeonhole: at least one Peano ‘ /
node's state g is reused for a s@ s cons

different tree. L A

Isolation

Negative Examples

No IRTA for TAC+ language L={[n,n-1,...,0] | ne N},

» Claimed IRTA with k states? K
» Take n= k.
_ S cons
» Pigeonhole: at least one Peano ‘ /
node's state g is reused for a
s@ s cons

different tree. L A

» Smallest such node v dominates
states used for only one tree
throughout the run!

» Obey any rigidity constraints.

Isolation

Negative Examples

No IRTA for TAC+ language L={[n,n-1,...,0] | ne N},

» Claimed IRTA with k states?
» Take n= k. /\
» Pigeonhole: at least one Peano
node's state g is reused for a
different tree. P
» Smallest such node v dominates

states used for only one tree
throughout the run!

» Obey any rigidity constraints.

» Substitute v in for all g:
accepted, ¢ L. - o

Isolation

Pumping Lemma

RTA pumping lemma:

£ » Each g € Qg at most once on root-leaf path.
— > Root-leaf path of length (|Q| +1)|Qr| has
~ Ssub-path with
Afz % . pno rigid states within, and
f3 % » equal (non-rigid) terminal state ¢~
3 » Can pump there and rewrite nodes above.
‘% - » There may be rigid states above and as

cousins of the pumping site.

» Isolation allows g € Qgr many times on a root-leaf path!
» Need new construction!

Isolation

Pumping Lemma

First: rewriting [t q/M]
» Input: run on tree t in state g, runs on rigid states M.

» Runs within M must be compatible
» M need not contain all rigid states

» Output: new tree t’ and run on t’ in state g.

» Simple top-down replacement for RTA:

gin M:[t q/{g—t,...}]~tq
Otherwise :[£(t; g1,...) go/M] ~ £{[t1 g1/M],...) qo

Isolation

Pumping Lemma

Root-leaf path of length |Q|- 29l + 1: somewhere here-on, a
state g will be reused with the same set of rigid states in

scope.
taller tree original tree shorter tree
PR P PR
B rewrite r’ as r”’ B rewrite r’ as r "B
£ (q.r") £ (q,r) |2 £ (q.r)
rewrite r as r’ N
D’ - D 2 A
t' (q,r") t(qr) | L
copy copy
A
t(q,r)
cop
A / r and r’ have

identical support

|solation
Emptiness Testing

Emptiness of an ((I)R)TA is P-time by witness search:

» Loop while 3 g* un-witnessed s.t. 3 a rule £(q1,...,qx) > g*
s.t. V; g; witnessed.

» Use g; witnesses and rule to build g* witness.

» Iff, when the loop terminates, any g € QF is witnessed, the
automaton accepts at least one tree (g's witness).

This algorithm ...
» generates state-acyclic witnesses: work for any Qr € @, any /.
» does not really use the witnesses; could just use bits.
For every IRTA A, RTA A’ sets | = & everywhere:
» L(A) S L(A)
» LIA) =g = L(A) =2.

Isolation

Boolean Closure

» IRTA trivially closed under union, by nondeterminism.
» IRTA not closed under intersection.
» Construct a family of machines whose intersection is traces of
2-counter machines’ halting runs. (As per TATA, thm 4.4.7)
» Deciding emptiness of intersection thus Turing-complete.
» IRTA have trivial emptiness test; not able to represent
intersection.

» Conjectured not to be closed under complementation.

» Lacking a proof at the moment
» The RTA proof uses balanced binary trees, which are
IRTA-recognizable.

Future Work: Isolated Rigid Tree Set Automata

We want to analyse Prolog-style programs.
» Type analysis:
» tracks domains of variables (upper-bound answer sets).
» uses sets of trees, e.g., tree automata.
(X)) i g(X,) ,h(Y):
» intersect domains of uses of Y,
» Domain of X is narrowed by above intersection.

» Domain of X is a subset of upper bound of f’s first
argument'’s domain.

Future Work: Isolated Rigid Tree Set Automata

We want to analyse Prolog-style programs.

» Type-aware mode analysis
» tracks instantiatedness of partial answers (shape and
domains).

» Extremes: ground term, free variable (over some domain).
» Usually: bound structure (shape) over free variables.

» needs sets of sets of trees.

» YE(X) - g(X,Y) ,h(YD":
» “Can rule run if X is (not) bound in the call to £/1?"
» “Given variable instantiations, what subgoals are callable

(and what is their effect on instantiations)?”

» Answer questions using abstract unification:

TlQTQdZEf{TlﬂT2|T,'E T,}

Future Work: Isolated Rigid Tree Set Automata

» Automata framework great for sets of trees; generalize?
» Existing TSA unsuitable
» Notably, cannot recognize sets of singleton sets.

» New (yes?) framework time!

Future Work: Isolated Rigid Tree Set Automata

New mechanism for describing n-nested sets of trees.
» Consider first a regular framework, no constraints.
» Partiton states Q by nesting level: Q =U?; Q;.
» Base case constructors for moving from level k to k + 1:
FREEq > q' = L(q) € L(q")
GROUND G = q' = Vaer(q{a}eL(q)
SUBG—>q = Vgeacr(q€L(q)
» Recursive constructor is product former of equal-level states:

BOUND f (g, .., qk) = qo- Defined on...
» trees: BOUND £ (t1,...,t) < £(t1,..., ty)
» sets: BOUND £ (71,...,7) < {BOUND £ (t1,..., tc) | tj € 77}
» states: BOUND £ (q1,...,qk) = qo

= BOUNDE(L(q1),...,L(qk)) < L(q0)

Future Work: Isolated Rigid Tree Set Automata

Generalise to rigidity:
» A state of any level may be rigid.
» expands in only one way in a run

» Level-1: equalities within terms inside sets (~ data variables).

> {{£(t. t) | teT}} = L(qr) if gr € Qr, L(g7) =T and
BOUND £ (qr, gr) = g, FREE gt — GF.

» Level-2: equalities of sets, maybe not terms (~ type var).

» {{f(t1,) |tieT}|TeT}=L(qge) if gT € Qr, L(gT)=T
and BOUND £ (g7, 97) = gF-
» Level-1 isolated during move to level-2:
> {{£(t. 1)} [teT}=L(qr) if gr € Qr, L(gr) =7, and
BOUND £ (gr, gr) = gf, GROUND gs Harh, grF.

End result (?): a unified framework for abstract unification.

Questions?

	Introduction
	Review of Rigid Tree Automata
	Isolation
	Positive Examples
	Negative Examples
	Pumping Lemma
	Emptiness Testing
	Boolean Closure

	Future Work: Isolated Rigid Tree Set Automata

