
Rigid Tree Automata With Isolation

Nathaniel Wesley Filardo and Jason Eisner

May 9, 2017



Introduction

We want to analyse Prolog-style programs.

▸ We’re designing a programming language in that school.

Use cases we want to consider:

▸ Efficient storage of recursive structures with equalities
inside. (e.g., [(A,A),(B,B),...] stored as [A,B,...].)

▸ Improved analysis through recursive structures with
equality. (e.g., track aliases into and out of lists)



Review of Rigid Tree Automata

RTA (Jacquemard et al., 2011) are like regular automata

▸ Set of states Q, QF ⊆ Q “final” states,

▸ Transition rules of the form f⟨q1, . . . ,qn⟩ → q0

but impose global equality constraints:

▸ Add “rigid states” QR ⊆ Q.

▸ A run is accepted iff
▸ All transitions are permitted (as with regular TAs)
▸ The root is annotated with a final state (ditto)
▸ For each rigid state q ∈ QR, all nodes annotated with q

dominate equal trees.



Review of Rigid Tree Automata
Example of RTA (but non-TAC+) language:

▸ trees over ranked alphabet {f/2,g/2,h/2,s/1,a/0,b/0},

▸ where all g-dominated trees are equal (so, too, h).

f

f

h

ab

f

s

h

ab

g

as

a

g

as

a t

t

t

t

t

t

t

t

t

t

tt

t

t

g

g

h

h

Q = {t,g,h},QF = {t}
QR = {g,h}

a⟨⟩ → t

b⟨⟩ → t

s⟨q⟩ → t ∣ q ∈ Q
f⟨q1,q2⟩ → t ∣ qi ∈ Q
g⟨q1,q2⟩ → g ∣ qi ∈ Q
h⟨q1,q2⟩ → h ∣ qi ∈ Q



Review of Rigid Tree Automata
Example of RTA (but non-TAC+) language:

▸ trees over ranked alphabet {f/2,g/2,h/2,s/1,a/0,b/0},

▸ where all g-dominated trees are equal (so, too, h).

f

f

h

ab

f

s

h

ab

g

as

a

g

as

a t

t

t

t

t

t

t

t

t

t

tt

t

t

g

g

h

h

Q = {t,g,h},QF = {t}
QR = {g,h}

a⟨⟩ → t

b⟨⟩ → t

s⟨q⟩ → t ∣ q ∈ Q
f⟨q1,q2⟩ → t ∣ qi ∈ Q
g⟨q1,q2⟩ → g ∣ qi ∈ Q
h⟨q1,q2⟩ → h ∣ qi ∈ Q

=
=



Review of Rigid Tree Automata

Finitely many rigid states means no ability to capture
languages like...

▸ {[], [p⟨n1,n1⟩], [p⟨n1,n1⟩,p⟨n2,n2⟩],⋯ ∣ ni ∈ Ln}
▸ {[], [n1,n1], [n1,n1,n2,n2],⋯ ∣ ni ∈ Ln}

with Ln regular and ∣Ln∣ = ∞.

▸ For finite Ln, can absorb equalities into the state space.



Isolation

Isolating RTA adds controlled reuse of rigid states:

▸ New rule form: f⟨q1, . . . ,qn⟩
!IÐ→ q0 with I ⊆ QR.

▸ Each q ∈ I is “forgotten” when traversing this rule.
▸ Two trees annotated with the same rigid state must be equal,

unless the path between them has an isolation of that state.

▸ I = ∅ everywhere: RTA.



Isolation
Positive Examples

Lists of equal pairs:
{[], [p⟨n1,n1⟩], [p⟨n1,n1⟩,p⟨n2,n2⟩],⋯ ∣ ni ∈ N}

Q = {n,n′,p, t}
QF = {t} QR = {n′}

z⟨⟩ → {n,n′}
s⟨n⟩ → {n,n′}
nil⟨⟩ → t

cons⟨p, t⟩ → t

p⟨n′,n′⟩ !{n′}ÐÐ→ p

cons

cons

nilp

zz

p

s

z

s

z

t

t

t

p

pn′ n′

n′ n′n n

n′

n′



Isolation
Positive Examples

Not limited to “arms length”:
L = {#,t⟨n, l ,n⟩ ∣ l ∈ L,n ∈ N}

Q = {n,n′, t}
QF = {t} QR = {n′}

z⟨⟩ → {n,n′}
s⟨n⟩ → {n,n′}
#⟨⟩ → t

t⟨n′, t,n′⟩ !{n′}ÐÐ→ t

t

s

s

z

t

zt

z#z

z

s

s

z n

n

n

n

n′ n′

n′ n′

n′ n′

n′

n′

n′



Isolation
Positive Examples

Can mix isolated and non-isolated states:
{[], [p⟨n0,n1,n1⟩], [p⟨n0,n1,n1⟩,p⟨n0,n2,n2⟩],⋯ ∣ ni ∈ N}:

Q = {n,n′,n′′,p, t}
QF = {t} QR = {n′,n′′}

z⟨⟩ → {n,n′,n′′}
s⟨n⟩ → {n,n′,n′′}
nil⟨⟩ → t

cons⟨p, t⟩ → t

p⟨n′′,n′,n′⟩ !{n′}ÐÐ→ p

cons

cons

nilp

zzs

⋮

p

s

⋮

s

⋮

s

⋮

t

t

t

p

pn′ n′

n′ n′

n′′

n′′

n′

n′



Isolation
Negative Examples

No IRTA for TAC+ language L = {[n,n − 1, . . . ,0] ∣ n ∈ N}.

▸ Claimed IRTA with k states?
▸ Take n = k .

▸ Pigeonhole: at least one Peano
node’s state q is reused for a
different tree.

▸ Smallest such node ν dominates
states used for only one tree
throughout the run!

▸ Obey any rigidity constraints.

▸ Substitute ν in for all q:
accepted, /∈ L.

cons

cons

cons

cons

cons

nilz

s

z

s

s

z

s

s

s

z

s

s

s

s

z

k

k + 1



Isolation
Negative Examples

No IRTA for TAC+ language L = {[n,n − 1, . . . ,0] ∣ n ∈ N}.

▸ Claimed IRTA with k states?
▸ Take n = k .

▸ Pigeonhole: at least one Peano
node’s state q is reused for a
different tree.

▸ Smallest such node ν dominates
states used for only one tree
throughout the run!

▸ Obey any rigidity constraints.

▸ Substitute ν in for all q:
accepted, /∈ L.

cons

cons

cons

cons

cons

nilz

s

z

s

s

z

s

s

s

z

s

s

s

s

z

k

k + 1

q

q



Isolation
Negative Examples

No IRTA for TAC+ language L = {[n,n − 1, . . . ,0] ∣ n ∈ N}.

▸ Claimed IRTA with k states?
▸ Take n = k .

▸ Pigeonhole: at least one Peano
node’s state q is reused for a
different tree.

▸ Smallest such node ν dominates
states used for only one tree
throughout the run!

▸ Obey any rigidity constraints.

▸ Substitute ν in for all q:
accepted, /∈ L.

cons

cons

cons

cons

cons

nilz

s

z

s

s

z

s

s

s

z

s

s

s

s

z

k

k + 1

ν
q

q



Isolation
Negative Examples

No IRTA for TAC+ language L = {[n,n − 1, . . . ,0] ∣ n ∈ N}.

▸ Claimed IRTA with k states?
▸ Take n = k .

▸ Pigeonhole: at least one Peano
node’s state q is reused for a
different tree.

▸ Smallest such node ν dominates
states used for only one tree
throughout the run!

▸ Obey any rigidity constraints.

▸ Substitute ν in for all q:
accepted, /∈ L.

cons

cons

cons

cons

cons

nilz

s

z

s

s

z

s

s

s

z

s

s

z
k

k + 1

ν
q

q



Isolation
Pumping Lemma

RTA pumping lemma:

f1

f2

f3

f4

q∗

q∗

(∣Q
∣+

1)∣Q
R ∣

▸ Each q ∈ QR at most once on root-leaf path.

▸ Root-leaf path of length (∣Q ∣ + 1)∣QR∣ has
sub-path with

▸ no rigid states within, and
▸ equal (non-rigid) terminal state q∗

▸ Can pump there and rewrite nodes above.
▸ There may be rigid states above and as

cousins of the pumping site.

▸ Isolation allows q ∈ QR many times on a root-leaf path!
▸ Need new construction!



Isolation
Pumping Lemma

First: rewriting [t q/M]
▸ Input: run on tree t in state q, runs on rigid states M .

▸ Runs within M must be compatible
▸ M need not contain all rigid states

▸ Output: new tree t ′ and run on t ′ in state q.

▸ Simple top-down replacement for RTA:

q in M ∶[t q/{q ↦ t ′, . . .}] ↦ t ′ q

Otherwise ∶[f⟨t1 q1, . . .⟩ q0/M] ↦ f⟨[t1 q1/M], . . .⟩ q0



Isolation
Pumping Lemma

Root-leaf path of length ∣Q ∣ ⋅ 2∣QR∣ + 1: somewhere here-on, a
state q will be reused with the same set of rigid states in
scope.

f’ (q, r ′)
B

f (q, r)
D

A

∣Q
∣⋅2
∣Q

R ∣+
1

original tree

r and r ′ have
identical support

f (q, r)
B ′′

rewrite r ′ as r

A

copy

shorter tree

f′ (q, r ′′)
B ′

rewrite r ′ as r ′′

f′ (q, r ′)
D ′

rewrite r as r ′

f (q, r)
D

copy

A
copy

taller tree



Isolation
Emptiness Testing

Emptiness of an ((I)R)TA is P-time by witness search:

▸ Loop while ∃ q∗ un-witnessed s.t. ∃ a rule f⟨q1, . . . ,qk⟩ → q∗

s.t. ∀i qi witnessed.
▸ Use qi witnesses and rule to build q∗ witness.

▸ Iff, when the loop terminates, any q ∈ QF is witnessed, the
automaton accepts at least one tree (q’s witness).

This algorithm ...

▸ generates state-acyclic witnesses: work for any QR ⊆ Q, any I .

▸ does not really use the witnesses; could just use bits.

For every IRTA A, RTA A′ sets I = ∅ everywhere:

▸ L(A′) ⊆ L(A)
▸ L(A′) = ∅ ⇒ L(A) = ∅.



Isolation
Boolean Closure

▸ IRTA trivially closed under union, by nondeterminism.

▸ IRTA not closed under intersection.
▸ Construct a family of machines whose intersection is traces of

2-counter machines’ halting runs. (As per TATA, thm 4.4.7)
▸ Deciding emptiness of intersection thus Turing-complete.
▸ IRTA have trivial emptiness test; not able to represent

intersection.

▸ Conjectured not to be closed under complementation.
▸ Lacking a proof at the moment
▸ The RTA proof uses balanced binary trees, which are

IRTA-recognizable.



Future Work: Isolated Rigid Tree Set Automata

We want to analyse Prolog-style programs.

▸ Type analysis:
▸ tracks domains of variables (upper-bound answer sets).
▸ uses sets of trees, e.g., tree automata.
▸ “f(X) :- g(X,Y),h(Y)”:

▸ intersect domains of uses of Y,
▸ Domain of X is narrowed by above intersection.
▸ Domain of X is a subset of upper bound of f’s first

argument’s domain.



Future Work: Isolated Rigid Tree Set Automata

We want to analyse Prolog-style programs.

▸ Type-aware mode analysis
▸ tracks instantiatedness of partial answers (shape and

domains).
▸ Extremes: ground term, free variable (over some domain).
▸ Usually: bound structure (shape) over free variables.

▸ needs sets of sets of trees.
▸ “f(X) :- g(X,Y),h(Y)”:

▸ “Can rule run if X is (not) bound in the call to f/1?”
▸ “Given variable instantiations, what subgoals are callable

(and what is their effect on instantiations)?”
▸ Answer questions using abstract unification:

T1 ∩× T2
def= {τ1 ∩ τ2 ∣ τi ∈ Ti}



Future Work: Isolated Rigid Tree Set Automata

▸ Automata framework great for sets of trees; generalize?

▸ Existing TSA unsuitable
▸ Notably, cannot recognize sets of singleton sets.

▸ New (yes?) framework time!



Future Work: Isolated Rigid Tree Set Automata

New mechanism for describing n-nested sets of trees.

▸ Consider first a regular framework, no constraints.

▸ Partiton states Q by nesting level: Q = ⋃n
i=1Qi .

▸ Base case constructors for moving from level k to k + 1:
free q → q′ ⇒ L(q) ∈ L(q′)

ground q → q′ ⇒ ∀α∈L(q){α} ∈ L(q′)
sub q → q′ ⇒ ∀∅⊊α⊆L(q)α ∈ L(q′)

▸ Recursive constructor is product former of equal-level states:
bound f ⟨q1, . . . ,qk⟩ → q0. Defined on...

▸ trees: bound f ⟨t1, . . . , tk⟩
def= f⟨t1, . . . , tk⟩

▸ sets: bound f ⟨τ1, . . . , τk⟩
def= {bound f ⟨t1, . . . , tk⟩ ∣ ti ∈ τi}

▸ states: bound f ⟨q1, . . . ,qk⟩ → q0
⇒ bound f ⟨L(q1), . . . ,L(qk)⟩ ⊆ L(q0)



Future Work: Isolated Rigid Tree Set Automata

Generalise to rigidity:

▸ A state of any level may be rigid.
▸ expands in only one way in a run

▸ Level-1: equalities within terms inside sets (∼ data variables).
▸ {{f⟨t, t⟩ ∣ t ∈ τ}} = L(qF) if qτ ∈ QR, L(qτ) = τ and
bound f ⟨qτ ,qτ ⟩ → qf,free qf → qF.

▸ Level-2: equalities of sets, maybe not terms (∼ type var).
▸ {{f⟨t1, t2⟩ ∣ ti ∈ τ} ∣ τ ∈ T} = L(qF) if qT ∈ QR, L(qT ) = T

and bound f ⟨qT ,qT ⟩ → qF.

▸ Level-1 isolated during move to level-2:
▸ {{f⟨t, t⟩} ∣ t ∈ τ} = L(qF) if qτ ∈ QR, L(qτ) = τ , and

bound f ⟨qτ ,qτ ⟩ → qf,ground qf
!{qτ}ÐÐÐ→ qF.

End result (?): a unified framework for abstract unification.



Questions?


	Introduction
	Review of Rigid Tree Automata
	Isolation
	Positive Examples
	Negative Examples
	Pumping Lemma
	Emptiness Testing
	Boolean Closure

	Future Work: Isolated Rigid Tree Set Automata

