
A Flexible Solver for Finite Arithmetic Circuits
Nathaniel Wesley Filardo and Jason Eisner

Department of Computer Science
Johns Hopkins University
3400 N. Charles St., Baltimore, MD 21218, USA
http://cs.jhu.edu/˜{nwf,jason}/
{nwf, jason}@cs.jhu.edu

Abstract
Arithmetic circuits arise in the context of weighted logic programming languages, such as Datalog
with aggregation, or Dyna. A weighted logic program defines a generalized arithmetic circuit—
the weighted version of a proof forest, with nodes having arbitrary rather than boolean values.
In this paper, we focus on finite circuits. We present a flexible algorithm for efficiently querying
node values as they change under updates to the circuit’s inputs. Unlike traditional algorithms,
ours is agnostic about which nodes are tabled (materialized), and can vary smoothly between
the traditional strategies of forward and backward chaining. Our algorithm is designed to admit
future generalizations, including cyclic and infinite circuits and propagation of delta updates.

1998 ACM Subject Classification F.1.1 Models of Comp., I.2.3 Deduction and Theorem Proving

Keywords and phrases arithmetic circuits, memoization, view maintenance, logic programming

1 Introduction

The weighted logic programming language Dyna [10] is a convenient and modular notation
for specifying derived data. In this paper, we begin to consider efficient algorithms for
answering queries against Dyna programs. Our methods treat arithmetic circuits, and are
relevant to other variants of logic programming, such as Datalog with aggregation [15, 5].

Many tasks in computer science involve computing and maintaining derived data. De-
ductive databases [21] store extensional (i.e., provided) data but also define additional
intensional data specified by formulas. Algorithms in artificial intelligence or business an-
alytics can often be written in this form [10]. The extensional data are observed facts, and
the resulting cascades of intensional data arise from aggregation, record linkage, analysis,
logical reasoning, statistical inference, or machine learning.

If the extensional data can change over time, keeping the intensional data up to date is
called view maintenance or stream processing [23]. This pattern includes traditional abstract
data types, which maintain derived data under operations such as “insert” and “remove.”
For example, a priority queue maintains the argmax of a function over an extensional set.

A Dyna program is a declarative specification of derived data. Like an abstract data type,
it admits many correct implementations of its update and query methods. These execution
strategies range from the laziest (“store the update stream and scan it when queried”) to
the most eager (“recompute all intensional data upon every update”). A particular strategy
might trade time for space, or more time now for less time later (e.g., investing time in finding
a faster query plan or maintaining an index). We seek a unified algorithm that subsumes as
many reasonable strategies as possible, and which supports transitioning smoothly between
them. This allows different strategies to be selected for different parts of the program (static
analysis) or for different workloads (dynamic analysis).

In the present work, we discuss the development of a generic algorithm for finding and
maintaining solutions to finite arithmetic circuits, which are a subset of Datalog and Dyna

© Nathaniel Wesley Filardo and Jason Eisner;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A Flexible Solver for Finite Arithmetic Circuits

1 Compute(j ∈ Iint)
2 return fj ({i 7→ Lookup(i) | i ∈ Pj})
3
4 Lookup(j ∈ I)
5 v ← M[j]
6 if v = unk then v ← Compute(j)
7 maybe M[j] ← v

8 return v

Listing 1 Internals of basic backward
chaining with optional memoization. M
stores values for extensional items and ini-
tially stores unk for intensional items.

• 1a :
%%KKKKKK • 2b :

xxrrr
rrr

r
''OOOOOOO

��

• 3
xxppp

ppp
p

f 2

$$JJJJJJ max 3

xxqqqqqqq∑
7

Figure 1 An example arithmetic circuit on the
natural numbers, showing the function for each in-
tensional item (f, max,

∑
, where f(a, b) = ba) and

the symbol • for each extensional item. Item values
are shown in red, and selected item names in blue.

programs. Our algorithm offers several degrees of freedom, which will allow us to compare
various static and adaptive strategies in future. The algorithm can choose any initial guess
for the circuit’s solution; its agenda of pending computations may be processed in any order;
and it contains maybe directives where the algorithm has an additional free choice. Thus,
our algorithm smoothly interpolates among traditional strategies such as forward chaining,
backward chaining, and backward chaining with memoization.

2 Arithmetic Circuits

An arithmetic circuit [4] is a finite directed acyclic graph on nodes I with edges E . We
refer to the nodes as items. We denote item j’s set of parents by Pj

def= {i | (i→ j) ∈ E},
and its set of children by Cj

def= {k | (j → k) ∈ E}. Transitive parents are called ancestors,
and transitive children are called descendants. We use the term generalized arithmetic
circuit for the more general case where the graph may be infinite and/or cyclic.

Each item i ∈ I has a value in some set V. Figure 1 shows a small arithmetic circuit
over integer values. The root or input items, those without parents, are denoted Iext
(“extensional”) and receive their values from the environment.1 The remaining items are
denoted Iint (“intensional”) and derive their values by rule from their parents’ values. Each
item j ∈ Iint is equipped with a function fj to combine its parents’ values. The input to fj

is not merely an unordered collection of the parents’ values. Rather, to specify which parent
has which value, it is a map Pj → V, consisting of a collection of pairs i 7→ v.

A Datalog or pure Prolog program can be regarded as a concise specification of a gener-
alized boolean circuit, which is the case where V = {true, false}. The items I correspond
to propositional terms of the logic program, and clauses of the logic program describe how
to discover the parents or children of a given item (on demand). Specifically, each grounding
of a clause corresponds to an and node whose parents are the body items, and whose child is
an or node corresponding to the head item. This kind of circuit is called an and/or graph.
Datalog is sometimes extended to allow limited use of not nodes as well.

Arithmetic circuits are the natural analogue of boolean circuits for weighted logic pro-
gramming languages, such as Datalog with aggregation [15, 5] and our own Dyna [11, 9].

Suppose we are given a generalized arithmetic circuit, along with a map S : Iext → V

1 The literature varies as to whether extensional items are called roots or leaves, whether they are
regarded as ancestors or descendants, and whether they are drawn at the top or the bottom of a
figure. We treat them as roots and ancestors and draw them at the top. So edges and information flow
downward in our drawings. As a result, “bottom-up” reasoning (forward chaining) actually proceeds
from the top of the drawing down.

Nathaniel Wesley Filardo and Jason Eisner 3

that specifies the extensional data. A solution to the circuit is an extension S of this map
over all of I such that S[j] = fj

({
i 7→ S[i]

}
| i ∈ Pj

)
for each j ∈ Iint. In the traditional

case where the circuit is finite and acyclic a solution S always exists and is unique. This
paper considers only that case, which also ensures that our algorithms always terminate.
However, we will avoid using methods that rely strongly on finiteness or acyclicity. This
makes our methods relevant to the harder problem of solving generalized arithmetic circuits
(see section 7), as needed for the general case of weighted logic programming languages.

3 Backward Chaining

We begin with some basic strategies for querying an item’s solution value S[j], based on
backward chaining from the item to its ancestors. We construct a mapM from items to
their solution values. M is known as the memo table or chart. For each extensional item
j ∈ Iext, we initializeM[j] to S[j] (= S[j]). For each intensional item j ∈ Iint, the solution
value S[j] is initially unknown, so we initializeM[j] to the special object unk 6∈ V. We may
regard the map M : I → V ∪ {unk} as a partial map I → V that stores actual values for
only some items—initially just the extensional items.

We define mutually recursive functions Lookup and Compute as in Listing 1. A user may
query the solution with Lookup(j). This returns M[j] if it is known, but otherwise calls
Compute(j) to compute j’s value using fj , which in turn requires Lookups at j’s parents.

Pure Backward Chaining The simplest form of backward chaining simply recurses through
ancestors until Lookup reaches the roots. Line 7 is never used in this case, soM never changes
and intensional items remain as unk. Clearly Lookup(j) returns S[j].

Unfortunately, pure backward chaining can have runtime exponential in the size of the
circuit. Each call to Lookup(j) will in effect enumerate all paths to j. For example, consider
a circuit for computing Fibonacci numbers, where each item fib(n) for n ≥ 2 is the sum of its
parents fib(n− 1) and fib(n− 2). Then Lookup(fib(n)) has runtime that is exponential in n,
with fib(n− t) being repeatedly computed fib(t) (≈ O(1.618t)) times during the recursion.

Optional Memoization To avoid such repeated computation, a call to Lookup(j) can
memoize its work by caching the result of Compute(j) in M[j] for use by future calls,
via line 7 of Listing 1. This is the backward-chaining version of dynamic programming. It
generalizes the node-marking strategy that depth-first search uses to avoid re-exploring a
subgraph. However, the maybe keyword in line 7 indicates that the memoization step is not re-
quired for correctness; it merely commits space in hopes of a future speedup. Lookup(fib(n))
can even achieve O(n) expected runtime without memoizing all recursive Lookups: instead
it can memoize Lookups on a systematic subset of items, or on a random subset of calls.

4 Reactive Circuits: Change Propagation

Our goal is to design a dynamic algorithm for arithmetic circuits that supports not just
queries but also updates. It must handle a stream of operations of the form Query(j) for
any j, which returns S[j], and Update(i,v) for i ∈ Iext, which modifies S[i] to v ∈ V.2

In the case of pure backward chaining, we only have to maintain the stored extensional
data, as intensional values are not stored, but are derived from the extensional data on

2 We also wish to support continuous queries, in which the user may request (asynchronous) notifications
when specified items change value. This is, however, beyond the scope of the current paper.

4 A Flexible Solver for Finite Arithmetic Circuits

1 RunAgenda()
2 until A = ∅
3 pop i : ^ v from A
4 if v = unk then v ← Compute(i)
5 if v 6=M[i] then % else discard
6 M[i] ← v

7 foreach j ∈ Ci

8 w ← unk

9 maybe w ← Compute(j)
10 Update(j, w)

Listing 2 The core of an agenda-driven,
tuple-at-a-time variant of the traditional
forward chaining algorithm. M is ini-
tialized to an arbitrary but total guess
and remains total (no unk values) there-
after. Hence, though Compute calls Lookup,
Lookup never recurses back to Compute.

1 Update(j ∈ I, w ∈ V t {unk})
2 delete A[j]
3 if w 6=M[j] then % else discard
4 A[j] ← ^ w

Listing 3 Updates requested by the user or
by RunAgenda are enqueued on the agenda A as
replacement updates.

• ^3 2
��

• ^5 3
wwppppppp

��
× 6 = 3

• ^3 2
��

• 5
rz mmmmmmm
mmmmmmm

��
× ^10 6 = ^ 3

Ü

Figure 2 An example iteration of the loop
in RunAgenda. We apply the update ^ 5 to the
right parent, which makes the children inconsis-
tent with their parents, and enqueue new up-
dates that will fix the inconsistencies. Double
arrows indicate the edges used to Compute the
new value in the replacement update: 10 is 2×5.

demand. In our terminology from above, Update(i,v) can just setM[i] ← v, and Query(j)
can just call Lookup(j).

However, handling updates is harder once we allow memoization of intensional values.
The memos inM grow stale as external inputs change, yet Lookup would continue to return
outdated results based on these memos. That is, updating i may make its intensional
descendants inconsistent; this must be rectified before subsequent queries are answered. We
therefore need some mechanism for restoring consistency inM, by propagating changes to
memoized descendants.

Formally, we say that j ∈ Iext is consistent iff Lookup(j)= S[j], and that j ∈ Iint is
consistent iff Lookup(j) = Compute(j). Notice that un-memoized intensional items (those
withM[j] = unk) are always consistent. We callM consistent if all items are consistent—in
this case Lookup(j) will return the solution S[j] as desired. Equivalently, the memo tableM
is consistent iff each extensional memo is correct and each intensional memo is in agreement
with its visible ancestors. Here i and k are said to be visible to each other whenever there
is a directed path from i to its descendant k that goes only through un-memoized (unk)
items. Thus, calling Compute(k) eventually recurses to Lookup(i) at each visible parent i.

5 Pure Forward Chaining

An alternative solution strategy, forward chaining, propagates updates. We will use it in
section 6 to solve the update problem. First we present forward chaining in its pure form.

Pure forward chaining eagerly fills in the entire chartM, starting at the roots and visiting
children after their parents. Eventually M converges to S. Forward chaining algorithms
include natural-order recalculation in spreadsheets [29] and semi-naive bottom-up evaluation
for Datalog [28]. We use the “tuple-at-a-time” algorithm of Listing 2. It uses an agenda A
that enqueues future updates to the chart [17, 11]. A contains at most one update for each
item i, which we denote A[i], and supports modification or deletion of this update.3

3 The agenda can be implemented as a simple dictionary. However, using an adaptable priority queue [14]
can speed convergence, if one orders the updates topologically or by some informed heuristic [18, 12].

Nathaniel Wesley Filardo and Jason Eisner 5

Our updates are replacement updates of the form i : ^ v (where i ∈ I and v ∈ V).4
Iteratively, until the agenda is empty, our forward chaining algorithm pops (selects and
removes) any update i : ^ v from the agenda, and applies it to the chart by setting
M[i] ← v. The algorithm then propagates this update to i’s children, by pushing an
appropriate update j : ^ w onto the agenda for each child j. This push operation overwrites
any previous update to j, so we write it as A[j] ← ^ w.

The new value w is obtained by Compute(j), meaning it is recomputed from the values at
j’s parents (including the changed value at i). If M[j] already had value w, the update is
immediately discarded and does not propagate further. Ordinarily, w is Computed in line 9
when the update is constructed and pushed. But if line 9 is optionally skipped, the update
specifies w as unk, meaning to compute the new value only when the update is popped and
actually applied (line 4). Such a refresh update j : ^ unk may be abbreviated as j : ^
and simply says to refresh j’s value so it is consistent.5 In any case, an inconsistent item
always has an update pending on the agenda, which will eventually make it consistent.6

Figure 2 shows one step of pure forward chaining. In our visual notation for circuits, we
draw the state of item i as fi M[i]i : , where i (if present) names the item, fi is the item’s
function (or • if i ∈ Iext), andM[i] is the current memo if any. If an update to i is waiting
on the agenda, we display it over i’s line as fi

^vM[i]i : , omitting the new value v if it is
unk. Since information flows downward in our drawings, being above i’s line indicates that
the update has yet to be applied toM[i]. (In section 6.1 we will introduce a below-the-line
notation.) Our textual update notation i : ^ v is intended to resemble the drawing.

The process can be started from any total (unk-free) initial chartM, provided that the
initial agenda A is sufficient to correct any inconsistencies in thisM. A is always sufficient if
it updates every item: so the conservative initialization strategy defines each A[i] to be
i : ^ S[i] for extensional i, and either j : ^ Compute(j) or j : ^ for intensional j. However,
just as Listings 2–3 discard unnecessary updates, we can also omit as unnecessary any initial
updates to items that are consistent in the initialM. So we may wish to choose our initial
M to be mostly consistent. For example, under the null initialization strategy, we
initialize M[i] to a special value null ∈ V for all i ∈ I. Provided that each function fj

outputs null whenever all its inputs are null, each intensional j is initially consistent and
hence requires no initial update.7

The user method Query(j) is now defined as RunAgenda(); return Lookup(j). This runs
the agenda to completion and then returnsM[j]. As for the user method Update(i, v), the
user is permitted to call Listing 3 in this case, thereby pushing a new update onto the
agenda. Forward chaining processes all such updates at the start of the next query. This

4 It will be explained shortly why an underline appears in the notation for this type of update.
5 Why are there two kinds of updates? Both have potential advantages. Refresh updates ensure that j
is only recomputed once, even if the parents change repeatedly before the update pops. On the other
hand, ordinary updates have the chance of being discarded immediately, which avoids the expense
of pushing and popping any update at all; and if they are not discarded, their priority order can be
affected by knowledge of w. Later algorithms in this paper cache item values temporarily, with the
result that the cost of computing w may vary depending on when Compute(j) is called. Finally, delta
updates (section 7) must be computed at push time.

6 A consistent item might also have an update pending—a refresh that is not yet known to be unnecessary.
7 In a logic programming setting, updatingM[j] from null to non-null may be regarded as “proving j.”
Forward chaining proves the extensional items from the initial agenda, and then propagation causes it to
prove some or all of the intensional items. In unweighted logic programming, nullmay be interpreted as
“not proven” and identified with false. Both and and or functions then have the necessary property.
Similarly, in weighted logic programming, null means “no proven value.” Here Dyna [9] again uses
functions that guarantee the necessary property, by extending arithmetic functions (which generalize
and) as well as aggregation functions (which generalize or) over the domain that includes null.

6 A Flexible Solver for Finite Arithmetic Circuits

does not require recomputing the whole circuit.
It may be instructive at this point to contemplate the physical storage of the mapM :

I → V ∪{unk} (where null ∈ V). A large circuit may be compactly represented by a much
smaller logic program (section 2). In this case one might also hope to store M compactly
in space o(|I|), using a sparse data structure such as a hash table. The “natural” storage
strategy is to treat unk as the default value in the case of backward chaining, but to treat
null as the default value in the case of forward chaining. In each case this means that
initialization is fast because intensional items are not initially stored. Backward chaining
then adds items to the hash table only if they are queried (and memoized), while forward
chaining adds them only if they are provable (see footnote 7). The final storage size of
M may differ in these two cases owing to the different choice of default. It can be more
space-efficient—particularly in our hybrid strategy below—to choose different defaults for
different types of items, reflecting the fact that some type of item is “usually” unk or null
(or even 0). One stores the pair (i,M[i]) only whenM[i] differs from the default for i. The
datatype used to storeM[i] does not need to be able to represent the default value.

6 Mixed Chaining With Selective Memoization

Both pure algorithms above are fully reactive, but sometimes inefficient. Backward chaining
may redo work. Forward chaining requires storage for all items, and updates fully before
answering a query. Yet each has advantages. Backward chaining visits only the nodes that
are needed for a given query; forward chaining visits only the nodes that need updating.

A hybrid algorithm should combine the best of both, visiting nodes only as necessary
and usingM to materialize some useful subset of them. Our core insight is that

The job of backward chaining is to compute values for which the memo is missing (unk).
The job of forward chaining is to refresh any memos that are present but potentially stale.
Pure backward chaining is the case where all memos are missing. So a query triggers a
cascade of backward computation; but forward chaining is unnecessary (no stale memos).
Pure forward chaining is the dual case where all memos are present. So an initial or
subsequent update triggers a cascade of forward computation; but backward chaining is
unnecessary (no missing memos). We regard the arbitrarily initialized chart of section 5
as a complete but potentially stale memo table.

We will develop a hybrid algorithm that can memoize any subset of the intensional items.
This subset can change over time: memos are optionally created while answering queries
by backward chaining, and can be freely created or flushed at any time. Why bother?
Computing only values that are needed for a given query can reduce asymptotic time and
space requirements, a fact exploited by the magic sets technique [25]. Furthermore, ma-
terializing some or all of these values only temporarily can reduce the cost of storing and
maintaining many memos. For example, [30] thereby solve the arithmetic circuit for the
forward-backward algorithm in O(log n) rather than O(n) space, while increasing runtime
only from O(n) to O(n log n).

6.1 Updates vs. Notifications

The essential (and novel) challenge here is to make forward chaining work with an incomplete
memo table M. Intuitively, we merely need to propagate updates as usual down through
unmemoized regions of the circuit, so that they reach and refresh any stale memos below.

Nathaniel Wesley Filardo and Jason Eisner 7

However, updates in such a region have a different nature. When we update the memo
for an item i, each visible unmemoized descendant j remains consistent (in the terminology
of section 4). After all, the result of calling Lookup(j) would already reflect the change to i.

Thus, what we propagate to j is not really an update but a notification. It does not
say “change the value of j,” but rather “the value of j has already [implicitly] changed.”
Crucially, this notification must be propagated to the descendants of j. When it finally
reaches i’s visible memoized descendants k—which became inconsistent the moment that i’s
memo was updated—it will trigger updates there to repair the inconsistencies.8

The agenda A now contains two kinds of messages: A[j] may be either an update to j

or a notification from j. Recall from section 5 that an update to j is graphically displayed
above the line. A notification from j is drawn as f ^j : , with the change displayed below
the line to indicate that it has already descended through item j. In this paper, the change
is always a replacement by an unspecified (unk) value, written textually as j : ^.9

6.2 Push-Time Updates and Invalidations

The resulting code is shown in Figure 3. Our code also takes the opportunity to exploit
notifications even for memoized items. In the old Listing 3, Update(j, w) always enqueued
j : ^ w for later. Our new Update(j, w) in Listing 4 can still choose that option provided
that j is memoized (Line 4:8, a pop-time update), but its default is to Apply the update
immediately (Line 4:14, a push-time update). If so, it pushes only the notification j : ^
and there is no need to Apply the update at pop time. What does still happen at pop time
is propagation: it is not until we pop an update or a notification to j (Line 5:5) that we
visit j’s children (Line 6:2).10

What happens if Line 6:4 is optionally skipped (so that w = unk)? Then the resulting
Update is a refresh update as before (section 5) if processed at pop time. However, if processed
at push time, it is an invalidation update that deletes a memo instead of correcting it.
Propagating invalidations can clear out stale portions of the chart at lower computational
cost. Separately, the Flush method can also be called by the user or by FreelyManipulateM
(Listing 5) to delete individual memos without the need to propagate.

Like the forward chaining algorithm, the hybrid algorithm may start from any initial
chartM—but intensional items j now have the option ofM[j] = unk. The initial agenda
does not contain any notifications, but as before, it must include enough updates to correct
any inconsistencies in the initial chart. Since unmemoized intensional unk items are always
consistent by definition (section 4), the initial agenda never needs to have updates for them.
For example, the unk initialization strategy initializes just as in backward chaining
(section 3), with extensional items set correctly and everything else initially unk.

8 This algorithm has a more complicated invariant than that of section 5: When k is inconsistent, the
agenda contains either an update at k (as in section 5) or a notification at some visible ancestor of k.

9 However, in general, any change that can appear in an update could appear in a notification, e.g., a
more specific replacement ^ w, or a delta ⊕ w (see section 7).

10Why allow both pop-time and push-time updates? Pop-time updates are required for correctness in
certain settings involving delta updates (section 7). Also, pop-time updates include refresh updates,
which are useful in avoiding premature computation of the new value w (footnote 5). On the other
hand, push-time updates ensure fresher lookup results by immediately updatingM[j] to a new value
(or invalidating it to unk). If the same update is deferred to pop time, then any calls to Lookup(j)
while the update is waiting on the agenda will unfortunately get a stale memo for j, resulting in stale
descendants that must be updated after the update pops.

8 A Flexible Solver for Finite Arithmetic Circuits

6.3 Correctness: Avoiding A Subtle Bug
Returning to the setting of section 6.1, again suppose that i was updated, making its de-
scendant k inconsistent, and that j is an unmemoized intermediate item on an i-to-k path.

Updating some other visible descendant of j (i.e., other than k) may cause j to get
recursively looked up and optionally memoized before its notification arrives. If j gets
memoized, it will receive an update rather than a notification. But the Compute(j) that
computes the update value will get the same answer as the Compute(j) that computed the
memo. That is, the memo M[j] was not stale but already reflected the change to i. This
causes a subtle bug: forward chaining will discard the apparently unnecessary update, rather
than propagating it on downward to k. Thus, k may remain inconsistent forever.

To prevent this bug, memoizing j must also enqueue a notification that the memo at j

has been updated. The correct behavior is illustrated in Figure 4. This notification reflects
the past update to i; it restores the invariant mentioned in footnote 8, and it will propagate
down to k as desired. Such a notification must be enqueued when memoizing any item j

such that Compute(j) recursed to some item that had a notification on the agenda. The
functions in Listing 7 return (as a second value) a flag that is true if this condition holds,
and enqueue the required notification at Line 7:22.

6.4 Efficiency: Obligation Tracking
Recall our challenge in section 4: backward chaining with optional memoization was a good
algorithm, but to support Update, we needed change propagation to refresh stale memos.

In our hybrid algorithm, we can use the unk initialization strategy (section 6.2) to recover
backward chaining. Change propagation will now be handled correctly.

Unfortunately, our propagation of notification through unmemoized regions is overly ag-
gressive. For example, if no intensional items have been memoized, then change propagation
should be completely unnecessary—this is the pure backward chaining case of section 4—
and yet our algorithm will visit all descendants of an Updated item! Our method visits all
children of an updated item to check whether they too may need updating. In pure forward
chaining, we can stop propagating (discard the update) at a child whose value is consistent;
but for an unk child the value is unknown, so we conservatively keep propagating.

In general, we should propagate down along an edge only when this may eventually reach
a memoized descendant. This requires obligation tracking: for every item in the circuit,
we desire to know if it has descendant memos which must be visited if its value changes.

We define the predicate obl(A[i] , j) (used on Line 6:2) to mean that i is obligated to
inform its child j of the update A[i]. By definition, this is so if j is memoized or is in turn
obligated to any of j’s children. As a result, obligation of items in an arithmetic circuit
C is naturally expressed as a boolean circuit Cobl that determines transitive reachability.
Roughly speaking, Cobl has the same topology as C but with the edge direction reversed.

We can be even more precise about determining obligation. Specifically, in the recursive
definition, i is not obligated to its child j if there is a notification at i or a refresh update
at j. In these cases, j and its descendants are guaranteed to get refreshed anyway, so it is
not necessary to propagate messages to j from i or its ancestors. One can again express this
tighter definition as a boolean circuit Cobl, whose boolean inputs are updated asM and A
evolve. Line 6:2 then queries this Cobl using our algorithm.

We can maintain Cobl in turn using (Cobl)obl, or by falling back to a cheaper obligation
tracking strategy at this stage. For example, obligation tracking is cheap on a circuit that
uses a memoization and flushing policy such that the memoized items always have memoized

Nathaniel Wesley Filardo and Jason Eisner 9

1 Query(i ∈ I)
2 RunAgenda()
3 (v, ·) ← Lookup(i) % · will be false
4 return v

5
6 Update(j ∈ I, w ∈ V t {unk})
7 maybe
8 if (A[j] 6= ^) ∧ (M[j] 6= unk) then
9 delete A[j]
10 if (w = unk) ∨ (M[j] 6= w) then
11 A[j] ← ^ w

12 return
13 % else fall through
14 Apply(j, w)
15
16 Flush(j ∈ Iint)
17 if A[j] = ^ · then A[j] ← ^
18 M[j] ← unk

Listing 4 User interface methods. (A user
call to Update must have j ∈ Iext, w ∈ V.)

1 Propagate(i ∈ I)
2 foreach j ∈ Ci such that obl(A[i] , j)
3 w ← unk

4 maybe (w, ·) ← Compute(j)
5 Update(j, w)
6 delete A[i]
7
8 % Convert update to notification
9 HandleUpdate(i : ^ v)
10 vcur ← M[i] % will not be unk
11 maybe if v = unk then
12 (v, ·) ← Compute(i)
13 if v 6= vcur then % else discard
14 foreach j ∈ Ci maybe Lookup(j)
15 maybe v ← unk

16 Apply(i, v)
17
18 Apply(j ∈ Iint, w ∈ V t {unk})
19 M[j] ← w

20 A[j] ← ^

Listing 6 Forward chaining internals.

1 RunAgenda()
2 until A = ∅
3 FreelyManipulateM()
4 peek u from A
5 case u of
6 i : ^ → Propagate(i)
7 · : ^ · → HandleUpdate(u)
8
9 FreelyManipulateM()

10 done ← false
11 until done
12 foreach i ∈ Iint maybe Lookup(i)
13 foreach i ∈ Iint maybe Flush(i)
14 maybe done ← true

Listing 5 Nondeterministic high-level
control.

1 % Derive j’s value from parents
2 Compute(j ∈ Iint)
3 foreach i ∈ Pj

4 (vi, mi) ← LookupFromBelow(i)
5 FreelyManipulateM()
6 return (fj ({i 7→ vi | i ∈ Pj}),
7 maxi∈Pj mi)
8
9 % Interaction with forward chaining

10 LookupFromBelow(i ∈ I)
11 mc ← (A[i] = ^)
12 (v, mt) ← Lookup(i)
13 return (v, mc ∨mt)
14
15 % Derive i’s value from memo or parents
16 Lookup(i ∈ I)
17 if M[i] 6= unk then
18 return (M[i], false)
19 (v,m) ← Compute(i)
20 maybe
21 M[i] ← v

22 if m then A[i] ← ^
23 return (v, m)

Listing 7 Backward chaining internals.

Figure 3 The internals of our initial mixed-chaining algorithm, which combines forward and
backward reasoning and supports arbitrary Flushes during execution.

parents. In that case, i is obligated to its child j only when j is memoized, which can be
checked directly without an auxiliary circuit. Also, obligation tracking tolerates one-sided
error: it is always safe for an obligation query to conservatively return true, which at worst
just results in unnecessary propagation. This leads to cheap approximate obligation tracking
strategies, such as always returning true, or coarse-to-fine approximations where the circuits
C, Cobl, (Cobl)obl , . . . are progressively smaller because a node in one circuit corresponds to a
set of nodes in the previous circuit and is true if any of them are obligated.

10 A Flexible Solver for Finite Arithmetic Circuits

• ^2 1
��

• 4
��=

''PPPPPP =
��

+ 5
��= 5

• 2
��

• 4
��= ^

))SSSSSS =
��

+
��= 5

Ü

• 2
��

• 4
��= ^

%-SSSSS
SSSSS

=
��

+ ^ 6
��= 5

Ü

Figure 4 Backward chaining may need to enqueue notifications. After the top left update (“i”)
propagates to a notification ^ at its child, the + item (“j”) is flushed. Backward chaining from
the + item (through un-memoized items) memoizes an up-to-date result of 6. Because backward
chaining encountered a ^, the memoization enqueues another ^ at the + item, which ensures that
its child (“k”) will later be updated from 5 to 6.

6.5 Related Work
The recent constraint solver Kangaroo [24] was independently motivated by similar concerns.
Like us, it mixes backward and forward chaining. In Kangaroo, queries seek out relevant
updates—the reverse of our obligation approach, in which updates seek out relevant memo-
ized queries. We are more selective about storage than Kangaroo, which stores memos at
all nodes of the circuit.11 On the other hand, Kangaroo is more selective about runtime.
While it may have more memos, it updates only stale memos that are relevant to current
queries, whereas our current algorithm updates all stale memos.

Previous mixed-chaining algorithms have been simpler. For functional programming,
Acar et al. [1, 3] answer queries by backward chaining with full memoization; they update
these memos by forward chaining of replacement updates. The same strategy is used for
Prolog by Saha and Ramakrishnan [26, 27], who contrast it with the “DRed” strategy that
forward-chains invalidation updates [16]. The “magic sets” transformation for Datalog [25]
can be seen as a variant of these strategies. It uses only forward chaining, but restricted to
items that would have been visited by backward chaining from the given query. All of these
strategies memoize every computed item. In contrast, we are more economical with space.

Acar et al. [2] do separately consider selective memoization, but do not handle updates in
this more challenging case (see section 6). A different selective strategy [19] relies primarily
on unmemoized backward chaining. It first performs forward chaining on a given sub-circuit
to identify and memoize a subset of true values. However, this relies on the special property
of Datalog that a true node of a sub-circuit is also true in the full circuit.

We believe that our framework can naturally be extended with richer computational
strategies (see section 7). This is because it integrates fully selective memoization with a
mixed chaining strategy, and because it has a general notion of an agenda of pending work,
which can support a variety of update types, prioritization heuristics, and parallelizations.

7 Extensions

Some of the following extensions to our hybrid algorithm of section 6 are not too difficult.
We sketch the extensions here, deferring full treatments to a longer version of this paper.

Richer Vocabulary of Updates For simplicity, this paper has focused on replacement up-
dates i : ^ v. However, our prototype of Dyna [11] actually used agenda-based forward
chaining with delta updates such as i : ⊕ v for some operator ⊕. Applying this update at

11 Selective memoization is an added reason for mixed chaining. Our forward chaining sometimes invokes
backward chaining, in order to re-Compute the value of a stale item with an unmemoized parent.

Nathaniel Wesley Filardo and Jason Eisner 11

pop time increments the old memoM[i] toM[i]⊕ v. Similarly, Dijkstra’s shortest-path al-
gorithm [7] chooses to use forward chaining with push-time delta updates, which are applied
immediately and push delta notifications i : ⊕ v onto the agenda (where ⊕ is min). A delta
update or notification at i is sometimes cheap to propagate to j, compared to a replacement.
This is because one can sometimes avoid a full call to Compute(j) at Line 6:4—which looks up
or computes all the parents of j—by exploiting arithmetic properties such as distributivity
of fj over ⊕, or associativity and commutativity of ⊕ if fj = ⊕.12 Also, associativity and
commutativity of ⊕ updates can be used to simplify the agenda data structure.

Circuit Transformation Even replacement updates can sometimes be propagated to j with-
out a full call to Compute(j). Consider the case where fj aggregates a large set of parents Pj

using an associative binary operator. We can statically or dynamically transform the circuit
to replace the direct edges from Pj to j with a binary aggregation tree. As this tree is
just part of the circuit, it can use any strategy. In particular, if we maintain memos at the
tree’s internal nodes, then we can propagate a change from i ∈ Pj to j in time O(log |Pj |).

Circuits can also be rearranged into more efficient forms by refactoring arithmetic ex-
pressions. It is possible to carry out such rearrangements by transforming the weighted logic
program from which the circuit is derived [8]. But in principle, one might also rearrange the
circuit locally as inference proceeds.

Aborting Backward Chaining by Guessing Our algorithm can be extended to handle cyclic
arithmetic circuits.13 Pure forward chaining can propagate updates around cycles indefi-
nitely in hopes that the memos will converge [11]. If so, it finds a fixed-point solution S.
But backward chaining does not work on the same circuit: it can recurse around the cycles
forever without ever making progress by creating a memo. The solution is interesting.

In general, we can interrupt any long backward-chaining recursion—cyclic or otherwise—
by allowing Compute(j) to optionally guess and return an arbitrary memo forM[j], such as
null. In this case we must enqueue a refresh update j : ^. Popping this update later will
resume backward chaining (i.e., it serves as a continuation) to check that our guess at j is
consistent with j’s visible ancestors (perhaps now including j itself, cyclically). If not, it will
use the agenda to propagate a fix by forward chaining (perhaps cyclically until convergence).

If j is already obligated to any children k, we must also enqueue a notification j : ^ to
alert k that guessingM[j] may have changed it from the previous value of Lookup(j). As in
section 6.3, this notification preserves the invariant of footnote 8 at a new memo, avoiding
the same subtle bug where an update that leavesM[j] unchanged is never propagated to k.

Fine-Grained Obligation Suppose j is an or node whose parent i has value true, or a ×
node whose parent i has value 0. As long as i has this value, j is insensitive to its other
parents, who should not be obligated to propagate their updates to j. This generalizes the
watched variable trick from the satisfiability community [22].

On-Demand Propagation Our current algorithm calls RunAgenda at the start of every
Query, which refreshes all stale memos—including those that are not relevant to this query.
This can be especially inefficient for cyclic or infinite circuits. We would prefer to propagate
only the currently relevant updates, as in Kangaroo [24].

12This is slightly tricky when ⊕ is not idempotent, but solved in [11].
13Our current definition of obligation is overly broad in the cyclic case. It can create self-supporting

obligation, where updates are unnecessarily propagated around cycles without actually refreshing any
memos, merely because each item believes it is obligated to the next. Restoring efficiency in this case
has been considered by [20].

12 A Flexible Solver for Finite Arithmetic Circuits

Continuous Queries and Snapshots A continuous query of item i in an arithmetic cir-
cuit is a request to be notified (e.g., via callback) whenever Updates have caused Query(i) to
change. Continuous queries are also used in databases and in functional reactive program-
ming [13, 6]. Some users may also like to be notified of any updates that reach i as our
algorithm runs, allowing them to peek at intermediate statesM[i].

Programs We are actively working to extend the algorithms presented here to work not
on arithmetic circuit descriptions directly but on Prolog-like weighted rules of Datalog with
Aggregation [15, 5] and Dyna [9]. These programs can describe infinite generalized arith-
metic circuits with value-dependent structure and with infinite fan-in or fan-out. A query,
update, or memo may now be specified using a pattern that makes it apply to infinitely
many items. This is the most challenging extension we have discussed.

8 Conclusion

We have developed a dynamic algorithm for solving arithmetic circuits and maintaining the
solution under updates to the inputs. The solver can smoothly mix backward and forward
chaining, while selectively memoizing results (and flushing memos). Different chaining and
memoization strategies can be used as needed for different parts of the circuit, which does
not affect correctness but can potentially improve time or space efficiency. Our framework
also provides a basis for several extensions.

Acknowledgements This research was funded in part by the JHU Human Language Tech-
nology Center of Excellence. We would further like to thank John Blatz for useful early
discussions, and an anonymous reviewer for calling our attention to Kangaroo [24].

References

1 Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming.
In Proc. of POPL, pages 247–259, 2002.

2 Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization. In Proc. of
POPL, pages 14–25, 2003.

3 Umut A. Acar and Ruy Ley-Wild. Self-adjusting computation with Delta ML. In Pieter
W. M. Koopman, Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional
Programming, volume 5832 of Lecture Notes in Computer Science, pages 1–38. Springer,
2008.

4 A. Borodin and I. Munro. The computational complexity of algebraic and numeric problems.
Elsevier, 1975.

5 Sara Cohen, Werner Nutt, and Alexander Serebrenik. Algorithms for rewriting aggre-
gate queries using views. In Proc. of ADBIS-DASFAA, pages 65–78, London, UK, 2000.
Springer-Verlag.

6 Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In 2001 Haskell
Workshop, September 2001.

7 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

8 Jason Eisner and John Blatz. Program transformations for optimization of parsing algo-
rithms and other weighted logic programs. In Shuly Wintner, editor, Proc. of FG 2006:
The 11th Conference on Formal Grammar, pages 45–85. CSLI Publications, 2007.

Nathaniel Wesley Filardo and Jason Eisner 13

9 Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for modern AI. In Tim
Furche, Georg Gottlob, Oege de Moor, and Andrew Sellers, editors, Datalog 2.0, volume
(to be published) of LNCS. Springer, 2011.

10 Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for modern AI (full
version). Technical report, Johns Hopkins University, 2011. Available at dyna.org/
Publications. A condensed version appeared as [9].

11 Jason Eisner, Eric Goldlust, and Noah A. Smith. Compiling comp ling: Weighted dynamic
programming and the Dyna language. In Proc. of HLT-EMNLP, pages 281–290, Vancouver,
October 2005. Association for Computational Linguistics.

12 Gal Elidan, Ian Mcgraw, and Daphne Koller. Residual belief propagation: Informed
scheduling for asynchronous message passing. In Proceedings of the 22nd Conference on
Uncertainty in Artificial Intelligence, 2006.

13 Conal Elliott and Paul Hudak. Functional reactive animation. In International Conference
on Functional Programming, 1997.

14 Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in JAVA.
Wiley, 1998.

15 Sergio Greco. Dynamic programming in datalog with aggregates. IEEE Transactions on
Knowledge and Data Engineering, 11(2):265–283, 1999.

16 Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views in-
crementally. In Peter Buneman and Sushil Jajodia, editors, SIGMOD Conference, pages
157–166. ACM Press, May 1993.

17 Martin Kay. Algorithm schemata and data structures in syntactic processing. In B. J. Grosz,
K. Sparck Jones, and B. L. Webber, editors, Readings in Natural Language Processing,
pages 35–70. Kaufmann, Los Altos, CA, 1986. First published in 1980 as Xerox PARC
Technical Report CSL-80-12 and in the Proceedings of the Nobel Symposium on Text
Processing, Gothenburg.

18 Dan Klein and Christopher D. Manning. A∗ parsing: Fast exact Viterbi parse selection. In
Proc. of HLT-NAACL, 2003.

19 Thomas Labish. Developing a combined forward/backward-chaining system for logic pro-
grams in a hybrid expertsystem shell. Master’s thesis, Universität Kaiserlautern, June
1993. In German.

20 Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, and Boon Thau Loo.
Recursive computation of regions and connectivity in networks. IEEE 25th International
Conference on Data Engineering, 2009.

21 J.W. Lloyd and R.W. Topor. A basis for deductive database systems. The Journal of Logic
Programming, 2(2):93 – 109, 1985.

22 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver. In DAC, pages 530–535, Las Vegas, NV, USA,
June 2001. ACM.

23 Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur
Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query
processing, approximation, and resource management in a data stream management system.
In CIDR, 2003.

24 M. A. Hakim Newton, Duc Nghia Pham, Abdul Sattar, and Michael Maher. Kangaroo:
An efficient constraint-based local search system using lazy propagation. In 17th Interna-
tional Conference on Principles and Practice of Constraint Programming, pages 645–659,
Perugia/Italy, September 2011.

25 Raghu Ramakrishnan. Magic templates: a spellbinding approach to logic programs. Journal
of Logic Programming, 11(3-4):189–216, 1991.

dyna.org/Publications
dyna.org/Publications

14 A Flexible Solver for Finite Arithmetic Circuits

26 Diptikalyan Saha. Incremental Evaluation of Tabled Logic Programs. PhD thesis, Stony
Brook University, December 2006.

27 Terrance Swift and David Scott Warren. XSB: Extending Prolog with tabled logic pro-
gramming. CoRR, abs/1012.5123, 2010. Under consideration for publication in Theory
and Practice of Logic Programming.

28 Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Com-
puter Science Press, 1988.

29 Alan G. Yoder and David L. Cohn. Domain-specific and general-purpose aspects of spread-
sheet languages. In Proceedings of the Workshop on Domain-Specific Languages, 1997.

30 G. Zweig and M. Padmanabhan. Exact alpha-beta computation in logarithmic space with
application to map word graph construction. In Proceedings of ICSLP, 2000.

	Introduction
	Arithmetic Circuits
	Backward Chaining
	Reactive Circuits: Change Propagation
	Pure Forward Chaining
	Mixed Chaining With Selective Memoization
	Updates vs. Notifications
	Push-Time Updates and Invalidations
	Correctness: Avoiding A Subtle Bug
	Efficiency: Obligation Tracking
	Related Work

	Extensions
	Conclusion

