
Meta Action! Side Next

Fun With Haskell: IO

Nathaniel Wesley Filardo

January 17, 2012

1 / 45



Meta Action! Side Next

Metadata

Questions?

� Any questions from last time?

� Any questions about the errata email?

� Sorry about that.

2 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� Accept the user’s input.

� Say hi.

� Exit.

3 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� putStrLn :: String -> IO ()

� Accept the user’s input.

� Say hi.

� putStrLn :: String -> IO ()

� Exit.

3 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� putStrLn :: String -> IO ()

� Accept the user’s input.

� getLine :: IO String

� Say hi.

� putStrLn :: String -> IO ()

� Exit.

3 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� putStrLn :: String -> IO ()

� Accept the user’s input.

� getLine :: IO String

� Say hi.

� putStrLn :: String -> IO ()

� Exit.

� A few things this could mean.
� We will take it to be “return control flow”

3 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� Accept the user’s input.

� Say hi.

� Exit.

4 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� putStrLn "Hello! What’s your name?"

� Accept the user’s input.

� Say hi.

� putStrLn $ "Hello, " ++ name

� Exit.

4 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� putStrLn "Hello! What’s your name?"

� Accept the user’s input.

� name <- getLine

� Say hi.

� putStrLn $ "Hello, " ++ name

� Exit.

4 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

� Now all we have to do is glue it together.

5 / 45



Meta Action! Side Next

Programming With Actions

A First Interactive Example

� Now all we have to do is glue it together.

� Using do notation:

HelloName.hs

main = do

putStrLn "Hello! What’s your name?"

name <- getLine

putStrLn $ "Hello, " ++ name

5 / 45



Meta Action! Side Next

Programming With Actions

Aside: Alternate Syntaxes

� Given an action like

foo = do

e1

r <- a

s <- b -- b may reference r

e2 -- e2 may reference r and s

6 / 45



Meta Action! Side Next

Programming With Actions

Aside: Alternate Syntaxes

� Given an action like

foo = do

e1

r <- a

s <- b -- b may reference r

e2 -- e2 may reference r and s

� Equivalent, without “two-dimensional syntax”:

foo = do { e1 ; r <- a; s <- b; e2 }

6 / 45



Meta Action! Side Next

Programming With Actions

Aside: Alternate Syntaxes

� Given an action like

foo = do

e1

r <- a

s <- b -- b may reference r

e2 -- e2 may reference r and s

� Equivalent, without “two-dimensional syntax”:

foo = do { e1 ; r <- a; s <- b; e2 }

� Fully de-sugared form (note structure!):

foo = e1 >> a >>= (\r -> b >>= (\s -> e2))

6 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� Everybody have “and then” down?

� What about

� if/then or if/then/else,
� Loops (while, for),
� Continuations (not going to cover this today, sorry)

7 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

Another example from Hal [2, p60]:

� The number guessing game.

� Given an Int,

� Ask the user for a guess
� If incorrect, inform the user of the sign of error and go

again.
� If correct, congratulate the user and stop.

8 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� Ask the user for a guess

� getLine will get us a String.
� Slideware: use read to get an Int.
� Real software: use reads or other, more safe, parser.
� Real, Security software: don’t use Int, reads an
Integer and check for overflow (or do comparisons as
Integers); timeout if the user takes too long, . . .

9 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� Ask the user for a guess

� getLine will get us a String.
� Slideware: use read to get an Int.
� Real software: use reads or other, more safe, parser.
� Real, Security software: don’t use Int, reads an
Integer and check for overflow (or do comparisons as
Integers); timeout if the user takes too long, . . .

� Could use something like:

getRead = getLine >>= \l -> return (read l)

9 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� Ask the user for a guess

� getLine will get us a String.
� Slideware: use read to get an Int.
� Real software: use reads or other, more safe, parser.
� Real, Security software: don’t use Int, reads an
Integer and check for overflow (or do comparisons as
Integers); timeout if the user takes too long, . . .

� Could use something like:

getRead = getLine >>= \l -> return (read l)

� Standard library has a slightly nicer readLn.

9 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� See how the user fared. One possibility:

guessingGame :: Int -> IO ()

guessingGame n = do

putStrLn "Take a guess!"

n’ <- readLn

if n == n’

then {- ... -}

else if n > n’

then {- ... -}

else {- ... -}

10 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

guessingGame :: Int -> IO ()

guessingGame n = do

putStrLn "Take a guess!"

n’ <- readLn

case n ‘compare‘ n’ of

LT -> {- ... -}

GT -> {- ... -}

EQ -> {- ... -}

� Better, maybe. Why?

11 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

guessingGame :: Int -> IO ()

guessingGame n = do

putStrLn "Take a guess!"

n’ <- readLn

case n ‘compare‘ n’ of

LT -> {- ... -}

GT -> {- ... -}

EQ -> {- ... -}

� Better, maybe. Why?

� Compiler can check that we didn’t miss anything.
(“Non-exhaustive match warnings”)

11 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� “OK, sure, but what goes in those comments you’ve
refused to expand for us?”

12 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� “OK, sure, but what goes in those comments you’ve
refused to expand for us?”

� The EQ case is easy:

do putStrLn "Yes!"

� The “do” is actually superfluous.

12 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� The LT and GT cases require that we loop. How?

� Well, what do we want?

13 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� The LT and GT cases require that we loop. How?

� Well, what do we want?

� We want the guessing game action again:

do putStrLn "Too Low!"

guessingGame n

13 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� The LT and GT cases require that we loop. How?

� Well, what do we want?

� We want the guessing game action again:

do putStrLn "Too Low!"

guessingGame n

� “while” and “until” loops are typically expressed as
recursion.

� At the end of a do block / bind chain.

13 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

NumberGuessGame.hs

guessingGame n = do

putStrLn "Take a guess!"

n’ <- (readLn :: IO Int)

case n ‘compare‘ n’ of

EQ -> putStrLn "Yes!"

LT -> do putStrLn "Too high!"

guessingGame n

GT -> do putStrLn "Too low!"

guessingGame n

14 / 45



Meta Action! Side Next

Programming With Actions

The Point of No Return

� Coming from “those other” languages, the output of this
IO action might be surprising:

foo x = do

putStr "Test..."

case {- ... -} of

Nothing -> return ()

Just x -> putStr $ show x

putStrLn "...ing"

� What is the output?

15 / 45



Meta Action! Side Next

Programming With Actions

The Point of No Return

� Coming from “those other” languages, the output of this
IO action might be surprising:

foo x = do

putStr "Test..."

case {- ... -} of

Nothing -> return ()

Just x -> putStr $ show x

putStrLn "...ing"

� What is the output?

� return makes a pure value into an action. It does not
alter control flow.

15 / 45



Meta Action! Side Next

Programming With Actions

Brain Teaser From Last Time

� Anybody try running this program?

twice a = a >> a

main = twice (putStrLn "Hello, World")

� What happens?

16 / 45



Meta Action! Side Next

Programming With Actions

Brain Teaser From Last Time

� Anybody try running this program?

twice a = a >> a

main = twice (putStrLn "Hello, World")

� What happens?

� The type of twice is interesting:

twice :: Monad m => m a -> m a

� Given an action in the monad m, produce an action in the
monad m.

16 / 45



Meta Action! Side Next

Programming With Actions

Brain Teaser From Last Time

twice :: Monad m => m a -> m a

twice a = a >> a

� Given an action in the monad m, produce an action in the
monad m.

� How about other actions?

� Maybe and Reader aren’t especially interesting. Why?

17 / 45



Meta Action! Side Next

Programming With Actions

Brain Teaser From Last Time

twice :: Monad m => m a -> m a

twice a = a >> a

� Given an action in the monad m, produce an action in the
monad m.

� How about other actions?

� Maybe and Reader aren’t especially interesting. Why?
� twice (modify (+1))?

17 / 45



Meta Action! Side Next

Programming With Actions

Brain Teaser From Last Time

� “Given an action in the monad m, produce an action in
the monad m.”

� This philosophy is (almost) unique to Haskell: the
program we build does not perform any actions, it
describes the actions (and any interrelations).

� That’s what it means to run a program, though!

� Program-centric view: Hook the program up to the real
world.

� World-centric view: Interpret the program’s descriptions
of actions within the real world.

18 / 45



Meta Action! Side Next

Programming With Actions

Other Effectful Operators

� Actions are values.

� Some actions are just clever synonyms for pure code:

� Maybe, Reader, State, . . .

� IO actions may not be safely run by the program.

� Program composes IO actions together and the outside
world runs them at runtime.

� Some are in-between (e.g. ST)

19 / 45



Meta Action! Side Next

Programming With Actions

Other Effectful Operators

� Haskell programs spend a lot of ink to combine actions.

� Of course: there are functions to help out.

� Notably, the Control.Monad module.

20 / 45



Meta Action! Side Next

Programming With Actions

Other Effectful Operators

� “Do this when. . . ”:

when :: Monad m => Bool -> m () -> m ()

� For example, an Easter Egg:

main = do

name <- getLine

when (name == "Joshua") $ do

putStrLn "Ah, Professor Falcon!"

putStrLn $ "Hello, " ++ name

21 / 45



Meta Action! Side Next

Programming With Actions

Other Effectful Operators

� “Do everything on this list in order:. . . ”:

sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

� And some utility forms:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

forM :: Monad m => [a] -> (a -> m b) -> m [b]

� So a for loop:

forM [1..10] (\x -> twice (print x))

22 / 45



Meta Action! Side Next

Side Effects

Mutable References in IO

� Sometimes, mutation is exactly what you want;

� Accept no substitutes.

23 / 45



Meta Action! Side Next

Side Effects

Mutable References in IO

� Enter Data.IORef.

� Basic operations:

newIORef :: a -> IO (IORef a)

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

modifyIORef :: IORef a -> (a -> a) -> IO ()

� If you like: indexed get and put functions.

� Note: All of these are IO actions.

24 / 45



Meta Action! Side Next

Side Effects

Mutable References in IO

� Suppose

mystery :: IO () -> IO ()

� And we want to count how many times mystery runs its
argument (please ignore exceptions):

countMystery a = do

r <- newIORef 0

mystery (modifyIORef r (+1) >> a)

c <- readIORef r

putStrLn $ "Mystery ran its argument "

++ show c ++ "times"

25 / 45



Meta Action! Side Next

Side Effects

Mutable Arrays in IO

� Data.Array.IO provides both

� “Boxed” (non-strict), IOArray, and
� “unboxed”, IOUArray.

� Accessed via MArray class:

newListArray :: (MArray a e m, Ix i)

=> (i,i) -> [e] -> m (a i e)

readArray :: ... => a i e -> i -> m e

writeArray :: ... => a i e -> i -> e -> m e

...

26 / 45



Meta Action! Side Next

Side Effects

The ST Monad

� Sufficiently often, we have code that is “externally pure”
but may internally use mutation.

� This is OK if none of the mutation “escapes”

� The ST monad provides this encapsulation.

� ST is not State; please do not confuse them.

27 / 45



Meta Action! Side Next

Side Effects

The ST Monad

� ST monad: Control.Monad.ST.

data ST s a = --hidden...

� The type parameter s is a phantom: it is not actually
used in the definition. (How mysterious!)

28 / 45



Meta Action! Side Next

Side Effects

The ST Monad

� ST monad: Control.Monad.ST.

data ST s a = --hidden...

� The type parameter s is a phantom: it is not actually
used in the definition. (How mysterious!)

� ST monad references: Data.STRef.

newSTRef :: a -> ST s (STRef s a)

...

� Also ST-based arrays: Data.Array.ST.

28 / 45



Meta Action! Side Next

Side Effects

The ST Monad

� Unlike IO, we can get “out” of ST.

� With this funny-looking function:

runST :: (forall s . ST s a) -> a

� A trick of quantification. Roughly: ensures that the type
a does not mention the type s.

� Since all STRefs do mention s, . . .

� Since ST does not (safely) have access to the RealWorld,
every runST a should yield the same result.

29 / 45



Meta Action! Side Next

Side Effects

Catching Exceptions in IO

� I’m going to ignore the Haskell 98 exception mechanism
in favor of the more modern Control.Exception.

� The original system handles only IO errors.

� Uses interesting type trickery to get one-level sub-typing.

� A type class Exception.

� Lots of exception types:

� ArithException includes Overflow, DivideByZero.
� PatternMatchFail

� ErrorCall (error, head, . . . )
� SomeException (existential)

30 / 45



Meta Action! Side Next

Side Effects

Catching Exceptions in IO

� In general, exceptions are control flow mechanism.

� Should be used as such! Try to avoid throwing them from
pure code.

� The standard library is old and has its own ideas.
� Sorry.

� Formally: exceptions coming from pure code have set
semantics, with nondeterministic representative selection.

� “If this block of pure code throws an exception, you are
guaranteed only that it was one that it could throw.”

31 / 45



Meta Action! Side Next

Side Effects

Catching Exceptions in IO

� Alright, now, on to catching.

� Primitive function:

catch :: Exception e

=> IO a -> (e -> IO a) -> IO a

� Compiler wants to know what type of exception (e) we
want to catch.

� Often inferred from use inside the handler.
� Can be explicitly labeled, too.

32 / 45



Meta Action! Side Next

Side Effects

Catching Exceptions in IO

� For example:

import Control.Exception as E

foo = E.catch (error "foo")

(\(ErrorCall str) -> return $

"caught error call: " ++ str)

� This call to E.catch catches only ErrorCalls.

� Transparent to other exceptions.

� (Qualified name E needed to avoid Prelude’s catch.)

33 / 45



Meta Action! Side Next

Side Effects

Catching Exceptions in IO

� For example:

import Control.Exception as E

foo = E.catch (error "foo")

(\(ErrorCall str) -> return $

"Caught: " ++ str)

� Rough transliteration:

try {

throw new ErrorCall("foo");

} catch (ErrorCall e) {

return ("Caught: " + e.toString());

}

34 / 45



Meta Action! Side Next

Side Effects

Catching Exceptions in IO

From catch we can build up other combinators (this is
Haskell!):

� handle flips the arguments to catch.

� try converts exceptions to Either:

try :: Exception e => IO a -> IO (Either e a)

� bracket lets us build exception-safe allocate&release:

-- allocate release use

bracket :: IO a -> (a -> IO b) -> (a -> IO c)

-> IO c

35 / 45



Meta Action! Side Next

Side Effects

Laziness vs. Exceptions

� Consider

E.catch (return (error "Explode"))

(\(ErrorCall _) -> return "Nope")

36 / 45



Meta Action! Side Next

Side Effects

Laziness vs. Exceptions

� Consider

E.catch (return (error "Explode"))

(\(ErrorCall _) -> return "Nope")

� Explodes! Huh!?

36 / 45



Meta Action! Side Next

Side Effects

Laziness vs. Exceptions

� Consider

E.catch (return (error "Explode"))

(\(ErrorCall _) -> return "Nope")

� Explodes! Huh!?

� Nothing we did inside the action triggered the explosion.

36 / 45



Meta Action! Side Next

Side Effects

Laziness vs. Exceptions

� Fix here with the evaluate function:

evaluate :: a -> IO a

� To wit:

E.catch (evaluate (error "Explode"))

(\(ErrorCall _) -> return "Nope")

� Other cases may be tricker (e.g. evaluating a pair).

� See the deepseq package.

37 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Files?

38 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Files?

� Oh right, IO. Specifically, System.IO:

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

stdin, stdout, stderr :: Handle

38 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Files?

� Oh right, IO. Specifically, System.IO:

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

stdin, stdout, stderr :: Handle

� Handle-taking variants of functions:

hPutStrLn :: Handle -> String -> IO ()

hGetLine :: Handle -> IO String

38 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Open a file

� For each line, read it as an Integer

� Sum them up in an IORef

� Output the result

� . . . ?

(For those of you following along on your laptops, this
example is available as LineSum.hs on the website.)

39 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Open a file

� For each line, read it as an Integer

� Sum them up in an IORef

� Output the result

� . . . ?

� Close the file! . . . ?

(For those of you following along on your laptops, this
example is available as LineSum.hs on the website.)

39 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Open a file

� For each line, read it as an Integer

� Sum them up in an IORef

� Output the result

� . . . ?

� Close the file! . . . ?

� On parse exception, warn and keep going!

(For those of you following along on your laptops, this
example is available as LineSum.hs on the website.)

39 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� The “open, do something, close” pattern is so common
it’s called withFile:

withFile :: FilePath -> IO Mode

-> (Handle -> IO r) -> IO r

withFile fp im = bracket (openFile fp im)

(hClose)

� (Actual definition!)

40 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Would like to say

\ref str -> modifyIORef ref (+(read str))

� But that’s not going to be exception safe.

41 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Would like to say

\ref str -> modifyIORef ref (+(read str))

� But that’s not going to be exception safe.

� Try this instead:

\ref str -> do

val <- evaluate $ read str

modifyIORef ref (+val)

41 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

Wrap it with exception-catching goodness:

step ref str = handle

(\(ErrorCall e) -> putStrLn $ "Warn: " ++ str)

$ do

val <- evaluate $ read str

modifyIORef ref (+val)

42 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Define a combinator for looping over lines of a file.

� Type first:

eachLine :: (String -> IO ()) -> Handle -> IO ()

43 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

� Define a combinator for looping over lines of a file.

� Type first:

eachLine :: (String -> IO ()) -> Handle -> IO ()

� Now definition:

eachLine f h = do

e <- hIsEOF h

when (not e) $ do

line <- hGetLine h

f line

eachLine f h

43 / 45



Meta Action! Side Next

Side Effects

A Small Example Using Files

Define main:

main = do

ref <- newIORef (0 :: Integer)

withFile "LineSum.txt" ReadMode $

eachLine (step ref)

-- Handle automatically closed for us!

total <- readIORef ref

putStrLn $ "Total: " ++ (show total)

44 / 45



Meta Action! Side Next

Next time

I think we should talk about concurrency:

� forkIO and explicit threading.

� Data.Parallel.Strategies

� Software Transactional Memory.

(I am sort of willing to be overruled, tho’.)

45 / 45



Meta Action! Side Next

Bib

Available from: http://courses.cms.caltech.edu/
cs11/material/haskell/index.html.

Hal Daumé III.
Yet another haskell tutorial.
2002–2006.
Available from: http://www.cs.utah.edu/~hal/htut/.

45 / 45

http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://www.cs.utah.edu/~hal/htut/

	Metadata
	Questions?

	Programming With Actions
	A First Interactive Example
	Control Flow, Monadically
	Brain Teaser From Last Time
	Other Effectful Operators

	Side Effects
	Mutable References in IO
	Mutable Arrays in IO
	The ST Monad
	Catching Exceptions in IO
	Laziness vs. Exceptions
	A Small Example Using Files

	Next time

