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Metadata

Questions?

� Any questions from last time?

� Any questions about the errata email?

� Sorry about that.
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Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� Accept the user’s input.

� Say hi.

� Exit.
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Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� putStrLn :: String -> IO ()

� Accept the user’s input.

� getLine :: IO String

� Say hi.

� putStrLn :: String -> IO ()

� Exit.

� A few things this could mean.
� We will take it to be “return control flow”
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Programming With Actions

A First Interactive Example

A classic example (and also [2, p59]):

� Prompt the user for their name.

� putStrLn "Hello! What’s your name?"

� Accept the user’s input.

� name <- getLine

� Say hi.

� putStrLn $ "Hello, " ++ name

� Exit.
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Programming With Actions

A First Interactive Example

� Now all we have to do is glue it together.
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Meta Action! Side Next

Programming With Actions

A First Interactive Example

� Now all we have to do is glue it together.

� Using do notation:

HelloName.hs

main = do

putStrLn "Hello! What’s your name?"

name <- getLine

putStrLn $ "Hello, " ++ name
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Programming With Actions

Aside: Alternate Syntaxes

� Given an action like

foo = do

e1

r <- a

s <- b -- b may reference r

e2 -- e2 may reference r and s
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Aside: Alternate Syntaxes

� Given an action like

foo = do

e1

r <- a

s <- b -- b may reference r

e2 -- e2 may reference r and s

� Equivalent, without “two-dimensional syntax”:

foo = do { e1 ; r <- a; s <- b; e2 }
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Programming With Actions

Aside: Alternate Syntaxes

� Given an action like

foo = do

e1

r <- a

s <- b -- b may reference r

e2 -- e2 may reference r and s

� Equivalent, without “two-dimensional syntax”:

foo = do { e1 ; r <- a; s <- b; e2 }

� Fully de-sugared form (note structure!):

foo = e1 >> a >>= (\r -> b >>= (\s -> e2))

6 / 45



Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� Everybody have “and then” down?

� What about

� if/then or if/then/else,
� Loops (while, for),
� Continuations (not going to cover this today, sorry)
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Programming With Actions

Control Flow, Monadically

Another example from Hal [2, p60]:

� The number guessing game.

� Given an Int,

� Ask the user for a guess
� If incorrect, inform the user of the sign of error and go

again.
� If correct, congratulate the user and stop.
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Programming With Actions

Control Flow, Monadically

� Ask the user for a guess

� getLine will get us a String.
� Slideware: use read to get an Int.
� Real software: use reads or other, more safe, parser.
� Real, Security software: don’t use Int, reads an
Integer and check for overflow (or do comparisons as
Integers); timeout if the user takes too long, . . .
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Programming With Actions

Control Flow, Monadically

� Ask the user for a guess

� getLine will get us a String.
� Slideware: use read to get an Int.
� Real software: use reads or other, more safe, parser.
� Real, Security software: don’t use Int, reads an
Integer and check for overflow (or do comparisons as
Integers); timeout if the user takes too long, . . .

� Could use something like:

getRead = getLine >>= \l -> return (read l)

� Standard library has a slightly nicer readLn.
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Programming With Actions

Control Flow, Monadically

� See how the user fared. One possibility:

guessingGame :: Int -> IO ()

guessingGame n = do

putStrLn "Take a guess!"

n’ <- readLn

if n == n’

then {- ... -}

else if n > n’

then {- ... -}

else {- ... -}
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Programming With Actions

Control Flow, Monadically

guessingGame :: Int -> IO ()

guessingGame n = do

putStrLn "Take a guess!"

n’ <- readLn

case n ‘compare‘ n’ of

LT -> {- ... -}

GT -> {- ... -}

EQ -> {- ... -}

� Better, maybe. Why?
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Programming With Actions

Control Flow, Monadically

guessingGame :: Int -> IO ()

guessingGame n = do

putStrLn "Take a guess!"

n’ <- readLn

case n ‘compare‘ n’ of

LT -> {- ... -}

GT -> {- ... -}

EQ -> {- ... -}

� Better, maybe. Why?

� Compiler can check that we didn’t miss anything.
(“Non-exhaustive match warnings”)
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Programming With Actions

Control Flow, Monadically

� “OK, sure, but what goes in those comments you’ve
refused to expand for us?”
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Programming With Actions

Control Flow, Monadically

� “OK, sure, but what goes in those comments you’ve
refused to expand for us?”

� The EQ case is easy:

do putStrLn "Yes!"

� The “do” is actually superfluous.
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Programming With Actions

Control Flow, Monadically

� The LT and GT cases require that we loop. How?

� Well, what do we want?
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� Well, what do we want?

� We want the guessing game action again:

do putStrLn "Too Low!"

guessingGame n
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Meta Action! Side Next

Programming With Actions

Control Flow, Monadically

� The LT and GT cases require that we loop. How?

� Well, what do we want?

� We want the guessing game action again:

do putStrLn "Too Low!"

guessingGame n

� “while” and “until” loops are typically expressed as
recursion.

� At the end of a do block / bind chain.
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Programming With Actions

Control Flow, Monadically

NumberGuessGame.hs

guessingGame n = do

putStrLn "Take a guess!"

n’ <- (readLn :: IO Int)

case n ‘compare‘ n’ of

EQ -> putStrLn "Yes!"

LT -> do putStrLn "Too high!"

guessingGame n

GT -> do putStrLn "Too low!"

guessingGame n
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Programming With Actions

The Point of No Return

� Coming from “those other” languages, the output of this
IO action might be surprising:

foo x = do

putStr "Test..."

case {- ... -} of

Nothing -> return ()

Just x -> putStr $ show x

putStrLn "...ing"

� What is the output?
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� Coming from “those other” languages, the output of this
IO action might be surprising:

foo x = do

putStr "Test..."

case {- ... -} of

Nothing -> return ()

Just x -> putStr $ show x

putStrLn "...ing"

� What is the output?

� return makes a pure value into an action. It does not
alter control flow.

15 / 45
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Programming With Actions

Brain Teaser From Last Time

� Anybody try running this program?

twice a = a >> a

main = twice (putStrLn "Hello, World")

� What happens?
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Programming With Actions

Brain Teaser From Last Time

� Anybody try running this program?

twice a = a >> a

main = twice (putStrLn "Hello, World")

� What happens?

� The type of twice is interesting:

twice :: Monad m => m a -> m a

� Given an action in the monad m, produce an action in the
monad m.
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Programming With Actions

Brain Teaser From Last Time

twice :: Monad m => m a -> m a

twice a = a >> a

� Given an action in the monad m, produce an action in the
monad m.

� How about other actions?

� Maybe and Reader aren’t especially interesting. Why?
� twice (modify (+1))?

17 / 45
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Programming With Actions

Brain Teaser From Last Time

� “Given an action in the monad m, produce an action in
the monad m.”

� This philosophy is (almost) unique to Haskell: the
program we build does not perform any actions, it
describes the actions (and any interrelations).

� That’s what it means to run a program, though!

� Program-centric view: Hook the program up to the real
world.

� World-centric view: Interpret the program’s descriptions
of actions within the real world.

18 / 45



Meta Action! Side Next

Programming With Actions

Other Effectful Operators

� Actions are values.

� Some actions are just clever synonyms for pure code:

� Maybe, Reader, State, . . .

� IO actions may not be safely run by the program.

� Program composes IO actions together and the outside
world runs them at runtime.

� Some are in-between (e.g. ST)
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Programming With Actions

Other Effectful Operators

� Haskell programs spend a lot of ink to combine actions.

� Of course: there are functions to help out.

� Notably, the Control.Monad module.
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Programming With Actions

Other Effectful Operators

� “Do this when. . . ”:

when :: Monad m => Bool -> m () -> m ()

� For example, an Easter Egg:

main = do

name <- getLine

when (name == "Joshua") $ do

putStrLn "Ah, Professor Falcon!"

putStrLn $ "Hello, " ++ name
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Programming With Actions

Other Effectful Operators

� “Do everything on this list in order:. . . ”:

sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

� And some utility forms:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

forM :: Monad m => [a] -> (a -> m b) -> m [b]

� So a for loop:

forM [1..10] (\x -> twice (print x))
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Side Effects

Mutable References in IO

� Sometimes, mutation is exactly what you want;

� Accept no substitutes.
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Side Effects

Mutable References in IO

� Enter Data.IORef.

� Basic operations:

newIORef :: a -> IO (IORef a)

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

modifyIORef :: IORef a -> (a -> a) -> IO ()

� If you like: indexed get and put functions.

� Note: All of these are IO actions.
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Side Effects

Mutable References in IO

� Suppose

mystery :: IO () -> IO ()

� And we want to count how many times mystery runs its
argument (please ignore exceptions):

countMystery a = do

r <- newIORef 0

mystery (modifyIORef r (+1) >> a)

c <- readIORef r

putStrLn $ "Mystery ran its argument "

++ show c ++ "times"
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Side Effects

Mutable Arrays in IO

� Data.Array.IO provides both

� “Boxed” (non-strict), IOArray, and
� “unboxed”, IOUArray.

� Accessed via MArray class:

newListArray :: (MArray a e m, Ix i)

=> (i,i) -> [e] -> m (a i e)

readArray :: ... => a i e -> i -> m e

writeArray :: ... => a i e -> i -> e -> m e

...
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Side Effects

The ST Monad

� Sufficiently often, we have code that is “externally pure”
but may internally use mutation.

� This is OK if none of the mutation “escapes”

� The ST monad provides this encapsulation.

� ST is not State; please do not confuse them.
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Side Effects

The ST Monad

� ST monad: Control.Monad.ST.

data ST s a = --hidden...

� The type parameter s is a phantom: it is not actually
used in the definition. (How mysterious!)
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Side Effects

The ST Monad

� ST monad: Control.Monad.ST.

data ST s a = --hidden...

� The type parameter s is a phantom: it is not actually
used in the definition. (How mysterious!)

� ST monad references: Data.STRef.

newSTRef :: a -> ST s (STRef s a)

...

� Also ST-based arrays: Data.Array.ST.
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Side Effects

The ST Monad

� Unlike IO, we can get “out” of ST.

� With this funny-looking function:

runST :: (forall s . ST s a) -> a

� A trick of quantification. Roughly: ensures that the type
a does not mention the type s.

� Since all STRefs do mention s, . . .

� Since ST does not (safely) have access to the RealWorld,
every runST a should yield the same result.
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Side Effects

Catching Exceptions in IO

� I’m going to ignore the Haskell 98 exception mechanism
in favor of the more modern Control.Exception.

� The original system handles only IO errors.

� Uses interesting type trickery to get one-level sub-typing.

� A type class Exception.

� Lots of exception types:

� ArithException includes Overflow, DivideByZero.
� PatternMatchFail

� ErrorCall (error, head, . . . )
� SomeException (existential)
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Side Effects

Catching Exceptions in IO

� In general, exceptions are control flow mechanism.

� Should be used as such! Try to avoid throwing them from
pure code.

� The standard library is old and has its own ideas.
� Sorry.

� Formally: exceptions coming from pure code have set
semantics, with nondeterministic representative selection.

� “If this block of pure code throws an exception, you are
guaranteed only that it was one that it could throw.”
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Side Effects

Catching Exceptions in IO

� Alright, now, on to catching.

� Primitive function:

catch :: Exception e

=> IO a -> (e -> IO a) -> IO a

� Compiler wants to know what type of exception (e) we
want to catch.

� Often inferred from use inside the handler.
� Can be explicitly labeled, too.
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Side Effects

Catching Exceptions in IO

� For example:

import Control.Exception as E

foo = E.catch (error "foo")

(\(ErrorCall str) -> return $

"caught error call: " ++ str)

� This call to E.catch catches only ErrorCalls.

� Transparent to other exceptions.

� (Qualified name E needed to avoid Prelude’s catch.)
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Side Effects

Catching Exceptions in IO

� For example:

import Control.Exception as E

foo = E.catch (error "foo")

(\(ErrorCall str) -> return $

"Caught: " ++ str)

� Rough transliteration:

try {

throw new ErrorCall("foo");

} catch (ErrorCall e) {

return ("Caught: " + e.toString());

}
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Side Effects

Catching Exceptions in IO

From catch we can build up other combinators (this is
Haskell!):

� handle flips the arguments to catch.

� try converts exceptions to Either:

try :: Exception e => IO a -> IO (Either e a)

� bracket lets us build exception-safe allocate&release:

-- allocate release use

bracket :: IO a -> (a -> IO b) -> (a -> IO c)

-> IO c
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Side Effects

Laziness vs. Exceptions

� Consider

E.catch (return (error "Explode"))

(\(ErrorCall _) -> return "Nope")
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Side Effects

Laziness vs. Exceptions

� Consider

E.catch (return (error "Explode"))

(\(ErrorCall _) -> return "Nope")

� Explodes! Huh!?

� Nothing we did inside the action triggered the explosion.
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Side Effects

Laziness vs. Exceptions

� Fix here with the evaluate function:

evaluate :: a -> IO a

� To wit:

E.catch (evaluate (error "Explode"))

(\(ErrorCall _) -> return "Nope")

� Other cases may be tricker (e.g. evaluating a pair).

� See the deepseq package.
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Side Effects

A Small Example Using Files

� Files?
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� Files?

� Oh right, IO. Specifically, System.IO:

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

stdin, stdout, stderr :: Handle
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Side Effects

A Small Example Using Files

� Files?

� Oh right, IO. Specifically, System.IO:

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

stdin, stdout, stderr :: Handle

� Handle-taking variants of functions:

hPutStrLn :: Handle -> String -> IO ()

hGetLine :: Handle -> IO String
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Side Effects

A Small Example Using Files

� Open a file

� For each line, read it as an Integer

� Sum them up in an IORef

� Output the result

� . . . ?

(For those of you following along on your laptops, this
example is available as LineSum.hs on the website.)
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Side Effects

A Small Example Using Files

� Open a file

� For each line, read it as an Integer

� Sum them up in an IORef

� Output the result

� . . . ?

� Close the file! . . . ?

� On parse exception, warn and keep going!

(For those of you following along on your laptops, this
example is available as LineSum.hs on the website.)
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Side Effects

A Small Example Using Files

� The “open, do something, close” pattern is so common
it’s called withFile:

withFile :: FilePath -> IO Mode

-> (Handle -> IO r) -> IO r

withFile fp im = bracket (openFile fp im)

(hClose)

� (Actual definition!)
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Side Effects

A Small Example Using Files

� Would like to say

\ref str -> modifyIORef ref (+(read str))

� But that’s not going to be exception safe.
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Side Effects

A Small Example Using Files

� Would like to say

\ref str -> modifyIORef ref (+(read str))

� But that’s not going to be exception safe.

� Try this instead:

\ref str -> do

val <- evaluate $ read str

modifyIORef ref (+val)
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Side Effects

A Small Example Using Files

Wrap it with exception-catching goodness:

step ref str = handle

(\(ErrorCall e) -> putStrLn $ "Warn: " ++ str)

$ do

val <- evaluate $ read str

modifyIORef ref (+val)
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Side Effects

A Small Example Using Files

� Define a combinator for looping over lines of a file.

� Type first:

eachLine :: (String -> IO ()) -> Handle -> IO ()
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Side Effects

A Small Example Using Files

� Define a combinator for looping over lines of a file.

� Type first:

eachLine :: (String -> IO ()) -> Handle -> IO ()

� Now definition:

eachLine f h = do

e <- hIsEOF h

when (not e) $ do

line <- hGetLine h

f line

eachLine f h
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Side Effects

A Small Example Using Files

Define main:

main = do

ref <- newIORef (0 :: Integer)

withFile "LineSum.txt" ReadMode $

eachLine (step ref)

-- Handle automatically closed for us!

total <- readIORef ref

putStrLn $ "Total: " ++ (show total)
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Next time

I think we should talk about concurrency:

� forkIO and explicit threading.

� Data.Parallel.Strategies

� Software Transactional Memory.

(I am sort of willing to be overruled, tho’.)
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