
Under consideration for publication in Theory and Practice of Logic Programming 1

Towards Weighted Default Reasoning

NATHANIEL WESLEY FILARDO and JASON EISNER

Johns Hopkins University, Baltimore, MD
(e-mail: {nwf,jason}@cs.jhu.edu)

submitted 4 May 2017; revised 4 May 2017; accepted ?

Abstract

Our concurrent paper [4] has considered the semantics of an arithmetic circuit solver [3] extended
to work on potentially infinite circuits that are described by weighted logic programs. That paper
assumed a sound, decidable theory of sets of terms. Unfortunately, the required operations of
set subtraction, intersection, union, projection, subset testing, and cardinality counting are not
all expressible or decidable in classes of tree automata sufficiently capable to describe runtime
quantities within our weighted logic programs. The present work investigates the possibility of
eliminating the need for set difference by representing a (piecewise-constant) function on trees
as a finite collection of constant functions on varying domains. Functions on narrower domains
override the “default” values given for wider domains. The last vestige of set subtraction is
encapsulated within a cardinality counting operation (where the difference itself need not be
expressed as an automaton).

1 Introduction

Logic programs, written in, e.g., Prolog, consist of inference rules such as “rs(X) :-

r(X,Y), s(Y)”. This rule asserts that rs(x) is true if ∃y such that r(x,y) and s(y)

are both true. A weighted logic program is a definition of a generalized computational

circuit. The nodes of such a circuit are termed items and constraints on their values may

be specified using Prolog-like rules such as rs(X) ⊕= r(X,Y) ⊗ s(Y), which effectively

defines a vector rs by adding (⊕) the product (⊗) of the matrix r and the vector s.

SLD resolution of Prolog programs [6] can reason about sets of terms at once, using

free variables, answering some infinite questions in finite time. Practical extension of

set-at-a-time reasoning to weighted programs remains an open problem.

Our concurrent paper [4], whose introduction we reproduce in summary form here,

gives a sketch of an algorithm for set-at-a-time reasoning about weighted logic programs,

assuming the ability to perform algebraic manipulation of sets of items. In particular,

our method for carrying out one step of backward computation, Compute, depended upon

explicit set subtraction so that, given a query for possibly infinitely many items κ, it could

respond with a finite partition wherein each (possibly infinite) subset was associated with

a single value. Unfortunately, set subtraction is difficult to explicitly compute; many

classes of tree automata are not closed under set subtraction [2].1 The present work

investigates one possible route to eliminating the need for set subtraction, or, rather,

encapsulating it behind a weaker operation. We encode partitions of items using a recursive

1 One can, of course, represent set difference by maintaining a pair of sets and interpreting appropriately.
Unfortunately, this representation has limitations, not the least of which is that it is not, itself, closed
under subtraction.

2 Nathaniel Wesley Filardo and Jason Eisner

notion of defaults: rather than describing the behavior of each of {0}, N ∖ 0 and Z ∖N
(which together partition Z), we now would describe behaviors of {0}, N, and Z, with the

understanding that the most precise description available is the one to use, overriding any

“default” behaviors associated with the broader descriptions. That is, 0 would behave as

described by {0}, −1 by Z, and 1 by N.

As in our companion paper, our treatment is intended to be applicable to any weighted

logic language. Our particular formalism, µDyna, pronounced “micro-Dyna,” is built up

of little more than set theory and has a straightforward, declarative semantics, detached

from any particular implementation, and devoid of metalogical escapes. After brief reviews

of notation (§1.1) and µDyna (§1.2), we describe the particular set-theoretic black box

we assume (§1.3) and the above idea of encoding functions by defaults (§2). We motivate

our set-at-a-time reasoning with an example (§3.1) which guides discussion (§3.2) and

formalization (§3.3-3.6) of default reasoning. We present a pseudocode listing in §4,

detailing its execution on our example, and conclude by comparing related work in §5.

1.1 Review of Notation

We use the notation of §1.1 of [4], slightly extended. This section is largely a summary of

that earlier work; new notation will be explicitly marked as such.

Sets Sets are manipulated by the standard operators (e.g., {. . .}, ∪, ∩, ∈, ⊆, ∖). ℘ sends

a set to its powerset; ℘fin sends a set to its set of finite subsets. ∣σ∣ denotes the cardinality

of σ, one of N∞
def= N ∪ {∞}. The partial function selt(σ) projects a singleton set to its

element: selt({s}) def= s. We use the shorthands ⋃σ def= ⋃s∈σ s and Nn1
def= {1,2, . . . , n} ⊂ N.

Bags ⦃s@m⦄ denotes a bag holding exactlym copies of s, also said as s with multiplicity

m ∈ N∞ (with 0 being identified with absence from the bag). Multiplicities of 1 may

be suppressed: ⦃s⦄ = ⦃s@1⦄. As with sets, comprehension notation may be employed,

quantifying over both elements and multiplicities. The traditional symbols of set-theory

with a plus sign superimposed will be used for bag operations: ⊎, ?, F, etc., though we

overload ∅ for the empty bag as well. ℘+β denotes the set of all sub-bags of bag β. U−1
m σ is

the bag whose elements are from σ, all with multiplicity m. New in this paper, we define

v ⋿ β to mean that v occurs exactly m times in β.

Tuples We denote n-tuples as ⟨ti⟩i∈Nn1
def= ⟨t1, . . . , tn⟩, and use t⃗ when n is clear from

context. A pair is a tuple of length 2. ++ is the associative tuple concatenation operator.

The length of a tuple is denoted tlen⟨t1, . . . , tn⟩
def= n; ⟨⟩ is the tuple of length 0. Nested

tuples may be written with color-matched brackets for ease of reading, e.g., ⟨⟨⟩, ⟨⟨a⟩, b⟩⟩.
Projection selects an element within a tuple: t⃗⇃k

def= tk, for t⃗ an n-tuple and k ∈ Nn1 . Nested

tuples can be projected along paths (a tuple of positive integers): t⃗⇃....k2.k1
def= t⃗⋯⇃k2⇃k1 .

Sets of Tuples Dependent sums are written Σs∈σYs
def= {⟨s, ts⟩ ∣ s ∈ σ, ts ∈ Ys}, where Y is

a σ-indexed collection of sets. As we will often have sets described by tuples of elements

sampled from a product of other sets, we introduce a product-forming tuple operator,

jσ, τo def= {⟨s, t⟩ ∣ s ∈ σ, t ∈ τ}. Projection is extended to sets, σ⇃π
def= {σ⇃π ∣ s ∈ σ}, and a new

form is added to preserve cardinalities: σ⇃@π
def= ⦃s⇃π ∣ s ∈ σ⦄. Refinement filters a set of

tuples by a projection: σ[τ/π] def= {s ∈ σ ∣ s⇃π ∈ τ}.

Functions Sets of functions are denoted with the dependent product operator: Πs∈σYs
where Y is a σ-indexed collection of sets; when Y is contstant (i.e., ∃τ∀s∈σYs = τ), we

write σ → τ . The domain of a function f ∈ Πs∈σYs is denoted dom(f) def= σ. Functions

3

may be written using set notation, as {s ↦ t ∣ ⋯}, where s is in the domain and t the

(dependent) codomain; ↦ is an infix pair constructor ((a ↦ b) def= ⟨a, b⟩). We also use

this notation in quantification, e.g., {ϕ(s, t) ∣ s ↦ t ∈ f}, to range over the domain of a

function. Functions can be constructed out of other notation by use of an argument

placeholder, “⋅”: e.g., a⋅
def= {n↦ an ∣ n ∈ α} for appropriate α.

Terms The items and values of our language, ground terms, are from a Herbrand

universe H over F . H is the smallest set such that f/n ∈ F and t1, . . . , tn ∈ H implies that

f⟨t1, . . . , tn⟩ ∈ H. A non-ground term (synonymously, type) is a subset of H. We use

the product-forming tuple operator as a shorthand for non-ground terms: fjτ1, . . . , τno
def=

{f⟨t1, . . . , tn⟩ ∣ ∀iti ∈ τi}. Projection is extended to work on trees as well as on tuples by

ignoring any functors along the path. The symbol null /∈ H will indicate the absence of

a value assigned to an item. As shorthands, we define H′ def= {null} ∪H, H+ def= ℘+U−1
∞ H

(all bags of terms), and H′+ def= ℘+U−1
∞ H′ (and null).

Aggregation Functions Aggregation of multiple values associated with an item (aggre-

gands) to a single value is carried out by aggregators, functions f ∈ H′+ → H′ which

obey f(∅) = f(⦃null⦄) = f(⦃null@∞⦄) = null, ∀a∈Hf(⦃a⦄) = a, and ∀σ,σ′f(σ ⊎ σ′) =
f(⦃f(σ)⦄ ∪ σ′). null is a unit of every aggregator.

1.2 µDyna Normal-Form Programs

We review our formalism for programs; this is largely condensed from §1.2 and §3.2 of [4].

Rules within a µDyna program are indexed by a finite set Ξ and are sets of nested

tuples over terms. The base case of the nesting is a kv-pair, which pairs together a key

and a value (in that order, i.e., ⟨key,value⟩), each from H (not H′). Each entry within a

rule’s set of tuples, ρr, is a pair of the head/result kv-pair (at hr
def= 1; additionally,

head
def= 1.1 and res

def= 1.2) and a nr-tuple of subgoal kv-pairs (at sg
def= 2). Our example

of a weighted logic language rule from above, rs(X) ⊕= r(X,Y) ⊗ s(Y), is, in µDyna,

{⟨⟨rs⟨x⟩, z⟩, ⟨r⟨x, y⟩ ↦ r,s⟨y⟩ ↦ s,⊗⟨r, s⟩ ↦ z⟩⟩ ∣ r, s, x, y, z ∈ H}. Each element reads as

an instruction: “contribute the result to the head (for aggregation) if each subgoal’s key has

been assigned the corresponding value;” e.g., ⟨⟨rs⟨1⟩, 0⟩, ⟨⟨r⟨1, 3⟩, 2⟩, ⟨s⟨3⟩, 5⟩, ⟨⊗⟨2, 5⟩, 0⟩⟩⟩
says to contribute 0 to rs⟨1⟩ if r⟨1,3⟩ ↦ 2, s⟨3⟩ ↦ 5, and ⊗⟨2,5⟩ ↦ 0.

Formally, sets ρr used as µDyna rules obey five constraints: 1 projections along

head, res, and sg are defined for all elements of the set; 2 the head and result

are terms, i.e., ∀t∈ρr,π∈{head,res}t⇃π ∈ H; 3 the number of subgoals in r, denoted nr,

is constant across all groundings of the rule, i.e., ∀r∈Ξ,s∈ρr⇃sgtlen(s) = nr; 4 each sub-

goal is itself a pair of two terms, i.e., ∀t∈ρr,i∈Nnr1 ,j∈{1,2}t⇃sg.i.j ∈ H; and 5 the sub-

goals and head determine the grounding, i.e., ∀α⊆ρr ∣α⇃sg∣ = ∣α⇃head∣ = 1 ⇒ ∣α∣ = 1. A

rule query t⃗ for a rule r is a nr-tuple of items. A rule query gives rise to a set

of pre-answers, θt⃗r
def= ρr[{t1}/sg.1.1]⋯[{tnr}/sg.nr.1]. t⃗ is trivial if θt⃗r = ∅. Given

valuations vi for each ti, one can filter pre-answers to a set of rule answers, εt⃗r,v⃗
def=

θt⃗r[{v1}/sg.1.2]⋯[{vnr}/sg.nr.2]. If any vi = null, then ε is ∅. The constraints on µDyna

rules imply that ∀h∈I,r,t⃗,v⃗ ∣εt⃗r,v⃗[{h}/head]∣ ≤ 1. Non-ground rule queries are, similarly,

tuples of sets of items. The corresponding non-ground pre-answers are unions of the

ground pre-answers: θτ⃗r
def= ⋃t⃗∣∀iti∈τi θ

t⃗
r = ρr[τ1/sg.1.1]⋯[τnr/sg.nr.1]. Non-ground rule

answers ε are properly defined using valuation functions fi for each subgoal; however, in

this paper, we restrict to constant valuation functions and will simply give their output

vi for each. That is, ετ⃗r,v⃗
def= ⋃t⃗∣∀iti∈τi ε

t⃗
r,v⃗ = ρr[{v1}/sg.1.2]⋯[{vnr}/sg.nr.2] ⊆ θτ⃗r .

4 Nathaniel Wesley Filardo and Jason Eisner

A µDyna program as a whole consists of several components: 1 its set of items, I ⊆ H;
2 a bag of (µDyna) rules as defined, ⦃ρr ∣ r ∈ Ξ⦄, where Ξ is a finite set; and 3 an

assignment of items to aggregation operators, aggr(⋅) ∈ I → (H′+ →H′).

1.3 Required Set Theory Operations

The development of this paper aims to eliminate the need to compute and represent

differences of sets of trees, as part of a more general program of lowering the requirements

of algorithmic representations of sets. In general, our requirements will remain quite

high. We require the ability to describe sets that correspond to all instantiations of a

non-ground term (which may contain repeated variables). We also require our family of

representable sets to be closed under finite unions and intersections. Finally, we require

the ability to count cardinalities of set differences (without representing the differences

themselves). This last implies that we can also perform subset testing and equality testing.

Ultimately, we have achieved our modest goal of eliminating explicit set difference; the

catch, however, is that we still need the ability to extract cardinalities of subtractions.

In [4], we ultimately required that all non-ground rule answers ε were uniform in their

contributions to their heads: each h ∈ ε⇃head had to be associated with the same bag

of aggregands. Now, we will require a similar kind of uniformity of rule answers, in

particular, uniformity on a “surviving” subset. Recognition of this uniformity, with a little

irony, encapsulates two set subtractions yet appears to be a slightly lower requirement.

In particular, given a non-ground rule answer ε ⊆ ρ, an “obstructed head” set ω ⊆ I,

and a “masked” set of rule groundings µ ⊆ ρ, we define AnswerFor(ε, ω, µ) to equal β iff

∀h∈(ε⇃head∖ω)(ε ∖ µ)[{h}/head]⇃@res = β. We can read this as “every head in ε⇃head, excepting

the obstructed ω, is, after masked groundings are removed, associated with the same

bag-view res projection, β.” For simplicity, we will restrict to βs of the form ⦃v@m⦄ for

some v ∈ H and m ∈ N∞.

2 Encoding Functions with Finite Ranges

In a large subset of µDyna programs, we need to find and manipulate functions f ∈ κ→H+

which have possibly infinite domain κ but only finite range, where the range is only known

at runtime. We review the encoding used by [4] before exhibiting a “default”-based

encoding which avoids the need for set subtraction in construction and may be interpreted

with only cardinality of subtractions.

Encoding by Domain Partition A piecewise-constant function with finite range, f ∈ κ→ α,

can be described by a finite set of pairs ⟨κi, ai⟩ with disjoint κi ⊆ κ and ai ∈ α. This,

in turn, can be made into a function f ′ = ⋃{κi ↦ ai} so that f(k) = f ′(κi) with κi the

unique element of dom(f ′) which contains t. Given two such encodings, f ′i , of functions

with a common domain, fi ∈ κ→ α, and a binary operator ⊕ on α, it is easy to build the

⊕-join of g1 and g2: g1 ∧⊕ g2 ∈ κ→ α; it is {(τ1 ∩ τ2 ≠ ∅) ↦ g′1(τ1)⊕ g′2(τ2) ∣ τi ∈ dom(g′i)}.

If, however, the gi have different domains, gi ∈ κi → αi, and we wish for the join to have

κ1∪κ2 as its domain, we must first specify values for the novel part of the domain for each

gi. Specifically, we must add (partitions of) κ2 ∖ κ1 to dom(g1), and κ1 ∖ κ2 to dom(g2),
associated with identity elements of ⊕. The need to compute set differences is unavoidable.

The non-ground reasoning algorithm of [4] maintains its collections of aggregands to

head items using exactly this encoding; its disjoin function, which adds the collection

of aggregands β to each head h ∈ η across the encoding f ′ and yields an appropriately

5

adjusted encoding, is f ′ ∧⊎ {η ↦ β} disguise:

1 def disjoin(f ′, η, β) % Add all of β to each h ∈ η across all of f ′

2 return {(κ ∩ η) ↦ β ⊎ τ ∣ (κ↦ τ) ∈ f ′, κ ∩ η ≠ ∅} % common domain elements

3 ∪{(η ∖⋃(dom(f ′))) ↦ β ∣ η /⊆ ⋃(dom(c))}
´¹¹¸¹¹¶

enlarge f ′’s domain

∪{(κ ∖ η) ↦ τ ∣ (κ↦ τ) ∈ f ′, κ /⊆ η}
´¹¹¸¹¹¶

enlarge novel domain

Encoding by Defaults A pointwise-constant backed-off function (BF), F ∈ κ →̂ α,

encodes any function f ∈ κ→ α, with α finite, using a function on potentially overlapping

subsets of ℘κ. The base of F , TF ⊆ ℘κ, is the domain of this encoding function, i.e., F is

of the form TF → α. A BF has three preconditions on its base: it must be intersection-

closed (i.e., ∀τi∈TF τ1 ∩ τ2 ∈ TF), it must be a cover of α (i.e., ⋃TF = α),2 and it must

contain ∅ ∈ TF .3 ∩-closure allows us to define the encloser of σ ⊆ κ in F : ⌈σ⌉F (or just

⌈σ⌉, when clear) is the smallest τ ∈ TF such that σ ⊆ τ , if it uniquely exists.4 The BF

F encodes f by taking f(k) = F(⌈{k}⌉). We extend application notation to F(k) (since

k ∈ κ and not ℘κ, this is unambiguous). If TF is finite, F ∈ κ →̂fin α (⊆ κ →̂ α).

The ∧⊕ of two Fi ∈ κ →̂ α is much as before: F1∧⊕F2 ∈ κ→ α has base T = {σ1∩σ2 ∣ σi ∈
TFi} and sends τ ∈ T to F1(⌈τ⌉F1

) ⊕ F2(⌈τ⌉F2
).5 Given a BF F ∈ κ →̂ α, we can enlarge

its domain to ensure that it is a superset of η by ensuring that η and {η∩σ ∣ σ ∈ TF} exist

in the enlarged base. No longer needing to partition, we have no need for set subtraction.

Of course, as BFs are just an encoding of a function, just as is the partition-based

scheme above, it is possible, and hopefully illustrative, to consider converting a BF F to

a partition encoding f ′. The subset of κ strictly enclosed by τ ∈ TF (and not by some

subset of τ) is u(τ) = τ ∖⋃{σ ∈ TF ∣ σ ⊆ τ}. Thus, K = {u(τ) ∣ τ ∈ TF} is a partition of κ,

and f ′(κ′) = F(κ′) is constant on each κ′ ∈K.

Example 1. Consider the three rules {⟨⟨r⟨x, y⟩,2⟩, ⟨⟩⟩ ∣ x, y ∈ Z}, {⟨⟨r⟨x, x⟩,1⟩, ⟨⟩⟩ ∣ x ∈ Z}, and

{⟨⟨r⟨0,0⟩,1⟩, ⟨⟩⟩}.6 If aggregated by sum, their combined contributions form a three-way partition of

rjZ,Zo: {r⟨0,0⟩ ↦ 4} ∪ {r⟨x, x⟩ ↦ 3 ∣ x ∈ Z ∖ {0}} ∪ {r⟨x, y⟩ ↦ 2 ∣ x, y ∈ Z, x ≠ y}. This same result can be

readily encoded as a pointwise-constant BF without the need for set subtraction: {{r⟨0, 0⟩} ↦ 4,{f⟨x, x⟩ ∣
x ∈ Z} ↦ 3,rjZ,Zo ↦ 2}. ◊
Example 2. A rule in which values covary with the head, such as {⟨⟨f⟨x⟩, x⟩, ⟨⟩⟩ ∣ x ∈ H} does not

give rise to contributions amenable to pointwise-constant BFs. We defer to future work relaxing the

pointwise-constancy requirement. ◊

3 Default Reasoning

3.1 A Motivating Example

To motivate and guide our discussion of default reasoning using BFs, we tell again, in

Figure 1 the story from [4] of computing the product of an infinite matrix with an infinite

2 This ensures that F still acts as a total function on its domain. Practically, this often means that
X ∈ TF , usually with F(τ)(t) = null when null ∈ α.

3 F(∅) cannot influence the decoded meaning of F ; ∅ ∈ TF just for simplicity of definitions.
4 Not having required that TF be closed under ∪, i.e., having required that it be only a semi-lattice

under ⊆, we are not ensured that an arbitrary subset of κ has an encloser. Enclosers are, however,
certainly defined for any subsets of any σ ∈ TF and for all singleton subsets of κ.

5 The use of ⌈τ⌉ as arguments to Fi is perhaps surprising, but necessary: there may be multiple pairs
⟨τ1, τ2⟩ with τi ∈ TFi that have the same intersection τ .

6 Prolog-style syntax does not obviously offer a convenient way to write the µDyna rule {⟨⟨r⟨x, y⟩, 2⟩, ⟨⟩⟩
∣ x, y ∈ Z}; introducing explicit annotations might allow something like r(X :int, Y :int) += 2.

6 Nathaniel Wesley Filardo and Jason Eisner

0

0

0

=

rjH,Ho {s⟨0⟩} x = 0, y = 0

sjZo x = 0, y = 0

x ∈ N, y = x

sjZo x ∈ Z, y = 0

x ∈ Z, y ∈ N

κ = rsjHo τ1 = {r⟨0,0⟩}
v1 = 4

τ2 = {s⟨0⟩}
v2 = 6

{r⟨x,x⟩ ∣ x ∈ Z}
3

{s⟨0⟩}
6

sjNo
5

rjZ,Zo
2

{s⟨0⟩}
6

sjNo
5

αk,1 = ρ[κ/head]⋅⇃
s
g
.1
.1

αk,2 = αk,1[τ1/sg.1.1]⋅⇃
s
g
.2
.1

θ⟨τ1,τ2⟩ = αk,2[τ2/sg.2]
{rs⟨0⟩} ⊕= ⊗⟨4,6⟩@1

{rs⟨0⟩} # x = 0, y = 0

{rs⟨0⟩} # x = 0, y = 0

{rs⟨0⟩} ⊕= ⊗⟨3,6⟩@0

{rs⟨0⟩} # x = 0, y = 0

rsjNo ⊕= ⊗⟨3,5⟩@1

{rs⟨0⟩} ⊕= ⊗⟨3,5⟩@0

rsjNo # x ∈ N, y = x

{rs⟨0⟩} # x = 0, y = 0

rsjZo # x ∈ Z, y = x

rsjNo # x ∈ N, y = x

{rs⟨0⟩} # x = 0, y = 0

rsjZo ⊕= ⊗⟨2,6⟩@1 �

rsjNo ⊕= ⊗⟨2,6⟩@1 �

{rs⟨0⟩} ⊕= ⊗⟨2,6⟩@0

rsjZo # x ∈ Z, y = 0

rsjNo # x ∈ N, y = 0

{rs⟨0⟩} # x = 0, y = 0

rsjZo ⊕= ⊗⟨2,5⟩@∞ �

rsjNo ⊕= ⊗⟨2,5⟩@∞ �

{rs⟨0⟩} ⊕= ⊗⟨2,5⟩@∞

⋱ 2

3

4

3

3

2 ⋱

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r:

⋮
null

6

5

5

⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s:

×

⋮ ⋮ ⋮ ⋮
⊗⟨2,6⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⋯
⊗⟨4,6⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⋯
⊗⟨2,6⟩ ⊕ ⊗⟨3,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⋯
⊗⟨2,6⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨3,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⋯

⋮ ⋮ ⋮ ⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

rs:

ρ = {⟨⟨rs⟨x⟩, z⟩, ⟨r⟨x, y⟩ ↦ r,s⟨y⟩ ↦ s,⊗⟨r, s⟩ ↦ z⟩⟩ ∣ r, s, x, y, z ∈ H}

Fig. 1: Our rule rs(X) ⊕= r(X,Y) ⊗ s(Y), shown in µDyna form at the top, can perform the compu-
tation shown in the middle—the product of an infinite matrix (all of whose off-diagonal elements are
2) with an infinite vector. To obtain the answer, we call Compute with query κ = rsjHo. The bottom
of the figure shows a search tree that computes the aggregands of the answers. The root represents the
initial query of the first subgoal r, and the edges from the root correspond to the overlapping branches
of answers returned by Lookup. Each such edge leads to a new node with some refined query of the
second subgoal s, and the edges from that node again correspond to answers. (We elide the handling
of the third subgoal, ⊗, as it is only queried on singleton sets and so no branching is possible.) Thus,
each leaf corresponds to a non-ground rule query ⟨τ1, τ2⟩, which can be read off from the root-leaf path.
The attendant (pre-)answer sets are central to further reasoning; for reasons of space we show only θ at
each leaf and describe it by the variables used in the comprehension definition of ρ at the top. Each rule
answer may contribute values to subsets of their heads, subject to masking (§3.6). To the right of the
search tree is a trace (to be read top-to-bottom, and discussed in §4.1) of the execution of the algorithm
of §4, which visits overrides before visiting defaults (i.e., sets are visited before their proper supersets).
This order is why, for example, the top-most answer deriving from the pre-answer corresponding to x = 0,
y = 0 contributes to {rs⟨0⟩} but the second does not. Densely dotted lines connect regions of the trace
with their causative object in the search tree. Value contributions from leaves are denoted with ⊕= in this
log; masks, derived from θ upon returns up the search tree (dotted arrows), are denoted # and continue
to use the variable notation from the leaves. We elide the last set of masking operations. Gray entries do
not change the algorithm’s state; entries marked with daggers (�) rely on obstruction. The shape of the
search tree is determined by Lookup’s returns, namely {{r⟨0,0⟩} ↦ 4,{r⟨x, x⟩ ∣ x ∈ Z} ↦ 3,rjZ,Zo ↦ 2}
and {{s⟨0⟩} ↦ 6,sjNo ↦ 5}, BFs encoding the r and s items that have non-null weights.

7

Fan-out
§3.3

Base §3.4

Fan-in §3.5

Masking
§3.6

L

R

ρ ρ

κ θ H θ

L ε M ε

H ω ψ

ν

Ξ ℶ

C

Y

(1)

⊎

L

τ⃗

↦
η

τ⃗

⋀⊎
r

Mnemonic Type

Ξ Program Rule Indices Set
L Lookup Results BF
κ Query Key Set ⊆ I

r Rule index ∈ Ξ
η Head under consideration ∈H
τ⃗ Rule query ∈R

R Replacements
Set of tuples of

subsets of I
H Replacements for Head
M Masking replacements

H Induced Heads
⊆ I

ω Obstructing heads

ρ Rule groundings

µDyna
θ Unevaluated, these keys
ε Answers are Evaluated
ψ Surviving answers

ν Keys and Values Bag of
kv-pairsℶ Bag of result kv-pairs

C Contribution per rule
BF

Y Yield

Fig. 2: Plate notation for the various characters involved in inference with defaults. Plates (solid
rectangles) indicate quantification of structure over the variable in their lower-left corner; domains of
quantification point to their elements with dotted arrows. Solid arrows entering a plate are fanned-out
to each instantiation; those exiting are fanned-in using the mechanism indicated. Double-tipped arrows
indicate that the target is, in addition to being derived from the source, also a subset thereof. To reduce
visual clutter, indices have been omitted (they can be uniquely recovered from context) and L and ρ
have been repeated in the diagram, representing the same value at each occurrence. The τ⃗ plate on the
left derives the “induced heads” (see §3.4), which form the base of the contribution to the answer (C) for
each rule (r ∈ Ξ) given the query head (κ) and input BF (L). The η plate derives the value for each point
therein. Our assumptions on the program (1) (in §3.6) are seen to be the bridge between the system’s
fan-in (§3.5) and its masking post-processing (§3.6) of fan-out (§3.3).

vector via rs(X) ⊕= r(X,Y) ⊗ s(Y). To find the answer, we invoke one step of backward

reasoning by calling Compute(rsjZo), which, internally, uses Lookup to obtain values for

subgoals’ items. Lookup will continue to return a finite map with elements τ ↦ v, where

τ ⊆ I is a set of items and v ∈ H′ is the value assigned to each t ∈ τ . The centerpiece of

this paper is that the τs in this map now overlap, forming the base of a BF that encodes

the partition of old. Thus, the non-ground rule answers obtained (at the leaves of the

tree) in answer to the non-ground rule queries (the root-leaf path through the tree) will

overlap in that their pre-answer sets may have non-empty intersection. The answer sets

may not intersect due to ascribing different values to the same keys.

3.2 An Intuitive View of Default Reasoning

Let us attempt to give an intuition before we dive into the formalities. We will use ⋅̃ over

a symbol to mean that it has a more rigorous definition, given in the indicated section.

As there are rather many derived quantities in flight, we proffer the map in Figure 2 for

orientation as we proceed. Quantities involved will come to have unusually many indices

on them; subscripts will be global in flavor while superscripts will be more local.

Every contribution to a head h can be named by a pair of a rule, r, and a ground rule

query t⃗ thereof. If the responses from Lookup are partitions of its argument, as they were

8 Nathaniel Wesley Filardo and Jason Eisner

in [4], then each such name will be associated with at most one value: within the search

tree analogous to that of Figure 1, t1 occurs on at most one edge from the root node,

and, thereunder, t2 again occurs on at most one edge, and so on. Whatever values are

assigned to each ti, the rule answers ε will be contained within the pre-answers θ: θt⃗r is

the set of all possible answers for a given name (for all possible heads, at that).

Now, however, we are assuming that the response is described by a BF, L ∈ I →̂ H′, and

so there may be several branches containing t1, each of which may contain several branches

containing t2, etc. We must post-process the results of the search so that only values from

enclosing branches are considered. As there is only one encloser for ti, this will again

associate at most one value with the query t⃗, and the definition of BFs ensure that this will

be the value as if the result had been partitioned. How are we to do this post-processing?

We can identify each leaf of the search tree with a non-ground rule query τ⃗ , e.g., ⟨τ1, τ2⟩.
Given a rule query τ⃗ for r, the pre-answer set θτ⃗r is the set of all possible answers for all

ground rule queries {t⃗ ∣ ti ∈ τi}. Thus, given two non-ground rule queries σ⃗ and τ⃗ , in which

∀iσi ⊆ τi, the set of possible answers unique to τ⃗ is θτ⃗r ∖θσ⃗r , which is a superset of whatever

actual rule answers are licensed by τ⃗ . If we collect all such σ⃗ from the search tree for each

τ⃗ into M̃τ⃗ (§3.6), then we see that θτ⃗r ∖ ⋃σ⃗∈M̃τ⃗ θσ⃗r is the set of possible answers at the

leaf identified with τ⃗ , and, given a value vi for each τi, ψ̃
τ⃗ = ετ⃗r,v⃗ ∖⋃σ⃗∈M̃τ⃗ θσ⃗r (§3.6) is the

set of un-masked answers from this leaf, just as if each τi had been a partition element.

ν̃ τ⃗ = ψ̃τ⃗⇃@
hr

(§3.5) is then a bag of pairs of heads and associated aggregands from this leaf,

which should be split by head and then aggregated, along with ν̃ from other leaves.

Unfortunately, this ν̃ τ⃗ is difficult to compute and manipulate. Its computation clearly

requires set subtraction. More worrying, even, it may overlap with other leaves’ ν̃ τ⃗
′

in

complex ways reminiscent of why we needed to disjoin, but with yet more difficulty:

there is no reason to believe that ν̃ can be described as a bag product between a set of

heads η and a bag of aggregands β. We require some kind of uniformity of ν̃, and so must

require something of its progenitor, ψ̃. Let us put this question on hold.

If our goal is to not just interpret BF encodings of item answers but to produce one as

well, in response to an item query, there is the question of what base (i.e., what sets of

heads) H̃ the output will have (§3.4). Assuming the kind of uniformity suggested above,

we might speculate that ε⇃head for each choice of rule query τ⃗ as likely candidates. It

will turn out that we need θ⇃head as well in some cases, and, of course, we must ensure

that the output base is ∩-closed. Producing a BF also allows us to revisit the uniformity

requirement on ν̃: it is OK to be wrong on a head h when generating the answer for base

point η ∈H, so long as η is not ⌈{h}⌉. That is, so long as a smaller head set gets it right,

our error will go un-noticed! Thus, we require uniformity of ψ only at η ∖ {η′ ∈H ∣ η′ ⊆ η}.

Let us now investigate details before turning our attention to algorithmic description.

3.3 Replacements

For any rule r, non-ground rule queries τ⃗ , pre-answers θτ⃗ , and answers ετ⃗ are defined

for any choice of sets of terms τ⃗ = ⟨τ1, . . . , τnr ⟩. However, given that Lookup acts as

a BF, L, rule queries formed from TL have special significance, describing root-leaf

paths in the search tree. We call these L-replacements (or just replacements, when

clear): Rr,L
def= {τ⃗ = ⟨⌈τi⌉⟩i∈Nnr1

∣ σi ∈ TL, τi = σi ∩ ρr⇃sg.i.1, θτ⃗r ≠ ∅}. We have, without

semantic consequence, restricted to non-trivial rule queries formed from sets which are not

9

completely overridden within L. Our idea to order τ⃗ by ⊆ on components is formalized as

a partial order termed specificity: τ⃗ ⪯ τ⃗ ′⇔∀i∈Nnr1
τi ⊆ τ ′i , and τ⃗ ≺ τ⃗ ′⇔ τ⃗ ⪯ τ⃗ ′ ∧ ∃iτi ≠ τ ′i .

The BF L, encoding a valuation function, specifies more than just its base. There is,

thus, a natural choice not only for the non-ground rule queries but also for the values

v⃗ determining a set of non-ground rule answers: the values assigned by L to each τi,

and in particular vi = L(⌈τi⌉L). Thus, we define the non-ground rule answer set for

τ⃗ ∈ Rr,L: ετ⃗r,L
def= ετ⃗r,v⃗ = θτ⃗r [v1/sg.1.2]⋯[vnr/sg.nr.2]. Recall that elements of these ε are

no longer necessarily all true: overriding (more-specific) replacements cause elements to

not accurately reflect the assignment of values to items as by the interpretation of L.

We augment the definitions of θ and ε with another index, allowing concise nota-

tion for additional refinement by heads: θη,τ⃗r
def= θτ⃗r [η/head] and similarly for ε. Sev-

eral set-theoretic properties of θ and ε are worth noting: 1 θα,τ⃗r = θη,τ⃗r [α/head] and

εα,τ⃗r,L = εη,τ⃗r,L[α/head] for any pair of sets α ⊆ η. Thus, θ and ε are ⊆-homomorphic in their

head index. (This would not be true of ε if we had used ⌈⋅⌉ in its definition; instead, values

are determined directly by τ⃗ .) 2 θ⋅r sends τ⃗ ⪯ τ⃗ ′ to θτ⃗r ⊆ θτ⃗
′

r , but no similar homomorphism

holds for ε⋅r,L due to the evaluation of L in the latter.

3.4 Induced Heads

For a given r, valuation L, and query head κ, a L-replacement τ⃗ ∈ Rr,L gives rise to

two induced non-ground heads, entries in the base of the BF encoding the results

of Compute-ing κ on the rule r. The head projection of both the (pre-)answer sets are

potentially meaningful quantities, representing sets of items which behave similarly under

the rule r. We define Hr,κ,L as the ∩-closure of the head projections of (pre)-answers for

all replacements Rr,L, i.e., of {θκ,τ⃗r ⇃head, εκ,τ⃗r,L⇃head ∣ τ⃗ ∈Rr,L}.

A key insight is that the L-replacements that might potentially influence an entire head

α, as opposed to merely a subset thereof, are those L-replacements whose pre-answers do

not refine the head to a proper subset of α: Hαr,L
def= {τ⃗ ∈Rr,L ∣ α = θα,τ⃗r ⇃head}.

Example 3. Continuing our running example (§3.1) and considering κ = rsjHo, it is easy to check that

all induced heads each come from both a θ and an ε, as refinement of subgoal values does not alter head

projections. All told, Hr,κ,L = {{rs⟨0⟩},rsjNo,rsjZo}. ◊
Example 4. It may seem that θ-derived heads serve no purpose; after all, only subsets of ε are plausibly

related to the values defined by the semantics of the language. However, consider a rule which constrains

the value of a subgoal whose key covaries with the head, such as {⟨⟨a⟨x⟩,1⟩, ⟨⟨b⟨x⟩,4⟩⟩⟩ ∣ x ∈ H}, with

L = {bjHo ↦ 4,{b⟨3⟩} ↦ 2}. The θ-derived heads are {ajHo,{a⟨3⟩}}, while the ε-derived heads are

{ajHo,∅}. Thus, were we to solely consider ε-derived heads, we would fail to assert that {a⟨3⟩} ↦ null.

Put another way: a replacement may have answers while a more-specific replacement may not. ◊
Example 5. (Reproduced from [4]) The rule {⟨⟨f⟨a⟩,1⟩, ⟨⟨a⟨⟩, a⟩⟩⟩ ∣ a ∈ H} has covariance between the

head and a subgoal value, contributing the value 1 to an item determined by the value of a⟨⟩. While the

previous example showed that θ-derived heads are essential, this example shows that ε-derived heads are

as well, as the sole θ-derived head is fjHo. ◊
3.5 Collecting Contributions

For the moment, let us assume the existence of a bags of kv-pairs, νη,τ⃗r,L F εη,τ⃗r,L⇃
@
hr

, which

capture the contribution of each τ⃗ ∈ Hηr,L to η and omit any contributions from τ⃗ overridden

by some more-specific τ⃗ ′ ∈ H. So armed, it is easy to define the bag of contributions to η

across all relevant replacements τ⃗ : ℶηr,L
def= ⊎τ⃗∈Hη

r,L
νη,τ⃗r,L . These, then, can be combined in

10 Nathaniel Wesley Filardo and Jason Eisner

a BF with base Hr,κ,L: Cr,κ,L
def= {η ↦ {h ↦ ⦃v@m ∣ ⟨h, v⟩ ⋿ ℶηr,L⦄ ∣ h ∈ η} ∣ η ∈ Hr,κ,L}.

The core of this definition simply partitions the bag ℶηr,L by key and collects together all

of the values within a bag for each key in η. This operation is done for each induced head

η ∈H; by construction, the induced heads cover all possible results from the current rule.

The last step, then, is to repeat this exercise for all rules r ∈ Ξ and merge the results,

which is easily enough done using the ⊎-join of all such functions: YΞ,κ,L
def= ⋀⊎r∈Ξ Cr,κ,L.

(As ⊎ is associative-commutative, there is no concern of ordering here.) To ensure that

the domain of Y is I, we may further ⊎-join with {I ↦ ∅} as well.

Unfortunately, while theoretically straightforward, this collection mechanism requires

iteration over H and each η therein, since the νs are arbitrary. If we are to have hope of

Compute-ing in finite time, we must impose structure on ν.

3.6 Masking and Obstruction

We now focus in on the middle of the system, on the task of deriving ν from ε. Recall that ψ̃τ⃗

was the set of rule answers from τ⃗ , having removed all pre-answers for all σ⃗ ≺ τ⃗ . We could

formalize this by defining M̃τ⃗
r,L = {σ⃗ ∈Rr,L ∣ σ⃗ ≺ τ⃗} and taking ψ̃η,τ⃗r,L = εη,τ⃗r,L ∖⋃σ⃗∈M̃τ⃗

r,L
θη,σ⃗r .

Then ν̃η,τ⃗r,L = ψ̃η,τ⃗r,L⇃
@
hr

is a bag of kv-pairs which are produced by τ⃗ and survive masking,

which should be aggregated with the results of other replacements and other rules. All

told, given Ξ and L, the value assigned to h ∈ I by the above, item-at-a-time mechanism

is aggr(h)(⊎r∈Ξ⊎τ⃗∈Rr,L(ψ̃
η,τ⃗
r,L⇃

@
res

)).
Returning to set-at-a-time reasoning, and, in particular, to generating a BF, we can find

two refinements of the system so far described; recall that, for a given output base point η,

it is okay to be wrong when describing h ∈ η so long as η ≠ ⌈{h}⌉. Specifically, this means

that: 1 There is no need to consider masking ετ⃗ by θσ⃗, even if σ⃗ ≺ τ⃗ , if θσ⃗⇃head ⊊ ετ⃗⇃head.
2 We can ignore uniformity requirements of ν on heads ωηr,L

def= ⋃{η′ ∈ Hr,κ,L ∣ η′ ⊊ η}.

The first point means, concretely, that there is no need to consider something quite so

large as M̃ above; when computing the base point η, we need only consider Mα,τ⃗
r,L

def= {σ⃗ ∈
Hαr,L ∣ σ⃗ ≺ τ⃗} = {σ⃗ ∈ Rr,L ∣ σ⃗ ≺ τ⃗ , α = θα,σ⃗r ⇃head}, i.e., the set of more-specific τ⃗ which do

not shrink the pre-answer head.

Combining both of these observations, we can define (r, L and η are used three times in

this definition, τ⃗ twice): ψη,τ⃗r,L
def= (εη,τ⃗r,L ∖⋃σ⃗∈Mη,τ⃗

r,L
θσ⃗r)[(I ∖ ω

η
r,L)/head]. It is at this point

that we must appeal to our oracular test of uniformity (§1.3); we require that every

computed ψ be such that every head h ∈ ψ⇃head be associated be associated with the same

bag of values ψ[{h}/head]⇃@
res

. If this holds, then, at long last, we have a viable ν:

νη,τ⃗r,L
def= ⦃⟨h, v⟩@m ∣ h ∈ η, v ⋿ AnswerFor(εη,τ⃗r,L, ω

η
r,L, ⋃σ⃗∈Mη,τ⃗

r,L
θσ⃗r)⦄. (1)

There are a few things to note about this definition. 1 It can happen that η′ = εη,τ⃗r,L⇃head ⊊ η.

When this happens, it implies that η′ ⊆ ωηr,L, so ψη,τ⃗r,L = ∅ and thus νη,τ⃗r,L . We can see

this clearly in Example 5; for the purpose of the example, assume L({a⟨⟩}) ↦ 7, so

that ε
fjHo,⟨{a⟨⟩}⟩
r,L ⇃head = ε{f⟨7⟩},⟨{a⟨⟩}⟩r,L ⇃head = {f⟨7⟩}. Thus, because the head covaries with a

subgoal value, the default head fjHo has associated aggregands ∅. 2 This is a constraint

only on the (masked, un-obstructed) rule answers. Other than their role in masking,

groundings inconsistent with L need not be considered. The set of inconsistent groundings

may even be outside the collection of sets possessing description within an implementa-

tion (though the masks, derived from θ and therefore inclusive of both consistent and

11

inconsistent groundings, must still be within the system). 3 Given ground inputs and a

range-restricted program, this algorithm behaves essentially as any other ground solver: ω

and M will always both be ∅ and ∣ε⇃@
hr

∣ = 1, so AnswerFor is trivial. The need for AnswerFor

to be defined thus replaces prior algorithms’ (including [4]) appeal to range restriction [1].

A Closure of Computation At long last, we can get computational traction:

Lemma 1. If (1) holds, YΞ,κ,L is pointwise-constant.

Proof. The definition in (1) gives νη,τ⃗r,L which are bag products between U−1
1 η and values.

That is, for any choice of r, L, η, and τ⃗ for which ν is defined, {h ↦ ⦃v@m ∣ ⟨h, v⟩ ⋿
νη,τ⃗r,L ⦄ ∣ h ∈ η} is a constant function. As ℶηr,L is a union (over τ⃗) of ν bags, it follows

that each {h↦ ⦃v@m ∣ ⟨h, v⟩ ⋿ ℶηr,L⦄ ∣ h ∈ η} must, also, be a constant function. The

definition of Cr,κ,L, which maps each η to a function of the above form, then implies that

it is pointwise-constant. YΞ,κ,L is just a join of pointwise-constant BFs, and so must itself

be pointwise-constant.

Thus, to obtain a first practical algorithm, we restrict to pointwise-constant L and

assume (1). The above lemma means, having started with pointwise-constant answers

L, that we will always obtain pointwise-constant answers, which we can merge into L
as part of our solver’s fixed-pointing execution, and not violate our precondition. While

pointwise-constancy of L does not imply (1), it may, speculatively, nevertheless simplify

the proof obligation to be met by static analyses.

4 Pseudocode

At last, we come to a procedural description of the system given above; pseudocode is

shown in Listing 1. Compute simply wraps computeRule for each rule, using ⊎-join and a

notion of bulk aggregation to turn bags of aggregands into the final answer, Y .7 computeRule

forms nested loops using refineRuleSuffix, which now tracks its position in the rule’s

subgoals, i; a superset of ε, αv; and a superset of θ, αk. These supersets are exact at the

leaves of the search tree. refineRuleSuffix calls applyV to contribute the answers it finds

(at the leaves) and applyM whenever it returns to add to masks. Within refineRuleSuffix,

C is a BF which stores both values and masks; the masks are removed upon return.

capclose adds its argument to, and enforces the ∩-closure property of, C.
Mask Estimates The algorithm, as is typical of search algorithms, only enumerates

successes (i.e., replacements with non-empty ε), while the theory of §3 seems to depend

on enumeration of both ε and θ for every L-replacement. While the algorithm does

derive masks from successes (the rightmost left-facing dotted arrows in Figure 1), it also

derives masks from other αk sets during its execution, when it unwinds the recursion of

refineRuleSuffix. These αk sets correspond to θs derived from a prefix of a rule query,

τ⃗ = ⟨τ1, . . . , τi−1,H, . . . ,H⟩, which therefore subsume the θs of any possible query ⪯ τ⃗ .

While these are over-estimates of the sets tracked by the theory, they are not too large,

in the sense of improperly masking later results, because they will only mask later results

that share the prefix, which has just been exhaustively searched.

7 To ensure that bulk aggregation is defined, we require that each rule r specify an aggregator consistent

with all its possible heads: all items I ∩ ρr⇃head must use this aggregator. This ensures that aggr(η) def=
selt({aggr(h) ∣ h ∈ η}) is well-defined when we use it. In practice, we will not compute all of Y and
then reduce it; instead, we will exploit the required properties of aggregators to directly aggregate
while computing C and then again to obtain results equivalent to aggregating across Y.

12 Nathaniel Wesley Filardo and Jason Eisner

1 def Compute(κ ⊆ I) ∈ (κ →̂ H′)
2 Y ← {κ↦ ∅} % running union across all rules

3 foreach r ∈ Ξ do let C = computeRule(r,κ) in Y ← Y ∧⊎ C
4 return {τ ↦ aggr(τ)(β) ∣ (τ ↦ β) ∈ Y} % bulk aggregate

5

6 def computeRule(r ∈ Ξ, κ ⊆ I) ∈ ((ρr⇃head ∩ κ) →̂fin H+)
7 C ← {κ↦ ⟨∅,∅⟩} % initialize results and masks

8 let α = ρr[κ/head] in refineRuleSuffix(α, α, 1) % populate C
9 return {η ↦ x⇃1 ∣ (η ↦ x) ∈ C} % values w/o masks

10

11 def refineRuleSuffix(αk ⊆ ρr, αv ⊆ αk, i ∈ Nnr+1
1) ∈ ⟨⟩

12 if αk = ∅ then return ⟨⟩ % incompatible keys

13 elif αv ≠ ∅ then

14 if i = nr + 1 then applyV(αv) % end of rule

15 else foreach (σ ↦ v) ∈ Lookup(αv⇃sg.i) toposorted by ⊆ ascending on σ

16 refineRuleSuffix(αk[σ/sg.i.1], αv[jσ,{v}o/sg.i], i + 1)

17 applyM(αk) % before returning, mask

18 def applyV(∅ ⊊ ε ⊆ ρr) ∈ ⟨⟩ % accumulate values

19 capclose(ε⇃head)
20 foreach (η ↦ ⟨β,µ⟩) ∈ C where η ⊆ ε⇃head
21 let ⦃v@m⦄ = AnswerFor(ε, ω, µ) where ω = ⋃{η′ ∈ dom(C) ∣ η′ ⊆ η} % §1.3

22 C(η) ← ⟨⦃v@m⦄ ⊎ β,µ⟩
23 def applyM(∅ ⊊ α ⊆ ρr) ∈ ⟨⟩ % accumulate masks

24 capclose(α⇃head)
25 foreach (η ↦ ⟨β,µ⟩) ∈ C where η ⊆ α⇃head do C(η) ← ⟨β,α ∪ µ⟩
26 def capclose(η ⊆ κ) ∈ ⟨⟩ % put η ∈ TC , ∩−closed
27 if η ∈ TC then return

28 else foreach (τ ↦) ∈ C let η′ = τ ∩ η in

29 if η′ ∉ (TC ∪ {∅}) then

30 let A = {β ∈ TC ∣ η′ ⊆ β,∀β′∈TCβ′ ⊆ β ⇒ η′ /⊆ β′} % smallest TCs containing η
′

31 C(η′) ← ⟨⊎α∈A C(α)⇃1,⋃α∈A C(α)⇃2⟩
32

33 Lookup ∈ Πα⊆jH,Ho((α⇃1 ∩ I) →̂fin ({null} ∪ α⇃2))
Listing 1: Default-based Compute, ignoring any interaction with the agenda, and assuming AnswerFor
from §1.3 as a primitive operation. refineRuleSuffix now tracks two subsets of ρ: the first, αk,
ignores values and gradually refines down to θ, while the second, αv, is the more typical gradual
refinement down to ε. During its operation, its nested loops each advance in topologically sorted order
so that calls to collect are made on monotonically non-⪯-decreasing L-replacements.

4.1 Discussion of the Example Trace

Figure 1 includes a trace of computeRule of Listing 1 running on the example of §3.1 on

inputs described in the former’s caption. The root node of the search tree corresponds to

the outermost RefineRuleSyntax call’s Lookup of rjH,Ho.
The first entry in the log (cyan box) arises from the discovery of aggregands, ⦃⊗⟨4,6⟩@1⦄

for {rs⟨0⟩} from the replacement ⟨{r⟨0,0⟩},{s⟨0⟩}⟩. The second entry adds this replace-

ment’s pre-answer to the mask for {rs⟨0⟩}, ensuring that any later-discovered values

assigned to the ground rule query ⟨r⟨0, 0⟩,s⟨0⟩⟩ are discarded. Indeed, we see exactly this

13

case for the replacement ⟨{r⟨x,x⟩ ∣ x ∈ Z},{s⟨0⟩}⟩, on the third line of the log (corre-

sponding to the second leaf of the tree): the algorithm revisits this ground replacement,

due to the unification of x and y (in ρ) by the diagonal r, and must mask its incorrect

contribution of ⊗⟨3, 6⟩. As the head here is still just {rs⟨0⟩}, ε needs no further processing.

The third leaf of the tree generates contributions which claim themselves to be appli-

cable to all rsjNo (red box). However, when the head is restricted to {rs⟨0⟩}, we find

ourselves again revisiting only the ground rule query ⟨r⟨0,0⟩,s⟨0⟩⟩, and so, in fact, these

contributions are destined to rsjN ∖ {0}o, which is encoded by contributing to rsjNo but

not {rs⟨0⟩}. The algorithm then proceeds to mask off the diagonal entries in all heads

{rsjZo,rs⟨N⟩,{rs⟨0⟩}}, though there is some redundancy in its efforts (gray log lines).

The fourth leaf of the tree generates contributions nominally for rsjZo (yellow box),

having constrained y = 0 in ρ. Again {rs⟨0⟩} masks this contribution (the 0 from the

head and from y being sufficient to send the first subgoal to {r⟨0,0⟩}). The application

of these contributions to the output heads rsjZo and rsjNo rely on the set difference on

heads (rather than groundings) in AnswerFor in a way that no prior entry has: it is not

the case that the masked εs for the non-ground rule query ⟨rjZ,Zo,{s⟨0⟩}⟩ and for these

heads are uniform: every rsjNo other than {rs}0 has one contribution of ⊗⟨2,6⟩. Once

again, the diagonal strikes, but now from the masks: the rs⟨0⟩ entry in these heads is

associated with r⟨0,0⟩, which is already masked! However, {rs⟨0⟩} is already an answer

in the output BF, and so we may obstruct it from AnswerFor’s consideration. The same

phenomenon recurs in the lavender box from the next and final answer in the search tree.

5 Related Work

5.1 Default Logics

Reiter [9] defines a logic for reasoning with defaults in the light of incomplete data. This

logic can capture assertions like “most birds fly” and “emus are birds but do not fly” and

will deduce, given a proof that Tweety is a bird, in the absence of a proof that Tweety is

an emu, that Tweety can fly. As this is a boolean logic, it does not concern itself with

multiplicities beyond “zero or non-zero”, as truth is an absorbing element of disjunction.

Jaeger [5] extends default logics to handle probabilistic reasoning. The BFs of this paper

use defaults not as a compensation for incomplete knowledge—indeed, we must have

complete knowledge of the contributions for items in order to assure that we obtain the

correct answer—but rather as an encoding of structured sparsity without set subtraction.

5.2 Lifted Explanations for Problog

Problog [8] is a probabilistic extension of Prolog, assigning probabilistic weights to items.

Like µDyna, Problog encounters the need to aggregate over unique outcomes,and could

benefit from counting rather than enumerating outcomes. Nampally and Ramakrishnan

[7] consider the construction of “lifted explanation graphs” which use the structure of

the Problog program and existential quantification (over finite domains) to compactly

summarize the support sets of results for rules. The cardinality of the supports are

then extracted by solving recurrences on these structures. As noted in that work, these

structures are generalizations of binary decision diagrams and likely can be further

extended to encode multi-valued decision diagrams over infinite domains, in which case it

may be possible to use them as an implementation of our set theory for (a subset of?)

µDyna programs. (For both flavors of decision diagrams, see, e.g., [10].)

14 Nathaniel Wesley Filardo and Jason Eisner

5.3 Lifted Inference in Statistical Relational Models

Van den Broeck [11] discusses the use of “weighted first-order model counting” as a

building block for “lifted” exact (as well as approximate) probabilistic inference. If the

sets of our system admit description in first-order logic, then our AnswerFor(⋅, ⋅, ⋅) oracle

can likely be implemented using the same “knowledge compilation” mechanism of that

work, which, amusingly, reduces the problem to weighted circuit solving.

Conclusion

We have presented a theory and algorithmic strategy of default-based set-at-a-time

reasoning within a weighted logic program solver. We have lowered the set-theoretic

requirements of the task from those of the algorithm of [4] by eliminating set subtraction

in favor of the test for uniform cardinality in §1.3.

Acknowledgements

We are deeply indebted to the editorial proficiencies and intellects of Rachael Bennett, Dr.

Thomas Filardo, Dr. Nora Zorich, Dr. Scott Smith, Tim Vieira, and Matthew Francis-

Landau, who all read numerous early drafts of this document and kindly contributed

countless structural, prosodic, and grammatical suggestions to the text.

References

[1] Stefan Brass. “Range Restriction for General Formulas”. In: Proceedings of the 23rd

Workshop on (Constraint) Logic Programming. 2009.

[2] Hubert Comon et al. Tree Automata Techniques and Applications. Online publication.

2007. url: http://tata.gforge.inria.fr/.

[3] Nathaniel Wesley Filardo and Jason Eisner. “A Flexible Solver for Finite Arithmetic

Circuits”. In: Technical Communications of the 28th ICLP. Ed. by Agostino Dovier

and Vı́tor Santos Costa. Vol. 17. Leibniz International Proceedings in Informatics

(LIPIcs). 2012, pp. 425–438.

[4] Nathaniel Wesley Filardo and Jason Eisner. “Set-at-a-Time Solving in Weighted

Logic Programs”. In: In submission to ICLP’17; see http://www.cs.jhu.edu/

~nwf/ilcp17-1.1.pdf. 2017.

[5] Manfred Jaeger. “A Logic for Default Reasoning About Probabilities”. In: Proceed-

ings of the Tenth International Conference on Uncertainty in Artificial Intelligence.

UAI’94. Morgan Kaufmann Publishers Inc., 1994, pp. 352–359.

[6] Robert Kowalski. Predicate Logic as Programming Language. Memo 70. Department

of Artificial Intelligence, Edinburgh University, 1974.

[7] Arun Nampally and C. R. Ramakrishnan. “Inference in Probabilistic Logic Programs

using Lifted Explanations”. In: (2016).

[8] L. De Raedt, A. Kimmig, and H. Toivonen. “ProbLog: A Probabilistic Prolog and

its Application in Link Discovery”. In: Proc. of IJCAI. 2007, pp. 2462–2467.

[9] R. Reiter. “A logic for default reasoning”. In: Artificial Intelligence 13.1 (1980),

pp. 81–132. doi: 10.1016/0004-3702(80)90014-4.

[10] A. Srinivasan et al. “Algorithms for discrete function manipulation”. In: 1990 IEEE

International Conference on Computer-Aided Design. Digest of Technical Papers.

1990, pp. 92–95. doi: 10.1109/ICCAD.1990.129849.

[11] Guy Van den Broeck. “Lifted Inference and Learning in Statistical Relational

Models”. PhD thesis. KU Leuven, 2013, pp. xx + 264.

http://tata.gforge.inria.fr/
http://www.cs.jhu.edu/~nwf/ilcp17-1.1.pdf
http://www.cs.jhu.edu/~nwf/ilcp17-1.1.pdf
https://doi.org/10.1016/0004-3702(80)90014-4
https://doi.org/10.1109/ICCAD.1990.129849

	Introduction
	Review of Notation
	Dyna Normal-Form Programs
	Required Set Theory Operations

	Encoding Functions with Finite Ranges
	Default Reasoning
	A Motivating Example
	An Intuitive View of Default Reasoning
	Replacements
	Induced Heads
	Collecting Contributions
	Masking and Obstruction

	Pseudocode
	Discussion of the Example Trace

	Related Work
	Default Logics
	Lifted Explanations for Problog
	Lifted Inference in Statistical Relational Models

