META WHAT HELLO DATA FuN
000 o o 0000
00 o

(o]e} [e]e]e}
[e] 00000
[e]e]e}

Fun With Haskell: Introduction

Nathaniel Wesley Filardo

January 10, 2012

META

WHAT HELLO

000 [e]
e]e] [e]

[e]
[e]e]e}

Course Metadata
Who am 1?

Handles:
e Nathaniel “Wes" Filardo
e nwf (“noof”)
Relevant Attributes:
e Fifth year Ph.D. candidate,
e Working for Jason Eisner on Dyna.
e Programming Language Enthusiast,
e A bit of a Haskell snob.
Course web page:
e http://www.acnm. jhu.edu/~nwf/fwh/

DATA

(o]e}
00000

FuN
0000
[e]e]e}

http://www.acm.jhu.edu/~nwf/fwh/

META

WHAT HELLO DATA

000 [e] ()
e]e] [e] (o]e}

[e] 00000
[e]e]e}

Course Metadata
Who are you?

As of last count, 31 of you:

1 grad student
e 5 seniors

e O juniors

5 sophomores

11 freshmen

Everybody should have
e Some experience programming
e A laptop with the Haskell Platform

FuN
0000
[e]e]e}

META WHAT HELLO DATA FuN

000 [e] () 0000
e]e] [e] (o]e} [e]e]e}
[e] 00000

[e]e]e}

Course Metadata
Course Goals

e Experience with “functional” ways of thinking.

e Living in the “Kingdom of Verbs" [6].

e Change the way you think about programming (Perlis).
e Exposure to the Haskell language . ..

e Syntax (of course) but more semantics,

o Strong, static, polymorphic typing,

e Effect management (enter monads),

o ...
e ...and ecosystem.

e GHC(i): (Interactive) Compiler,

e Hackage, Cabal: Package management

¢ QuickCheck, HUnit, (Lazy)SmallCheck: Test frameworks

META WHAT HELLO DATA FuN

000 [e] () 0000
e]e] [e] (o]e} [e]e]e}
[e] 00000

[e]e]e}

Course Metadata
Where do we go from here?

| think | know what needs to be presented, if | am to
claim to have “shown Haskell.”
The world of things relevant to Haskell and maybe this
course is much larger!
If people want, we can be
e Theoretical, tea-sipping and monocled types,
e Test-driven-development, benchmark-everything,
dashes-everywhere focused,
e Metaprogramming everything under the sun (Haskell, C,
silicon, ...)
o Statically-safe web developers.

| know a little about each, and will learn anything to
teach it if there's interest.

META WHAT HELLO DATA FuN

000 [e] () 0000
e]e] [e] (o]e} [e]e]e}
[e] 00000

[e]e]e}

Course Metadata
Course Structure

Lots of different backgrounds,

e Never enough time to cover everything,

So I'm going to try playing it by ear.
e Using a mix of slides and interactive execution.

e That means you should feel free to stop me with
questions any time.

META WHAT HELLO

DATA
000 o o
00 o

(o]e}
[e] 00000
[e]e]e}

What is Haskell?
What kind of a name is that, anyway?

e Named after “Haskell Brooks Curry” (1900-1982)
e A pioneer in mathematical (combinatory) logic

e SK calculus, Curry-Howard ~, Curry paradox, ..
e “Currying” is named after him (we'll get there).

FuN
0000
[e]e]e}

META WHAT HELLO DATA FuN

@00 [e] () 0000
e]e] [e] (o]e} [e]e]e}
[e] 00000

[e]e]e}

What is Haskell?

Tazonomy

Haskell is a programming language; it is . ..
e Functional, focused on actions to data;

e (mostly) Pure, eschewing side-effects;

(mostly) Referentially transparent, for equational reasoning;

Lazy, doing computation only when necessary;

Statically typed, at compile time;

Polymorphic, allowing generic functions (and data!);

Type-classed, defining “interfaces” to different data;
e Monadic (in its library), for management of side-effects.

Don’t worry if that's all new to you. We'll get there.

META WHAT HELLO DATA

oeo [e] ()
e]e] [e]

FuN

0000

(o]e} [e]e]e}
[e] 00000
[e]e]e}

What is Haskell?

Tazonomy

If all you have is Java, perhaps the most immediately

mind-blowing thing is purity. Data structures in Java are
focused on mutation:

e Adding something to an ArrayList<Foo> changes the
list.

e lIterators have exotic admonitions against modifying the
thing being traversed. (e.g. “fail-fast” vs. “fail-safe”)
In Haskell, data is data. It's just there. It's immutable.

e The integer 23 is just that. It doesn’t change. (Java's,
too.)

e The list of integers [1,2,3] is just that. It doesn't change.

META WHAT HELLO DATA FuN
ooe o
00

() 0000
[e] (o]e} [e]e]e}
[e] 00000
[e]e]e}

What is Haskell?
Tazonomy

Purity (or “purity by default”) is. ..

e More like math (easier to think about).
e Easier to optimize.

e Easier to parallelize! (The future is again multicore. . .)

META WHAT HELLO DATA FuN

000 [e] () 0000
[Je] [e] (o]e} [e]e]e}
[e] 00000

[e]e]e}

What is Haskell?
History of the “Ancient” variety
An excellent paper captures more than | have time for: “A
History of Haskell: Being Lazy With Class” [4]. To give some
hilights:
e 1950s: John McCarthy invents Lisp.
e 1960s: Researchers (Landin, Strachey, Scott) use
Church’s A calculus for capturing semantics of programs.
e 1970s: Sussman and Steele's Scheme: Lisp closer to .
e 1976: Lazy evaluation enters the scene.
e 1979: Milner invents ML and its type system.
e 1987: Lots of lazy, functional languages and
implementations.
e Mostly small groups. Nobody had “critical mass.”

e 1987: Peyton Jones and Hudak hold a meeting at FPCA.

META WHAT HELLO DATA FuN

000 [e] () 0000
oe [e] (o]e} [e]e]e}
[e] 00000

[e]e]e}

What is Haskell?
History of the specification

1990 (April 1): Haskell Report, Version 1.0.
February 1999: The Haskell 98 Report.

e More or less specifies the language we know and love as
Haskell.

December 2002: Revised Haskell 98 Report.
e Mostly fixes minutae.

November 2009: Haskell 2010 announced.
e Mostly agreeable minor changes to the language
e That had been implemented already

Ongoing: Haskell Prime: “an ongoing process to produce
revisions to the Haskell standard, incorporating mature
language extensions and well-understood modifications to
the language.” [1]

META WHAT HELLO DATA FuN

000 [e] () 0000
(e]e] [e] (o]e} [e]e]e}
o 00000

[e]e]e}

What is Haskell?
Why use Haskell?

Declarative, functional programming model.

e More expressive yet simpler code.

e Better maintainability.

e Smaller “"semantic gap.”

Strong, static typing with an expressive type system.

e Type inference means types usually sit out of your way.
Good performance in most cases. Ongoing research for
better single-core performance,

e automatic multi-core handling,
e GPGPU,

Improved programmer productivity?
Moving out of being a “boutique” “research” language.

META

WHAT HELLO
000 o
00 o

DATA
o

[o]e}
o 00000
©00

What is Haskell?
Am I going to be all alone if I use this?

There is a growing, vibrant community:

e http://www.haskell.org/;
http://planet.haskell.org/ (blog aggregator);
irc://chat.freenode.net/#haskell;
haskell-cafe@haskell.org;

Reddit, StackOverflow, ...

with a wide range of members:

e Casual users & hobbyists, researchers, industrial users, ...

e “The Haskell Elders” are on IRC, -cafe, and Reddit.

FuN
0000
[e]e]e}

http://www.haskell.org/
http://planet.haskell.org/
irc://chat.freenode.net/#haskell
haskell-cafe@haskell.org

META

WHAT HELLO DATA FuN

000 [e] () 0000
e]e] [e] (o]e} [e]e]e}
[e] 00000

oeo

What is Haskell?
A Little Name Dropping Never Hurt Anybody

e Industry:
e Code processing: Facebook
Embedded Programming: Eaton, NASA
Game engines: iPwn Studios
HFT: Allston Trading
Infrastructure: Google
Modeling: Credit Suisse
e Verification: Galois, MITRE
e Researchers:
e Papers in every major, modern conference.
e Dedicated Implementors Workshop and Symposium at
ICFP.
e Serious web development frameworks:
e We've got three: HAppS, Snap, and Yesod.

META WHAT HELLO DATA FuN
000 o
00

() 0000
[e] (o]e} [e]e]e}
[e] 00000
ooe

What is Haskell?
Am I going to be all alone if I use this?

Some tools are just so important they deserve front-and-center
mention:

e The Haskell Platform: Haskell, Batteries Included.
e Hackage: the Haskell package repository
e http://hackage.haskell.org/
e Hoogle: type-directed search engine
e http://www.haskell.org/hoogle/
e Cabal and cabal-install
e Want something from hackage?
e cabal update && cabal install $PACKAGE

http://hackage.haskell.org/
http://www.haskell.org/hoogle/

META

WHAT HELLO DATA
000 o o
00 o [o]e}
o 00000
000

Let’s get started

Disclaimer:

Much of today’s material and presentation ordering
comes from the first part (sections 3 and 4) of Hal
Daumé'’s excellent “Yet Another Haskell Tutorial”

[5].

Another disclaimer:

Many of you probably already know some or all of
this. Sorry. If you feel that something could be said
more clearly, please don't hesitate to speak up.

META

WHAT HELLO DATA

000 [e] ()

e]e] [e] (o]e}

[e] 00000
[e]e]e}

Let’s get started

Ladies and Gentlemen, the canonical introduction:

HelloWorld.hs

FuN
0000
[e]e]e}

main = putStrLn "Hello, World"

$ runhaskell HelloWorld.hs
Hello, World!

META WHAT HELLO DATA FuN

000 [] () 0000
e]e] [e] (o]e} [e]e]e}
[e] 00000

[e]e]e}

Let’s get started
Haskell as a Pocket Calculator

Let's play with some expressions in ghci:

Prelude> 3+4x%5

23

Prelude> (1 + sqrt 5) / 2
1.618033988749895
Prelude> 1lcm 112358 1248
70111392

Note lack of parentheses for arguments to “sqrt” and “lcm”.

META

WHAT HELLO DATA FUN

000 [e] () 0000
e]e] ° (o]e} [e]e]e}
[e] 00000

[e]e]e}

Let’s get started
Bindings
What if we actually want to use something later? We can give
something a name with a let binding:

Prelude> let phi = (1 + sqrt 5) / 2
Prelude> phi~2

2.618033988749895

Prelude> let fi = 112358 in lcm fi 1248
70111392

Prelude> fi

<interactive>:1:1: Not in scope: ‘fi’

Haskell variables always begin with a lower-case letter (any
lower-case unicode will do), and can involve alphanumerics,
unicode, underscore, and single quotes.

META WHAT HELLO DATA FUN

000 (e} [] 0000
[e]e] (e} [e]e) 000
(e} 00000
000
Some Data
Booleans

Boolean values tell us whether something is True or False.

Prelude> 1 < 2

True

Prelude> 2 < 1

False

Prelude> if 1 < 2 then "Yes!" else "Nol"
"Yes!"

(Like Java's boolean (and unlike C): booleans are not numbers;
try 1 + True; the error message might not make sense right now.)

META WHAT HELLO DATA

000 (e} o]
[e]e] (e} [Jo)
(e} 00000
000
Some Data
Puairs

Having single numbers is great and all, but what about pairs

of things?

Prelude> ("phi", phi)
("phi",1.618033988749895)
Prelude> fst ("phi", phi)
llphill

Prelude> snd ("phi", phi)
1.618033988749895

META

WHAT HELLO

000 (e}
[e]e] (e}
(e}
000
Some Data
Puairs

We can make bigger things:

DATA

oce
00000

Prelude> (1, "phi", phi, ’f’)
(1, "phi",1.618033988749895,)

And nested things:

Prelude> ((1,2), (phi, "phi"))
((1,2),(1.618033988749895, "phi"))

Behold: a pair of pairs.

FuN

0000
[e]e]e}

META

WHAT HELLO DATA
000 o

[e]e] (e} 80
(e} 00000
000
Some Data
Lists

What about arbitrarily-sized collections of things? For that, we
need lists:

Prelude> let xs = 1:2:4:[]
Prelude> head xs

1

Prelude> tail xs

[2,4]

[1 denotes the empty list. (There's really only one!)

FuN
0000
[e]e]e}

META WHAT HELLO DATA FuN

000 (e} o] 0000
[e]e] (e} [e]e) 000
(e} 0@000
000
Some Data
Lists

A list is an odd creature: it has
only a head and a tail, where the
tail is itself a creature with only a
head and a tail, and so on. [2]

META

WHAT HELLO DATA
000 o o

[e]e] (e} [e]e)
(e} 00e00
000
Some Data
Lists

The formal definition of a list takes some unpacking:

data [] a=[] | a : [al

e "“A list of things (“a") is either empty ([]) or a thing
followed by list of things.’

e The constructors [] and : are called “nil" and “cons”.

e The arguments to cons are the head “thing” and tail list.

e We'll come back to the mysterious “a”.

FuN

0000
[e]e]e}

META

WHAT HELLO DATA FUN

000 (e} o] 0000
[e]e] (e} [e]e) 000
(e} [e]e]e] Jo)
000
Some Data
Lists

Of course, we have a library of functions for manipulating lists:

Prelude> let xs = 1:[2,4,8]
Prelude> length xs

4

Prelude> sum xs

15

Prelude> all (<10) xs

True

Prelude> filter (>5) xs

[8]

META

WHAT HELLO DATA
000 o o

[e]e] (e} [e]e)
(e} [e]e]e]e])
000
Some Data
Lists

Strings are lists of Chars. We can append lists with the ++
operator:

Prelude> let hw = ’H’:"ello, " ++ "World!"
Prelude> hw
"Hello, World!"

Non-string things can (often) be made into strings by showing
them:

Prelude> "The number is " ++ show (1%2%3)
"The number is 6"

FuN

0000
[e]e]e}

META

WHAT HELLO

000 (e}
[e]e] (e}
(e}
000
Functions

e Changing gears!

e Thus far: “stuff’-oriented introduction.
e Have to have at least some stuff; stuff is handy.

e Now: “doing things" to “stuff.”

Fun

0000
[e]e]e}

META

WHAT
000
00

[e]
[e]e]e}

A first function:

HELLO

[e]
[e]

Functions

FirstFunc.hs

DATA Fun
o 0000
00 000
00000

addtwo x = 2 + x

And now

*Main> addtwo 3
5

And that's it. So let’

s go write some interesting functions. . .

META

WHAT HELLO DATA
000 o o

[e]e] (e} [e]e)
(e} 00000
000
Functions
Pattern Matching

Suppose | have a pair of numbers and | want to add one to
each. How do | do this?

Prelude> let mypair = (1,2)
Prelude> mypair + 1
. No instance for bla bla bla
Prelude> mypair + (1,1)
. No instance for different bla bla bla

Fun

@000
[e]e]e}

META

WHAT HELLO DATA Fun
000 o o 0®00

Functions
Pattern Matching
Suppose | have a pair of numbers and | want to add one to
each.
Need to destruct (match) the pair and get at the (delicious)
numbers inside.

Prelude> let mypair = (1,2)
Prelude> case mypair of (a,b) -> (a+1,b+1)
(2,3)

Don’t have to package them back up. Maybe | want to add
them together:

Prelude> case mypair of (a,b) -> atb
3

META

WHAT HELLO DATA

000 [e] ()
e]e] [e] (o]e}

[e] 00000
[e]e]e}

Functions
Pattern Matching

Pattern matching is a popular thing for functions to do:

FirstFuncMatch.hs

myfunc pab = case pab of
(a,b) -> "The answer is: " ++ show (at+b)

And then

*Main> myfunc (3,4)
"The answer is: 7"

Fun

[ele] lo)
[e]e]e}

META

WHAT HELLO DATA
000 o o

[e]e] (e} [e]e)
(e} 00000
000
Functions
Pattern Matching

In fact, it's so common to write things like this that there's
syntactic sugar:

FirstFuncMatchSugar.hs

myfunc (a,b) = "The answer is: " ++ show (a+b)

And still

*Main> myfunc (3,4)
"The answer is: 7"

Fun

oooe
[e]e]e}

META

WHAT HELLO DATA
000 o o

[e]e) o] 00
o] 00000
000
Functions
Passing Functions Around

Suppose we find ourselves manipulating the first element of a
pair by itself frequently:

foo (a,b) = (a+1,b)
bar (a,b) = (2*a,b)
{- ... -}

That's a lot of the same thing over and over.

Fun

0000
@00

META WHAT HELLO DATA
000 o o
00 o

Fun
0000

(o]e} oeo
[e] 00000
[e]e]e}

Functions
Passing Functions Around

Want to be able to somehow say “do something to the first
element” and later fill in the something:

mapFst f (a,b) = (f a, b)

Now we can write things like mapFst (+1) (3,4).

META WHAT HELLO DATA Fun

000 (e} o] 0000
[e]e] (e} [e]e) ooe
(e} 00000
000

Functions

Passing Functions Around

e This is a key part of “functional” programming: functions
are “stuff” (formally: values) as well as being functions.

e In C, you can have “function pointers” which are sort of

close.
¢ In Java, you have to box up a function in a class as a
method. Ick!

e In fact, it's so common to want to have a function in
Haskell that there's sugar for anonymous functions:

Prelude> map (\x -> xx*x) [1,2,3]
[1,4,9]

e Can even take multiple arguments: \x y -> x + (2x*y).

META

Bib
El

[

Kl

WHAT HELLO DATA
000 o o

e]e] [e]

FUN
0000

[o]e} 000
o 00000
000

Available from: http://hackage.haskell.org/trac/
haskell-prime/.

Available from: http://wadler.blogspot.com/2009/
11/list-is-odd-creature.html.

Available from: http://courses.cms.caltech.edu/
csll/material/haskell/index.html.

Paul Hudak, John Hughes, Simon Peyton Jones, and
Philip Wadler.

A history of haskell: being lazy with class.

In Proceedings of the third ACM SIGPLAN conference on
History of programming languages, HOPL Ill, pages
12-1-12-55, New York, NY, USA, 2007. ACM.

http://hackage.haskell.org/trac/haskell-prime/
http://hackage.haskell.org/trac/haskell-prime/
http://wadler.blogspot.com/2009/11/list-is-odd-creature.html
http://wadler.blogspot.com/2009/11/list-is-odd-creature.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html

META

WHAT HEeLLO DaTa Fun

Available from: http://doi.acm.org/10.1145/
1238844 .1238856,

doi:http://doi.acm.org/10.1145/1238844.1238856.

Hal Daumé II.

Yet another haskell tutorial.

2002-2006.

Available from: http://www.cs.utah.edu/~hal/htut/.

Steve Yegge.

Execution in the kingdom of nouns, 2006.

Available from: http://steve-yegge.blogspot.com/
2006/03/execution-in-kingdom-of-nouns.html.

37

0000
[e]e]e}

37

http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856
http://dx.doi.org/http://doi.acm.org/10.1145/1238844.1238856
http://www.cs.utah.edu/~hal/htut/
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

	Course Metadata
	What is Haskell?
	Taxonomy
	History
	Why use Haskell?
	Am I going to be all alone if I use this?

	Let's get started
	Haskell as a Pocket Calculator
	Bindings

	Some Data
	Booleans
	Pairs
	Lists

	Functions
	Pattern Matching
	Passing Functions Around

