
Meta What Hello Data Fun

Fun With Haskell: Introduction

Nathaniel Wesley Filardo

January 10, 2012

1 / 37

Meta What Hello Data Fun

Course Metadata

Who am I?

Handles:

� Nathaniel “Wes” Filardo

� nwf (“noof”)

Relevant Attributes:

� Fifth year Ph.D. candidate,

� Working for Jason Eisner on Dyna.

� Programming Language Enthusiast,

� A bit of a Haskell snob.

Course web page:

� http://www.acm.jhu.edu/~nwf/fwh/

2 / 37

http://www.acm.jhu.edu/~nwf/fwh/

Meta What Hello Data Fun

Course Metadata

Who are you?

As of last count, 31 of you:

� 1 grad student

� 5 seniors

� 9 juniors

� 5 sophomores

� 11 freshmen

Everybody should have

� Some experience programming

� A laptop with the Haskell Platform

3 / 37

Meta What Hello Data Fun

Course Metadata

Course Goals

� Experience with “functional” ways of thinking.
� Living in the “Kingdom of Verbs” [6].
� Change the way you think about programming (Perlis).

� Exposure to the Haskell language . . .
� Syntax (of course) but more semantics,
� Strong, static, polymorphic typing,
� Effect management (enter monads),
� . . .

� . . . and ecosystem.
� GHC(i): (Interactive) Compiler,
� Hackage, Cabal: Package management
� QuickCheck, HUnit, (Lazy)SmallCheck: Test frameworks
� . . .

4 / 37

Meta What Hello Data Fun

Course Metadata

Where do we go from here?

� I think I know what needs to be presented, if I am to
claim to have “shown Haskell.”

� The world of things relevant to Haskell and maybe this
course is much larger!

� If people want, we can be
� Theoretical, tea-sipping and monocled types,
� Test-driven-development, benchmark-everything,

dashes-everywhere focused,
� Metaprogramming everything under the sun (Haskell, C,

silicon, . . .)
� Statically-safe web developers.

� I know a little about each, and will learn anything to
teach it if there’s interest.

5 / 37

Meta What Hello Data Fun

Course Metadata

Course Structure

� Lots of different backgrounds,

� Never enough time to cover everything,

� So I’m going to try playing it by ear.

� Using a mix of slides and interactive execution.

� That means you should feel free to stop me with
questions any time.

6 / 37

Meta What Hello Data Fun

What is Haskell?

What kind of a name is that, anyway?

� Named after “Haskell Brooks Curry” (1900-1982)

� A pioneer in mathematical (combinatory) logic

� SK calculus, Curry-Howard ≃, Curry paradox, . . .
� “Currying” is named after him (we’ll get there).

7 / 37

Meta What Hello Data Fun

What is Haskell?

Taxonomy

Haskell is a programming language; it is . . .

� Functional, focused on actions to data;

� (mostly) Pure, eschewing side-effects;

� (mostly) Referentially transparent, for equational reasoning;

� Lazy, doing computation only when necessary;

� Statically typed, at compile time;

� Polymorphic, allowing generic functions (and data!);

� Type-classed, defining “interfaces” to different data;

� Monadic (in its library), for management of side-effects.

Don’t worry if that’s all new to you. We’ll get there.

8 / 37

Meta What Hello Data Fun

What is Haskell?

Taxonomy

If all you have is Java, perhaps the most immediately
mind-blowing thing is purity. Data structures in Java are
focused on mutation:

� Adding something to an ArrayList<Foo> changes the
list.

� Iterators have exotic admonitions against modifying the
thing being traversed. (e.g. “fail-fast” vs. “fail-safe”)

In Haskell, data is data. It’s just there. It’s immutable.

� The integer 23 is just that. It doesn’t change. (Java’s,
too.)

� The list of integers [1,2,3] is just that. It doesn’t change.

9 / 37

Meta What Hello Data Fun

What is Haskell?

Taxonomy

Purity (or “purity by default”) is. . .

� More like math (easier to think about).

� Easier to optimize.

� Easier to parallelize! (The future is again multicore. . .)

10 / 37

Meta What Hello Data Fun

What is Haskell?

History of the “Ancient” variety

An excellent paper captures more than I have time for: “A
History of Haskell: Being Lazy With Class” [4]. To give some
hilights:

� 1950s: John McCarthy invents Lisp.
� 1960s: Researchers (Landin, Strachey, Scott) use
Church’s λ calculus for capturing semantics of programs.

� 1970s: Sussman and Steele’s Scheme: Lisp closer to λ.
� 1976: Lazy evaluation enters the scene.
� 1979: Milner invents ML and its type system.
� 1987: Lots of lazy, functional languages and
implementations.

� Mostly small groups. Nobody had “critical mass.”

� 1987: Peyton Jones and Hudak hold a meeting at FPCA.
11 / 37

Meta What Hello Data Fun

What is Haskell?

History of the specification

� 1990 (April 1): Haskell Report, Version 1.0.
� February 1999: The Haskell 98 Report.

� More or less specifies the language we know and love as
Haskell.

� December 2002: Revised Haskell 98 Report.
� Mostly fixes minutae.

� November 2009: Haskell 2010 announced.
� Mostly agreeable minor changes to the language
� That had been implemented already

� Ongoing: Haskell Prime: “an ongoing process to produce
revisions to the Haskell standard, incorporating mature
language extensions and well-understood modifications to
the language.” [1]

12 / 37

Meta What Hello Data Fun

What is Haskell?

Why use Haskell?

� Declarative, functional programming model.
� More expressive yet simpler code.
� Better maintainability.
� Smaller “semantic gap.”

� Strong, static typing with an expressive type system.
� Type inference means types usually sit out of your way.

� Good performance in most cases. Ongoing research for
� better single-core performance,
� automatic multi-core handling,
� GPGPU,
� . . .

� Improved programmer productivity?

� Moving out of being a “boutique” “research” language.
13 / 37

Meta What Hello Data Fun

What is Haskell?

Am I going to be all alone if I use this?

There is a growing, vibrant community:

� http://www.haskell.org/;

� http://planet.haskell.org/ (blog aggregator);

� irc://chat.freenode.net/#haskell;

� haskell-cafe@haskell.org;

� Reddit, StackOverflow, . . .

with a wide range of members:

� Casual users & hobbyists, researchers, industrial users, . . .

� “The Haskell Elders” are on IRC, -cafe, and Reddit.

14 / 37

http://www.haskell.org/
http://planet.haskell.org/
irc://chat.freenode.net/#haskell
haskell-cafe@haskell.org

Meta What Hello Data Fun

What is Haskell?

A Little Name Dropping Never Hurt Anybody

� Industry:
� Code processing: Facebook
� Embedded Programming: Eaton, NASA
� Game engines: iPwn Studios
� HFT: Allston Trading
� Infrastructure: Google
� Modeling: Credit Suisse
� Verification: Galois, MITRE

� Researchers:
� Papers in every major, modern conference.
� Dedicated Implementors Workshop and Symposium at

ICFP.
� Serious web development frameworks:

� We’ve got three: HAppS, Snap, and Yesod.
15 / 37

Meta What Hello Data Fun

What is Haskell?

Am I going to be all alone if I use this?

Some tools are just so important they deserve front-and-center
mention:

� The Haskell Platform: Haskell, Batteries Included.

� Hackage: the Haskell package repository

� http://hackage.haskell.org/

� Hoogle: type-directed search engine

� http://www.haskell.org/hoogle/

� Cabal and cabal-install

� Want something from hackage?
� cabal update && cabal install $PACKAGE

16 / 37

http://hackage.haskell.org/
http://www.haskell.org/hoogle/

Meta What Hello Data Fun

Let’s get started

Disclaimer:

Much of today’s material and presentation ordering
comes from the first part (sections 3 and 4) of Hal
Daumé’s excellent “Yet Another Haskell Tutorial”
[5].

Another disclaimer:

Many of you probably already know some or all of
this. Sorry. If you feel that something could be said
more clearly, please don’t hesitate to speak up.

17 / 37

Meta What Hello Data Fun

Let’s get started

Ladies and Gentlemen, the canonical introduction:

HelloWorld.hs

main = putStrLn "Hello, World"

$ runhaskell HelloWorld.hs

Hello, World!

18 / 37

Meta What Hello Data Fun

Let’s get started

Haskell as a Pocket Calculator

Let’s play with some expressions in ghci:

Prelude> 3+4*5

23

Prelude> (1 + sqrt 5) / 2

1.618033988749895

Prelude> lcm 112358 1248

70111392

Note lack of parentheses for arguments to “sqrt” and “lcm”.

19 / 37

Meta What Hello Data Fun

Let’s get started

Bindings

What if we actually want to use something later? We can give
something a name with a let binding:

Prelude> let phi = (1 + sqrt 5) / 2

Prelude> phi^2

2.618033988749895

Prelude> let fi = 112358 in lcm fi 1248

70111392

Prelude> fi

<interactive>:1:1: Not in scope: ‘fi’

Haskell variables always begin with a lower-case letter (any
lower-case unicode will do), and can involve alphanumerics,

unicode, underscore, and single quotes.
20 / 37

Meta What Hello Data Fun

Some Data

Booleans

Boolean values tell us whether something is True or False.

Prelude> 1 < 2

True

Prelude> 2 < 1

False

Prelude> if 1 < 2 then "Yes!" else "No!"
"Yes!"

(Like Java’s boolean (and unlike C): booleans are not numbers;

try 1 + True; the error message might not make sense right now.)

21 / 37

Meta What Hello Data Fun

Some Data

Pairs

Having single numbers is great and all, but what about pairs
of things?

Prelude> ("phi", phi)

("phi",1.618033988749895)

Prelude> fst ("phi", phi)

"phi"

Prelude> snd ("phi", phi)

1.618033988749895

22 / 37

Meta What Hello Data Fun

Some Data

Pairs

We can make bigger things:

Prelude> (1, "phi", phi, ’f’)

(1,"phi",1.618033988749895,’f’)

And nested things:

Prelude> ((1,2), (phi, "phi"))

((1,2),(1.618033988749895,"phi"))

Behold: a pair of pairs.

23 / 37

Meta What Hello Data Fun

Some Data

Lists

What about arbitrarily-sized collections of things? For that, we
need lists:

Prelude> let xs = 1:2:4:[]

Prelude> head xs

1

Prelude> tail xs

[2,4]

[] denotes the empty list. (There’s really only one!)

24 / 37

Meta What Hello Data Fun

Some Data

Lists

A list is an odd creature: it has
only a head and a tail, where the
tail is itself a creature with only a
head and a tail, and so on. [2]

25 / 37

Meta What Hello Data Fun

Some Data

Lists

The formal definition of a list takes some unpacking:

data [] a = [] | a : [a]

� “A list of things (“a”) is either empty ([]) or a thing
followed by list of things.’

� The constructors [] and : are called “nil” and “cons”.

� The arguments to cons are the head “thing” and tail list.

� We’ll come back to the mysterious “a”.

26 / 37

Meta What Hello Data Fun

Some Data

Lists

Of course, we have a library of functions for manipulating lists:

Prelude> let xs = 1:[2,4,8]

Prelude> length xs

4

Prelude> sum xs

15

Prelude> all (<10) xs

True

Prelude> filter (>5) xs

[8]

27 / 37

Meta What Hello Data Fun

Some Data

Lists

Strings are lists of Chars. We can append lists with the ++
operator:

Prelude> let hw = ’H’:"ello, " ++ "World!"
Prelude> hw

"Hello, World!"

Non-string things can (often) be made into strings by showing
them:

Prelude> "The number is " ++ show (1*2*3)

"The number is 6"

28 / 37

Meta What Hello Data Fun

Functions

� Changing gears!

� Thus far: “stuff”-oriented introduction.

� Have to have at least some stuff; stuff is handy.

� Now: “doing things” to “stuff.”

29 / 37

Meta What Hello Data Fun

Functions

A first function:

FirstFunc.hs

addtwo x = 2 + x

And now

*Main> addtwo 3

5

And that’s it. So let’s go write some interesting functions. . .

30 / 37

Meta What Hello Data Fun

Functions

Pattern Matching

Suppose I have a pair of numbers and I want to add one to
each. How do I do this?

Prelude> let mypair = (1,2)

Prelude> mypair + 1

... No instance for bla bla bla

Prelude> mypair + (1,1)

... No instance for different bla bla bla

31 / 37

Meta What Hello Data Fun

Functions

Pattern Matching

Suppose I have a pair of numbers and I want to add one to
each.
Need to destruct (match) the pair and get at the (delicious)
numbers inside.

Prelude> let mypair = (1,2)

Prelude> case mypair of (a,b) -> (a+1,b+1)

(2,3)

Don’t have to package them back up. Maybe I want to add
them together:

Prelude> case mypair of (a,b) -> a+b

3

32 / 37

Meta What Hello Data Fun

Functions

Pattern Matching

Pattern matching is a popular thing for functions to do:

FirstFuncMatch.hs

myfunc pab = case pab of

(a,b) -> "The answer is: " ++ show (a+b)

And then

*Main> myfunc (3,4)

"The answer is: 7"

33 / 37

Meta What Hello Data Fun

Functions

Pattern Matching

In fact, it’s so common to write things like this that there’s
syntactic sugar:

FirstFuncMatchSugar.hs

myfunc (a,b) = "The answer is: " ++ show (a+b)

And still

*Main> myfunc (3,4)

"The answer is: 7"

34 / 37

Meta What Hello Data Fun

Functions

Passing Functions Around

Suppose we find ourselves manipulating the first element of a
pair by itself frequently:

foo (a,b) = (a+1,b)

bar (a,b) = (2*a,b)

{- ... -}

That’s a lot of the same thing over and over.

35 / 37

Meta What Hello Data Fun

Functions

Passing Functions Around

Want to be able to somehow say “do something to the first
element” and later fill in the something:

mapFst f (a,b) = (f a, b)

Now we can write things like mapFst (+1) (3,4).

36 / 37

Meta What Hello Data Fun

Functions

Passing Functions Around

� This is a key part of “functional” programming: functions
are “stuff” (formally: values) as well as being functions.

� In C, you can have “function pointers” which are sort of
close.

� In Java, you have to box up a function in a class as a
method. Ick!

� In fact, it’s so common to want to have a function in
Haskell that there’s sugar for anonymous functions:

Prelude> map (\x -> x*x) [1,2,3]

[1,4,9]

� Can even take multiple arguments: \x y -> x + (2*y).

37 / 37

Meta What Hello Data Fun

Bib

Available from: http://hackage.haskell.org/trac/
haskell-prime/.

Available from: http://wadler.blogspot.com/2009/
11/list-is-odd-creature.html.

Available from: http://courses.cms.caltech.edu/
cs11/material/haskell/index.html.

Paul Hudak, John Hughes, Simon Peyton Jones, and
Philip Wadler.
A history of haskell: being lazy with class.
In Proceedings of the third ACM SIGPLAN conference on
History of programming languages, HOPL III, pages
12–1–12–55, New York, NY, USA, 2007. ACM.

37 / 37

http://hackage.haskell.org/trac/haskell-prime/
http://hackage.haskell.org/trac/haskell-prime/
http://wadler.blogspot.com/2009/11/list-is-odd-creature.html
http://wadler.blogspot.com/2009/11/list-is-odd-creature.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html
http://courses.cms.caltech.edu/cs11/material/haskell/index.html

Meta What Hello Data Fun

Available from: http://doi.acm.org/10.1145/
1238844.1238856,
doi:http://doi.acm.org/10.1145/1238844.1238856.

Hal Daumé III.
Yet another haskell tutorial.
2002–2006.
Available from: http://www.cs.utah.edu/~hal/htut/.

Steve Yegge.
Execution in the kingdom of nouns, 2006.
Available from: http://steve-yegge.blogspot.com/
2006/03/execution-in-kingdom-of-nouns.html.

37 / 37

http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856
http://dx.doi.org/http://doi.acm.org/10.1145/1238844.1238856
http://www.cs.utah.edu/~hal/htut/
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

	Course Metadata
	What is Haskell?
	Taxonomy
	History
	Why use Haskell?
	Am I going to be all alone if I use this?

	Let's get started
	Haskell as a Pocket Calculator
	Bindings

	Some Data
	Booleans
	Pairs
	Lists

	Functions
	Pattern Matching
	Passing Functions Around

