META STACK CONCUR STM PAR NEXT
o 00

00

o

Fun With Haskell: Off to the Races

Nathaniel Wesley Filardo

January 18, 2012

META STACK CONCUR STM

PAR NEXT
° 00

e]e]
[e]

Metadata
Questions?

e Any questions from last time?

e Sorry about running over; the remaining slides have been
hauled into this deck.

META STACK CONCUR STM I
o 00

00

o

AR NEXT

Monad Transformers

e Hey! Sometimes we want more than one!

e Last week: Maybe, Reader, State, ... Monads
e This week: I0

e How can we get Readers that can do |10 too?
o It would be sad if we couldn’t!

META

STACK CONCUR STM PAR NEXT

(e]e]
e]e]
[e]

Monad Transformers

Hey! Sometimes we want more than one!

e Last week: Maybe, Reader, State, ... Monads

e This week: I0
How can we get Readers that can do 10 too?

o It would be sad if we couldn’t!
Disclaimer: this is, | think, one of the places where
Haskell can use some more work. Quite recently, there is
Monatron [1] which brings a lot of this onto better
mathematical foundations.
Relatedly, The Monad Zipper [4] shows a better way to
manage stacks.

META STACK CONCUR STM I
o 00

00

o

AR NEXT

Monad Transformers

e Reader endowed a pure computation with additional
(Monadic) functionality.

e \We want something to transform |0 monadic
computations.

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Monad Transformers

e Reader endowed a pure computation with additional
(Monadic) functionality.

e \We want something to transform |0 monadic
computations.

e Behold, the ReaderT in Control.Monad.Reader:

newtype ReaderT r m a =

ReaderT {runReaderT :: r -> m a}
instance Monad m => Monad (ReaderT r m) --...
ask :: Monad m => ReaderT r m r

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Monad Transformers

newtype ReaderT r m a =
ReaderT {runReaderT :: r -> m a}

e ReaderT functions have an environment r, and produce
an action in m that computes a value a.

e Reader is actually defined as a ReaderT on the Identity
Monad:

newtype Identity a = Identity
{ runIdentity :: a }

instance Monad Identity where
return a = Identity a

m >>= k =k (runIdentity m)

META STACK CONCUR STM I
o 00

00

o

AR NEXT

Monad Transformers

e Alright, so Reader wasn't interesting.
e How about ReaderT on 107 We'd like:

main = runReaderT (ask >>= putStrLn) "Test"

META STACK CONCUR STM PAR NEXT
o 00

00

o

Monad Transformers

e Alright, so Reader wasn't interesting.
e How about ReaderT on 107 We'd like:

main = runReaderT (ask >>= putStrLn) "Test"

e Type failure: Couldn’t match expected type
‘ReaderT String m0 a0’ with actual type ‘IO
0’

e Oh right: putStrLn :: String -> I0 ()

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Monad Transformers

Alright, so Reader wasn't interesting.
How about ReaderT on 107 We'd like:

main = runReaderT (ask >>= putStrLn) "Test"

Type failure: Couldn’t match expected type
‘ReaderT String m0 a0’ with actual type ‘IO
0’

Oh right: putStrLn :: String -> I0 O

Need to make I0 () into ReaderT r I0 ().

META STACK CONCUR STM I
o 00

00

o

AR NEXT

Monad Transformers

e Monad transformers also specify how to “lift" actions
from the wrapped monad:

class MonadTrans t where
lift :: Monad m => m a -> t m a

instance MonadTrans (ReaderT r) —-...

META

STACK CONCUR STM PAR

(e]e]
e]e]
[e]

Monad Transformers

e Use 1ift:
class MonadTrans t where
lift :: Monad m => m a -> t m a
e So:

main = runReaderT
(ask >>= 1ift . putStrLn)
llTeStll

e Often, don't have to lift: transformers defined so that, for
example, an un-lifted ask always applies to the outermost

ReaderT, even if there is stuff in the way.

NEXT

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Monad Transformers

In fact, stacks of transformers over I0 and the need to lift into
I0 are so common that there's a special class and function:

class Monad m => MonadI0 m where
1iftI0 :: I0 a -> m a

instance MonadIO m => MonadIO (ReaderT r m) --...

So:

main = runReaderT
(ask >>= 1iftI0 . putStrLn)
IlTeStll

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Monad Transformers

e Transformer stacks get used in real software:

e “xmonad” is a X11 window manager in Haskell; it defines
a core monad:

-— | The X monad, ’ReaderT’ and ’StateT’
-- transformers over ’'I0’ encapsulating the
-- window manager configuration and state,
-- respectively.
newtype X a = X (ReaderT XConf

(StateT XState I0) a)

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Monad Transformers

A fistful of standard transformers:
ReaderT
StateT

WriterT (accumulate results monoidally)
RWST (Reader-Writer-State all in one)
MaybeT (partial functions)

ErrorT (pure throw/catch)

ContT (continuations!)

(For the moment, these are provided by the mt1 package in
the Haskell Platform. There is at least one ongoing effort to
improve and likely replace it.)

META STACK CONCUR STM I
o 00

00

o

AR NEXT

Monad Transformers

A brief word on stack ordering and effects:

e Consider StateT, and a transformer for (pure)
exceptions, ErrorT.

e Two ways of stacking on top of m:
o StateT s (ErrorT e m)

e ErrorT e (StateT s m)

META STACK CONCUR STM
o 00

00

o

PAR NEXT

Monad Transformers

A brief word on stack ordering and effects:

e Consider StateT, and a transformer for (pure)
exceptions, ErrorT.

e Two ways of stacking on top of m:
o StateT s (ErrorT e m)

e State backtracked when exception thrown.
e i.e. catch handler runs with state as of the start of the
wrapped computation.
e ErrorT e (StateT s m)

e State preserved when exception thrown.
e catch handler runs with state changed by code up to the
point of throw.

META

STACK CONCUR STM PAR

(e]e]
e]e]
[e]

Monad Transformers

newtype ErrorT e m a = ErrorT

{

runErrorT :: m (Either e a) }

newtype StateT s m a = StateT

{

runStateT :: s -> m (a,s) }

StateT s (ErrorT e m) — state backtracking:

runStateT :: s —> ErrorT e m (a,s)
—-— runErrorT (runStateT act state)

ErrorT e (StateT s m) — state preserving:

runErrorT :: StateT s m (Either e a)
-- runStateT (runErrorT act) state

NEXT

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Intro to Ezplicit Concurrency

The Control.Concurrent module and friends provide

light-weight coroutine-style threads
standard heavy-weight OS threads

e asynchronous exceptions
inter-thread communication primitives

(Bonus: the implementation abstracts over native
event-driving mechanisms but presents straight-line code)

14 /2

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Intro to Ezplicit Concurrency

e How do we get these things?

e Primitive function:

forkIO :: I0 () -> IO ThreadId

e Takes the RealWorld and makes two of them.

META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Intro to Ezplicit Concurrency

How do we get these things?

Primitive function:

forkIO :: I0 () -> IO ThreadId

Takes the RealWorld and makes two of them.

Yes, that means that anything we share between them is
subject to the laundry-list of race condition woes.

META STACK CONCUR STM PAR NEXT

[e] [Je]
e]e]
[e]

Intro to Ezplicit Concurrency
Race Conditions

e Race conditions?! Consider:

racer ref = forM_ [1..10000] $
const $§ modifyIORef ref (+1)

main = do

r <- newIORef O

forkI0 $ racer r

forkI0 $ racer r

readIORef r >>= print

e Assuming both forked threads terminate before the
readIORef, what does the last line print?

META

STACK CONCUR STM PAR NEXT

oe
e]e]
[e]

Intro to Ezplicit Concurrency
Race Conditions

Real program in Racer.hs.

Uses some stuff not yet discussed to ensure that the
threads actually finish before printing.

To actually run,

$ ghc --make -threaded -rtsopts Racer.hs
$./Racer +RTS -N2

| ran the program a few times and got: 17973, 18724,
19263, 15035, 20000.

META STACK CONCUR STM PAR NEXT
o 00

®0

o

Intro to Ezplicit Concurrency
MVars

e Well that's no good.
e Classical answer: use a lock or atomic action.
e In fact: atomicModifyIORef.

e An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

e Very similar to I0Refs, but:

META STACK CONCUR STM PAR NEXT
o 00

®0

o

Intro to Ezplicit Concurrency
MVars

e Well that's no good.
e Classical answer: use a lock or atomic action.
e In fact: atomicModifyIORef.

e An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

e Very similar to I0Refs, but:
e May be either full or empty.

META STACK CONCUR STM PAR NEXT
o 00

®0

o

Intro to Ezplicit Concurrency
MVars

e Well that's no good.
e Classical answer: use a lock or atomic action.
e In fact: atomicModifyIORef.

e An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

e Very similar to I0Refs, but:

e May be either full or empty.
e Taking an empty MVar blocks until somebody else puts.
e Putting a full MVar blocks until somebody else takes.

META STACK CONCUR STM PAR NEXT

[e] (e]e]
[Je]
[e]

Intro to Ezplicit Concurrency
MVars

e Well that's no good.
e Classical answer: use a lock or atomic action.
e In fact: atomicModifyIORef.

e An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

e Very similar to I0Refs, but:

May be either full or empty.

Taking an empty MVar blocks until somebody else puts.
Putting a full MVar blocks until somebody else takes.
Fair, depth-one producer/consumer queue.

META STACK CONCUR STM PAR NEXT
o 00

oe

o

Intro to Ezplicit Concurrency
MVars

e Core API:

newEmptyMVar :: I0 (MVar a)
newMVar :: a -> I0 (MVar a)
takeMVar :: MVar a -> I0 a
putMVar :: MVar a -> a -> I0 O

e (take and put are fair: FIFO and wake-one)
e Non-blocking variants tryTakeMVar and tryPutMVar.
e Exception-safe utilities like

‘modifyMVar :: MVar a -> (a -> I0 (a,b)) -> IO IJP

META

STACK CONCUR STM I
00
00
°

’AR

Intro to Ezplicit Concurrency
Other Ezplicitly-Concurrent Tools

Building up from MVars, there are
e Chan: Unbounded, MPMC channels.

e QSem: Semaphores with take-one/release-one.

e QSemN: Semaphores with take-many/release-many.

e SampleVar: overwritable MVars.

o Take from empty still blocks.
e Write to full overwrites.

e Use for sampling (ah ha), progress indicators, ...

NEXT

META STACK CONCUR STM PAR NEXT
o 00

00

o

Software Transactional Memory

e There's a lot to be said about concurrency.

e | would rather talk about something newer than the same
old stuff.

e You probably either have seen or will see the standard
fare, which applies equally well to Haskell.

)

META STACK CONCUR STM PAR NEXT
o 00

00

o

Software Transactional Memory

Hah, I'm stealing Simon Peyton Jones’ excellent slides. [3]

META STACK CONCUR STM Par NEXT
o 00

00

o

Parallel Strategies

Your instructor steals again, this time using Andres Loh's
excellent slides. [2]

Next time

e You tell me?

24 /24

META

Bib
El

STACK CONCUR STM PAR NEXT
00
00
o

Mauro Jaskelioff.

Monatron: an extensible monad transformer library.
In Implementation and Application of Functional
Languages, 2008.

Andres Loh.

Tutorial: Deterministic parallel programming in haskell,
Oct 2011.

Available from: http://www.well-typed.com/Hal6/
Presentation.pdf.

Simon Peyton Jones.

Haskell and transactional memory, April 2010.
Available from: http://research.microsoft.com/
en-us/um/people/simonpj/papers/stm/#tokyo.

24 /24

http://www.well-typed.com/Hal6/Presentation.pdf
http://www.well-typed.com/Hal6/Presentation.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/#tokyo
http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/#tokyo

META STACK CONCUR STM PAR NEXT
o 00

00

o

[Tom Schrjvers and Bruno C. d. S. Oliveira.
Functional pearl: The monad zipper.
2010.
Available from: http://users.ugent.be/~tschrijv/
Research/papers/monad_zipper_draft.pdf.

24 /24

http://users.ugent.be/~tschrijv/Research/papers/monad_zipper_draft.pdf
http://users.ugent.be/~tschrijv/Research/papers/monad_zipper_draft.pdf

	Metadata
	Questions?

	Monad Transformers
	Intro to Explicit Concurrency
	Race Conditions
	MVars
	Other Explicitly-Concurrent Tools

	Software Transactional Memory
	Parallel Strategies
	Next time

