
Meta Stack Concur STM Par Next

Fun With Haskell: Off to the Races

Nathaniel Wesley Filardo

January 18, 2012

1 / 24



Meta Stack Concur STM Par Next

Metadata

Questions?

� Any questions from last time?

� Sorry about running over; the remaining slides have been
hauled into this deck.

2 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Hey! Sometimes we want more than one!

� Last week: Maybe, Reader, State, . . .Monads
� This week: IO

� How can we get Readers that can do IO too?

� It would be sad if we couldn’t!

3 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Hey! Sometimes we want more than one!

� Last week: Maybe, Reader, State, . . .Monads
� This week: IO

� How can we get Readers that can do IO too?

� It would be sad if we couldn’t!

� Disclaimer: this is, I think, one of the places where
Haskell can use some more work. Quite recently, there is
Monatron [1] which brings a lot of this onto better
mathematical foundations.

� Relatedly, The Monad Zipper [4] shows a better way to
manage stacks.

3 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Reader endowed a pure computation with additional
(Monadic) functionality.

� We want something to transform IO monadic

computations.

4 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Reader endowed a pure computation with additional
(Monadic) functionality.

� We want something to transform IO monadic

computations.

� Behold, the ReaderT in Control.Monad.Reader:

newtype ReaderT r m a =

ReaderT {runReaderT :: r -> m a}

instance Monad m => Monad (ReaderT r m) --...

ask :: Monad m => ReaderT r m r

4 / 24



Meta Stack Concur STM Par Next

Monad Transformers

newtype ReaderT r m a =

ReaderT {runReaderT :: r -> m a}

� ReaderT functions have an environment r, and produce
an action in m that computes a value a.

� Reader is actually defined as a ReaderT on the Identity

Monad:

newtype Identity a = Identity

{ runIdentity :: a }

instance Monad Identity where

return a = Identity a

m >>= k = k (runIdentity m)

5 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Alright, so Reader wasn’t interesting.

� How about ReaderT on IO? We’d like:

main = runReaderT (ask >>= putStrLn) "Test"

6 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Alright, so Reader wasn’t interesting.

� How about ReaderT on IO? We’d like:

main = runReaderT (ask >>= putStrLn) "Test"

� Type failure: Couldn’t match expected type

‘ReaderT String m0 a0’ with actual type ‘IO

()’

� Oh right: putStrLn :: String -> IO ()

6 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Alright, so Reader wasn’t interesting.

� How about ReaderT on IO? We’d like:

main = runReaderT (ask >>= putStrLn) "Test"

� Type failure: Couldn’t match expected type

‘ReaderT String m0 a0’ with actual type ‘IO

()’

� Oh right: putStrLn :: String -> IO ()

� Need to make IO () into ReaderT r IO ().

6 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Monad transformers also specify how to “lift” actions
from the wrapped monad:

class MonadTrans t where

lift :: Monad m => m a -> t m a

instance MonadTrans (ReaderT r) --...

7 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Use lift:

class MonadTrans t where

lift :: Monad m => m a -> t m a

� So:

main = runReaderT

(ask >>= lift . putStrLn)

"Test"

� Often, don’t have to lift: transformers defined so that, for
example, an un-lifted ask always applies to the outermost
ReaderT, even if there is stuff in the way.

8 / 24



Meta Stack Concur STM Par Next

Monad Transformers

In fact, stacks of transformers over IO and the need to lift into
IO are so common that there’s a special class and function:

class Monad m => MonadIO m where

liftIO :: IO a -> m a

instance MonadIO m => MonadIO (ReaderT r m) --...

So:

main = runReaderT

(ask >>= liftIO . putStrLn)

"Test"

9 / 24



Meta Stack Concur STM Par Next

Monad Transformers

� Transformer stacks get used in real software:

� “xmonad” is a X11 window manager in Haskell; it defines
a core monad:

-- | The X monad, ’ReaderT’ and ’StateT’

-- transformers over ’IO’ encapsulating the

-- window manager configuration and state,

-- respectively.

newtype X a = X (ReaderT XConf

(StateT XState IO) a)

10 / 24



Meta Stack Concur STM Par Next

Monad Transformers

A fistful of standard transformers:

� ReaderT

� StateT

� WriterT (accumulate results monoidally)

� RWST (Reader-Writer-State all in one)

� MaybeT (partial functions)

� ErrorT (pure throw/catch)

� ContT (continuations!)

(For the moment, these are provided by the mtl package in
the Haskell Platform. There is at least one ongoing effort to
improve and likely replace it.)

11 / 24



Meta Stack Concur STM Par Next

Monad Transformers

A brief word on stack ordering and effects:

� Consider StateT, and a transformer for (pure)
exceptions, ErrorT.

� Two ways of stacking on top of m:
� StateT s (ErrorT e m)

� ErrorT e (StateT s m)

12 / 24



Meta Stack Concur STM Par Next

Monad Transformers

A brief word on stack ordering and effects:

� Consider StateT, and a transformer for (pure)
exceptions, ErrorT.

� Two ways of stacking on top of m:
� StateT s (ErrorT e m)

� State backtracked when exception thrown.
� i.e. catch handler runs with state as of the start of the

wrapped computation.

� ErrorT e (StateT s m)

� State preserved when exception thrown.
� catch handler runs with state changed by code up to the

point of throw.

12 / 24



Meta Stack Concur STM Par Next

Monad Transformers

newtype ErrorT e m a = ErrorT

{ runErrorT :: m (Either e a) }

newtype StateT s m a = StateT

{ runStateT :: s -> m (a,s) }

� StateT s (ErrorT e m) – state backtracking:

runStateT :: s -> ErrorT e m (a,s)

-- runErrorT (runStateT act state)

� ErrorT e (StateT s m) – state preserving:

runErrorT :: StateT s m (Either e a)

-- runStateT (runErrorT act) state

13 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

The Control.Concurrent module and friends provide

� light-weight coroutine-style threads

� standard heavy-weight OS threads

� asynchronous exceptions

� inter-thread communication primitives

� (Bonus: the implementation abstracts over native
event-driving mechanisms but presents straight-line code)

14 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

� How do we get these things?

� Primitive function:

forkIO :: IO () -> IO ThreadId

� Takes the RealWorld and makes two of them.

15 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

� How do we get these things?

� Primitive function:

forkIO :: IO () -> IO ThreadId

� Takes the RealWorld and makes two of them.

� Yes, that means that anything we share between them is
subject to the laundry-list of race condition woes.

15 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

Race Conditions

� Race conditions?! Consider:

racer ref = forM_ [1..10000] $

const $ modifyIORef ref (+1)

main = do

r <- newIORef 0

forkIO $ racer r

forkIO $ racer r

readIORef r >>= print

� Assuming both forked threads terminate before the
readIORef, what does the last line print?

16 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

Race Conditions

� Real program in Racer.hs.

� Uses some stuff not yet discussed to ensure that the
threads actually finish before printing.

� To actually run,

$ ghc --make -threaded -rtsopts Racer.hs

$ ./Racer +RTS -N2

� I ran the program a few times and got: 17973, 18724,
19263, 15035, 20000.

17 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

MVars

� Well that’s no good.

� Classical answer: use a lock or atomic action.

� In fact: atomicModifyIORef.

� An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

� Very similar to IORefs, but:

18 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

MVars

� Well that’s no good.

� Classical answer: use a lock or atomic action.

� In fact: atomicModifyIORef.

� An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

� Very similar to IORefs, but:

� May be either full or empty.

18 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

MVars

� Well that’s no good.

� Classical answer: use a lock or atomic action.

� In fact: atomicModifyIORef.

� An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

� Very similar to IORefs, but:

� May be either full or empty.
� Taking an empty MVar blocks until somebody else puts.
� Putting a full MVar blocks until somebody else takes.

18 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

MVars

� Well that’s no good.

� Classical answer: use a lock or atomic action.

� In fact: atomicModifyIORef.

� An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

� Very similar to IORefs, but:

� May be either full or empty.
� Taking an empty MVar blocks until somebody else puts.
� Putting a full MVar blocks until somebody else takes.
� Fair, depth-one producer/consumer queue.

18 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

MVars

� Core API:

newEmptyMVar :: IO (MVar a)

newMVar :: a -> IO (MVar a)

takeMVar :: MVar a -> IO a

putMVar :: MVar a -> a -> IO ()

� (take and put are fair: FIFO and wake-one)

� Non-blocking variants tryTakeMVar and tryPutMVar.

� Exception-safe utilities like

modifyMVar :: MVar a -> (a -> IO (a,b)) -> IO b

19 / 24



Meta Stack Concur STM Par Next

Intro to Explicit Concurrency

Other Explicitly-Concurrent Tools

Building up from MVars, there are

� Chan: Unbounded, MPMC channels.

� QSem: Semaphores with take-one/release-one.

� QSemN: Semaphores with take-many/release-many.

� SampleVar: overwritable MVars.

� Take from empty still blocks.
� Write to full overwrites.
� Use for sampling (ah ha), progress indicators, . . .

20 / 24



Meta Stack Concur STM Par Next

Software Transactional Memory

� There’s a lot to be said about concurrency.

� I would rather talk about something newer than the same
old stuff.

� You probably either have seen or will see the standard
fare, which applies equally well to Haskell.

21 / 24



Meta Stack Concur STM Par Next

Software Transactional Memory

Hah, I’m stealing Simon Peyton Jones’ excellent slides. [3]

22 / 24



Meta Stack Concur STM Par Next

Parallel Strategies

Your instructor steals again, this time using Andres Löh’s
excellent slides. [2]

23 / 24



Meta Stack Concur STM Par Next

Next time

� You tell me?

24 / 24



Meta Stack Concur STM Par Next

Bib

Mauro Jaskelioff.
Monatron: an extensible monad transformer library.
In Implementation and Application of Functional

Languages, 2008.

Andres Löh.
Tutorial: Deterministic parallel programming in haskell,
Oct 2011.
Available from: http://www.well-typed.com/Hal6/
Presentation.pdf.

Simon Peyton Jones.
Haskell and transactional memory, April 2010.
Available from: http://research.microsoft.com/
en-us/um/people/simonpj/papers/stm/#tokyo.

24 / 24

http://www.well-typed.com/Hal6/Presentation.pdf
http://www.well-typed.com/Hal6/Presentation.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/#tokyo
http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/#tokyo


Meta Stack Concur STM Par Next

Tom Schrjvers and Bruno C. d. S. Oliveira.
Functional pearl: The monad zipper.
2010.
Available from: http://users.ugent.be/~tschrijv/
Research/papers/monad_zipper_draft.pdf.

24 / 24

http://users.ugent.be/~tschrijv/Research/papers/monad_zipper_draft.pdf
http://users.ugent.be/~tschrijv/Research/papers/monad_zipper_draft.pdf

	Metadata
	Questions?

	Monad Transformers
	Intro to Explicit Concurrency
	Race Conditions
	MVars
	Other Explicitly-Concurrent Tools

	Software Transactional Memory
	Parallel Strategies
	Next time

