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Questions?

e Any questions from last time?

e Sorry about running over; the remaining slides have been
hauled into this deck.
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Monad Transformers

e Hey! Sometimes we want more than one!

e Last week: Maybe, Reader, State, ... Monads
e This week: I0

e How can we get Readers that can do |10 too?
o It would be sad if we couldn’t!
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Monad Transformers

Hey! Sometimes we want more than one!

e Last week: Maybe, Reader, State, ... Monads

e This week: I0
How can we get Readers that can do 10 too?

o It would be sad if we couldn’t!
Disclaimer: this is, | think, one of the places where
Haskell can use some more work. Quite recently, there is
Monatron [1] which brings a lot of this onto better
mathematical foundations.
Relatedly, The Monad Zipper [4] shows a better way to
manage stacks.
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Monad Transformers

e Reader endowed a pure computation with additional
(Monadic) functionality.

e \We want something to transform |0 monadic
computations.
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Monad Transformers

e Reader endowed a pure computation with additional
(Monadic) functionality.

e \We want something to transform |0 monadic
computations.

e Behold, the ReaderT in Control.Monad.Reader:

newtype ReaderT r m a =

ReaderT {runReaderT :: r -> m a}
instance Monad m => Monad (ReaderT r m) --...
ask :: Monad m => ReaderT r m r
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Monad Transformers

newtype ReaderT r m a =
ReaderT {runReaderT :: r -> m a}

e ReaderT functions have an environment r, and produce
an action in m that computes a value a.

e Reader is actually defined as a ReaderT on the Identity
Monad:

newtype Identity a = Identity
{ runIdentity :: a }

instance Monad Identity where
return a = Identity a

m >>= k =k (runIdentity m)
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Monad Transformers

e Alright, so Reader wasn't interesting.
e How about ReaderT on 107 We'd like:

main = runReaderT (ask >>= putStrLn) "Test"
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Monad Transformers

e Alright, so Reader wasn't interesting.
e How about ReaderT on 107 We'd like:

main = runReaderT (ask >>= putStrLn) "Test"

e Type failure: Couldn’t match expected type
‘ReaderT String m0 a0’ with actual type ‘IO
0’

e Oh right: putStrLn :: String -> I0 ()
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Monad Transformers

Alright, so Reader wasn't interesting.
How about ReaderT on 107 We'd like:

main = runReaderT (ask >>= putStrLn) "Test"

Type failure: Couldn’t match expected type
‘ReaderT String m0 a0’ with actual type ‘IO
0’

Oh right: putStrLn :: String -> I0 O

Need to make I0 () into ReaderT r I0 ().
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Monad Transformers

e Monad transformers also specify how to “lift" actions
from the wrapped monad:

class MonadTrans t where
lift :: Monad m => m a -> t m a

instance MonadTrans (ReaderT r) —-...
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Monad Transformers

e Use 1ift:
class MonadTrans t where
lift :: Monad m => m a -> t m a
e So:

main = runReaderT
(ask >>= 1ift . putStrLn)
llTeStll

e Often, don't have to lift: transformers defined so that, for
example, an un-lifted ask always applies to the outermost

ReaderT, even if there is stuff in the way.

NEXT
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Monad Transformers

In fact, stacks of transformers over I0 and the need to lift into
I0 are so common that there's a special class and function:

class Monad m => MonadI0 m where
1iftI0 :: I0 a -> m a

instance MonadIO m => MonadIO (ReaderT r m) --...

So:

main = runReaderT
(ask >>= 1iftI0 . putStrLn)
IlTeStll
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Monad Transformers

e Transformer stacks get used in real software:

e “xmonad” is a X11 window manager in Haskell; it defines
a core monad:

-— | The X monad, ’ReaderT’ and ’StateT’
-- transformers over ’'I0’ encapsulating the
-- window manager configuration and state,
-- respectively.
newtype X a = X (ReaderT XConf

(StateT XState I0) a)
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Monad Transformers

A fistful of standard transformers:
ReaderT
StateT

WriterT (accumulate results monoidally)
RWST (Reader-Writer-State all in one)
MaybeT (partial functions)

ErrorT (pure throw/catch)

ContT (continuations!)

(For the moment, these are provided by the mt1 package in
the Haskell Platform. There is at least one ongoing effort to
improve and likely replace it.)
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Monad Transformers

A brief word on stack ordering and effects:

e Consider StateT, and a transformer for (pure)
exceptions, ErrorT.

e Two ways of stacking on top of m:
o StateT s (ErrorT e m)

e ErrorT e (StateT s m)
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Monad Transformers

A brief word on stack ordering and effects:

e Consider StateT, and a transformer for (pure)
exceptions, ErrorT.

e Two ways of stacking on top of m:
o StateT s (ErrorT e m)

e State backtracked when exception thrown.
e i.e. catch handler runs with state as of the start of the
wrapped computation.
e ErrorT e (StateT s m)

e State preserved when exception thrown.
e catch handler runs with state changed by code up to the
point of throw.
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Monad Transformers

newtype ErrorT e m a = ErrorT

{

runErrorT :: m (Either e a) }

newtype StateT s m a = StateT

{

runStateT :: s -> m (a,s) }

StateT s (ErrorT e m) — state backtracking:

runStateT :: s —> ErrorT e m (a,s)
—-— runErrorT (runStateT act state)

ErrorT e (StateT s m) — state preserving:

runErrorT :: StateT s m (Either e a)
-- runStateT (runErrorT act) state

NEXT



META STACK CONCUR STM PAR NEXT

[e] (e]e]
e]e]
[e]

Intro to Ezplicit Concurrency

The Control.Concurrent module and friends provide

light-weight coroutine-style threads
standard heavy-weight OS threads

e asynchronous exceptions
inter-thread communication primitives

(Bonus: the implementation abstracts over native
event-driving mechanisms but presents straight-line code)

14 /2
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Intro to Ezplicit Concurrency

e How do we get these things?

e Primitive function:

forkIO :: I0 () -> IO ThreadId

e Takes the RealWorld and makes two of them.
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Intro to Ezplicit Concurrency

How do we get these things?

Primitive function:

forkIO :: I0 () -> IO ThreadId

Takes the RealWorld and makes two of them.

Yes, that means that anything we share between them is
subject to the laundry-list of race condition woes.



META STACK CONCUR STM PAR NEXT

[e] [ Je]
e]e]
[e]

Intro to Ezplicit Concurrency
Race Conditions

e Race conditions?! Consider:

racer ref = forM_ [1..10000] $
const $§ modifyIORef ref (+1)

main = do

r <- newIORef O

forkI0 $ racer r

forkI0 $ racer r

readIORef r >>= print

e Assuming both forked threads terminate before the
readIORef, what does the last line print?
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Intro to Ezplicit Concurrency
Race Conditions

Real program in Racer.hs.

Uses some stuff not yet discussed to ensure that the
threads actually finish before printing.

To actually run,

$ ghc --make -threaded -rtsopts Racer.hs
$ ./Racer +RTS -N2

| ran the program a few times and got: 17973, 18724,
19263, 15035, 20000.
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Intro to Ezplicit Concurrency
MVars

e Well that's no good.
e Classical answer: use a lock or atomic action.
e In fact: atomicModifyIORef.

e An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

e Very similar to I0Refs, but:
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Intro to Ezplicit Concurrency
MVars

e Well that's no good.
e Classical answer: use a lock or atomic action.
e In fact: atomicModifyIORef.

e An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

e Very similar to I0Refs, but:
e May be either full or empty.
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Intro to Ezplicit Concurrency
MVars

e Well that's no good.
e Classical answer: use a lock or atomic action.
e In fact: atomicModifyIORef.

e An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

e Very similar to I0Refs, but:

e May be either full or empty.
e Taking an empty MVar blocks until somebody else puts.
e Putting a full MVar blocks until somebody else takes.
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Intro to Ezplicit Concurrency
MVars

e Well that's no good.
e Classical answer: use a lock or atomic action.
e In fact: atomicModifyIORef.

e An interesting Haskell answer: MVar in
Control.Concurrent.Mvar (or just
Control.Concurrent).

e Very similar to I0Refs, but:

May be either full or empty.

Taking an empty MVar blocks until somebody else puts.
Putting a full MVar blocks until somebody else takes.
Fair, depth-one producer/consumer queue.
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Intro to Ezplicit Concurrency
MVars

e Core API:

newEmptyMVar :: I0 (MVar a)
newMVar :: a -> I0 (MVar a)
takeMVar :: MVar a -> I0 a
putMVar :: MVar a -> a -> I0 O

e (take and put are fair: FIFO and wake-one)
e Non-blocking variants tryTakeMVar and tryPutMVar.
e Exception-safe utilities like

‘modifyMVar :: MVar a -> (a -> I0 (a,b)) -> IO IJP
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Intro to Ezplicit Concurrency
Other Ezplicitly-Concurrent Tools

Building up from MVars, there are
e Chan: Unbounded, MPMC channels.

e QSem: Semaphores with take-one/release-one.

e QSemN: Semaphores with take-many/release-many.

e SampleVar: overwritable MVars.

o Take from empty still blocks.
e Write to full overwrites.

e Use for sampling (ah ha), progress indicators, ...

NEXT
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Software Transactional Memory

e There's a lot to be said about concurrency.

e | would rather talk about something newer than the same
old stuff.

e You probably either have seen or will see the standard
fare, which applies equally well to Haskell.

)
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Software Transactional Memory

Hah, I'm stealing Simon Peyton Jones’ excellent slides. [3]
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Parallel Strategies

Your instructor steals again, this time using Andres Loh's
excellent slides. [2]



Next time

e You tell me?

24 /24
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