
CHERI:
A Modern Capability Architecture

Dr. Nathaniel “nwf” Filardo

Microsoft Research, Cambridge, UK

2022/07/22

“CHERI, a modern computing architecture centered around capabilities”

1

2

▪ I work on CHERI for Microsoft Research, but…

• I am not speaking on behalf of my employer. Opinions herein are mine.

• This talk is about science experiments and does not constitute commitment or a promise of products.

▪ Questions during via Matrix; Q&A at the end.

Preliminaries

2

Modern Computer Architecture:
Unsafe at Any Speed?

3
Ralph Nader. Unsafe at Any Speed. (1965)

A more inflammatory title for this talk.
Why might someone claim this?

3

CVEs and High Severity Bugs from (Lack of) Memory Safety

4

CVSS Severity Count Over Time (as of 22 Jul 2022)

NVD - CVSS Severity Distribution Over Time (nist.gov)

A less contentious phrasing is that software security isn’t great. As computers
continue to infiltrate every aspect of existence, we are seeing a steep upwards trend
in yearly CVEs…

4

CVEs and High Severity Bugs from (Lack of) Memory Safety

5Matt Miller. Trends, challenge, and shifts in software vulnerability mitigation. (BlueHatIL 2019)

But, embarrassingly, these tend not to be new kinds of bugs in new kinds of domains.
Rather, year after year, 70% of these turn out to be from memory safety problems:
pointer injection, buffer overflows, use-after-free, and so on. These problems have
been with us “since the beginning”, at least of UNIX; so, 50 years, if not even longer;
came to broader awareness in 1996 with “Smashing the Stack for Fun and Profit” by
Aleph One, and even by that standard it’s been 25 years and counting.

5

CVEs and High Severity Bugs from (Lack of) Memory Safety

0

200

400

600

800

1000

1200

1400

2016 2017 2018 2019 2020

Microsoft Security Response Center Cases Number / Year
(Memory Safety Issues)

6Amar et al. Security Analysis of CHERI ISA. (Blackhat 2021)

So, if you take 70% of an increasingly bad time, it turns out to still be an increasingly
bad time. Microsoft Security Response Center is handling more and more memory
safety issues per year.

6

▪ Lots of people have tried lots of new things:

• Software tricks: stack canaries, guard pages, ASLR, W^X, …

• Static analyses: symbolic execution, fuzzing, …

• Languages: Ada, ML, Haskell, Java, JavaScript, C#/.Net, Rust, …

• Architectural features: PAC, MTE, BTI, continual excavation below ring 0, …

• Computers: System/36, iAPX 432/BiiN, …

▪ CHERI

• is radical, “new computer” approach: change how pointers work

▪ A foundational shift on the same scale as adding virtual memory

• is not so radical after all?

▪ CHERI composes well with modern microarchitectures

▪ Maybe C/C++ (and FFI) can be made safe(r)

• has taped out; Arm’s experimental “Morello” prototype SoC: 4-core, 2.5-GHz Armv8.2-A w/ CHERI extension

CHERI: A New Foundation for Software Security?

7Chisnall et al. Beyond the PDP-11: Architectural support for a memory-safe C abstract machine. (ASPLOS 2015)

Of course, we’re not the first to identify a 50-year-old problem. Lots of people have
tried lots of things ranging from minor tinkering to vast, sweeping overhauls of
everything. Unfortunately, nothing really seems to have moved us closer to “done”
for commodity computers.

But, for all that, don’t get discouraged! I’m going to try to convince you that there’s
hope, if we make a different kind of change.

1. Enter CHERI, the, on the one hand, radical proposal that we change how pointers
work, in both software and hardware.
This is a shift to the von Neumann model of computing on the same scale as
adding virtual memory (for what would become commodity platforms, this was
around 1973; it’s OK if you don’t remember a time before).

2. On the other hand, I will try to convince you it’s not so radical after all.
I hope to show you that a computer with CHERI looks a lot like a computer
without CHERI did, and that we might not have to throw away C/C++ and the
enormous quantity of software (accumulated human effort) written in those
languages to get to a better place.

7

3. Arm and its partners have engineered the “Morello” prototype SoC, a CHERIfied,
quad-core, multi GHz extension of the Neoverse N1.

7

Modern Architecture Unsafety
A Very Short, Not At All Comprehensive, Example

8

(@3m30)

To understand the changes CHERI makes to a computer architecture, it will be useful
to have a small example of some kinds of unsafety that it is designed to inhibit.

8

void foo(char *buf) {
buf[16] = ‘A‘;
buf[32] = ‘A‘;

}

int main(void) {
char pad[16], buf[16];

foo(buf);
return 0;

}

Misbehaving C Program

0000000000011a28 <foo>:
addi a1, zero, 65
sb a1, 16(a0)
sb a1, 32(a0)
ret

0000000000011a36 <main>:
addi sp, sp, -40
sd ra, 32(sp)
mov a0, sp
auipc ra, 0
jalr -20(ra)
mv a0, zero
ld ra, 32(sp)
addi sp, sp, 40
ret

9

Stores relative to address in a0

a0 holds address of buf on stack

RISC-V

Stack as of entry to foo()

sp+32 main’s saved %ra

sp+16 pad[0] … [15]

sp+0 buf[0] … [15] a0 = &buf[0]

Several things go wrong:
1. Write outside of allocation
2. Corrupt saved return address
3. Jump to corrupted address

when main() “returns”

Another example on the CHERI compiler explorerThis example on the CHERI compiler explorer

Call to foo

Let’s look at some memory safety problems. Here’s a very basic C program with a
stack allocation, a function call, and at least two rather glaring problems.

1. We can work out what the stack might look like when we make that function call,
and there’s nothing really surprising here. Reading upwards, we have our two
buffers, buf then pad, and then the saved return address.

2. Here’s one possible compilation of our program into RISC-V, a pretty boring RISC
architecture.

3. Gazing into the assembler, we see that the stores done in foo() are performed
relative to the register a0…

4. And, looking a little further down, we see that the compiler has inserted code
before the call to foo that copies the stack pointer into a0. As we said, the stack
had buf at its lowest address. So that’s all as expected.

5. What happens when this program runs? Several things go wrong in escalating,
rapid succession.

9

6. First, we write outside the intended allocation and into another object. That’s
bad, but it’s at least something we can kind of explain using names of things
visible in the language.

7. Then we write outside the language-visible allocations into something that’s
deeply magic – the compiler/ABI-inserted, anonymous return address. That’s
worse.

8. Then, when main goes to return, a while after our bug, it jumps off into the
weeds to a corrupted address.

9

CPU insufficiently informed:

1. Nobody told foo() where the ends of the passed buf-fer were

2. When foo() wrote out of bounds, the store silently corrupted a pointer

3. When main() jumped to popped return address, CPU didn’t notice corruption

A common factor: C pointers compiled to integer addresses.

Misbehaving C Program: What went wrong?

Allocation

Virtual
address
space

10

Address (64 bits)

6
4

-b
it

p
o

in
te

r

Let’s spend a moment being sort of philosophical about what just happened.

I’d contend that each thing stems from the CPU not knowing enough about what’s
going on.

1. Nothing foo() had to hand (in registers) told it how big the buffer it was storing
into was, just “here’s an address, go for it”

2. The out-of-bounds write silently corrupted a pointer main() cared about.

3. When main() does jump to its popped return address, the CPU didn’t notice the
corruption, because any sequence of bytes might be a pointer and so: off we go.

Note the common cause: we compiled a pointer, a semantic object, into just its
runtime address, and there’s nothing special about addresses: they’re just fixed-width
numbers.

10

CHERI Memory Capabilities
Architecture Overview

11

(@6m30)

So, with that example in mind, what’s CHERI going to do differently? What are
“capabilities”?

11

struct {

int address : 64;

int bound_lower : 64;

int bound_upper : 64;

int metadata : ?;

bool valid : 1;

} abstract_mem_cap;

Spatially-Safe C/C++ with Abstract Memory Capabilities

Allocation

Address
space

Valid bit

Metadata, including bounds (??? bits)

Address (64 bits)B
et

te
r

P
o

in
te

r

12

▪ New abstract datatype for use instead of integer pointers

▪ Still need the address (virtual or physical)

▪ Add bounds, checked on every load/store

▪ Add tag to discriminate capability from data bytes

▪ (Add other metadata too?)

How could we make these transgressions fail-stop?

Let’s ponder what it would take to “fix” these problems. By “fix” I mean “cause to
fail-stop”, deterministically, and ideally close to the actual problem. What would we
need to pull that off?

1. We’d need some new (abstract) datatype that we could use instead of integer
pointers. Sometimes things like this go by the name “fat pointers”, but we’re
aiming for something a little better than that phrase has usually meant.

2. Of course, it still needs to carry the address it’s pointing to.

3. But we also need to carry bounds around with us; two more addresses: a lower
base and an upper limit.

4. And, as we saw with the return address, we need to distinguish between valid
better pointers and those that have been tampered with somehow (including by
having some bytes overwritten).
This has to be special, somehow, so we’ll set it apart from the bytes that make up
our better pointer.

12

5. And, of course, since we’ve opened the floodgates, we’ll probably want to tack a
bunch of other stuff in there, too. Everyone loves metadata.

12

Spatially-Safe C/C++ with CHERI Memory Capabilities

Allocation

Address
space

Valid bit

Metadata, including bounds (64 bits)

Address (64 bits)12
9

-b
it

 C
H

ER
I

C
ap

ab
ili

ty

13

▪ CHERI defines architectural representation of capabilities

• 2x integer pointer size (+1 bit) via bounds compression

▪ Understood by CPU hardware!

• Registers extended to hold capabilities

▪ Every load and store instruction executed must be
to an address in bounds of a valid capability!

• Or else the CPU traps: capability fault, like page fault

▪ (Add permissions and other metadata too)

Abstract datatypes are all well and good, but we’re building systems here!

struct {

int address : 64;

int top_mantissa_exp : 12;

int bottom_mantissa_exp : 14;

int bounds_denormalized : 1;

int permissions : 16;

int flags : 1;

int seal : 18;

bool valid : 1; // out of band!

} CHERI_mem_cap;

OK, while that’s a nice abstraction, we’re trying to build systems, here, so what would
it look like, much more concretely?

1. CHERI defines an architectural representation for these “better pointers with
mysterious valid bits on the side”, which it calls “capabilities”.
The pointer bits are twice the size of an integer address, or 128 bits, but there’s
still that “+1” on the side.

2. These are understood by the CPU hardware. CHERI extends integer registers to
hold capabilities (“129-bit registers”).

3. Every load and store instruction checks that the address is within bounds of a
valid capability.
If that isn’t true, the CPU will trap, raising a capability fault, rather like a page
fault.

4. There are, concretely, permission bits as well as other metadata bits within the
capability structure, as well. We’ll get into that a bit more, later.

13

14

▪ CHERI embodies a very simple (1-bit) “dynamic type” system:

• Every word is either a capability or an integer

• Using an integer where a capability is required traps

CHERI: Tagged Capabilities in Registers and Memory

16-byte ranges
of physical
memory

Cap valid?

Capability 1

Capability 1

Capability 1

Capability 1

Data 0

Data 0

Register
Cap valid?

$6 Capability 1

$5 Capability 1

$4 Capability 1

$3 Capability 1

$2 Data 0

Data$1 0

load.cap $2, 0($6)

Capability 1

store.data $1, 0($6)
Data

Data 0

load.cap $3, 0($6)

Data 0

load.data $1, 0($3)

Trap! $3 is
untagged

OK, let’s talk about that Valid Bit that’s been floating off in space. For historical
reasons, we also call that bit the CHERI “tag”, which is an overloaded word, but very
short.

1. CHERI systems associate 1 bit of tag for every 16-byte granule (sized and aligned
region) of physical memory.

2. Registers hold capabilities and their tags. Here, let’s say that $6 points at a
particular word in memory that happens to be holding a capability and $1 is
holding some data.

3. Here are some (capability-authorized) load and store instructions, of capabilities
and data. Let’s run them and see what happens.

4. When we load a capability using another one, the tag comes along for the ride.
Here, that tag was set in memory, and so the tag of $2 is set.

5. If we store the data component of a register to memory, it always clears the
target’s tag.

14

6. Now we try to load a capability and instead get data, so the tag in the target
register, $3, is now clear.

7. If we try to access memory using an untagged register, the machine traps (like if
we’d tried to read out of bounds)!

(Slide credit to Dr. David Chisnall; all errors introduced by nwf)

14

15

▪ Address arithmetic w/o changing bounds:

• CIncOffset – add integer displacement to address

• CGetAddr, CSetAddr – extract or inject address field as integer

▪ Rights can be decreased but not broadened:
• “CSetBounds” – valid capability only if new bounds are within original bounds

▪ Provenance tracking: manipulating or clobbering a capability’s bytes clears its valid bit!

• As seen, writing bytes (not cap) to memory clears memory tag

• Doing “anything else” with register contents (bitwise ops, XOR, …) clears register tag

Operations on CHERI Capabilities

Address
space

Valid bit

Metadata, including bounds (64 bits)

Address (64 bits)

C
ap

ab
ili

ty

Allocation

(@11m00)

Other than push capabilities around and load and store through them, what can we
do?

1. One thing we’d better be able to do is manipulate the address just like we could
when we were just using addresses without capability machinery.
There’s special handling for offsetting (signed addition), and for everything else
there’s a getter and a setter, so you can pull out the address, do whatever you
need, and put it back.

2. We need a way to set bounds on a capability. If we want bounds to save us from
ourselves, that should always be a monotone non-increasing operation,
constructing a narrower capability from a wider one, not the other way around.
(Uses current address as new lower bound, takes length to compute new upper
bound)

3. And last, we can depend on the architecture to track provenance of a capability
for us.

15

If the valid bit is set, we know that only approved operations have been
performed on the capability.
Anything else – writing bytes, like we saw, or doing “anything else” with a
capability in a register – results in a non-capability.

15

Misbehaving C Program

16

void foo(char *buf) {
buf[16] = ‘A‘;
buf[32] = ‘A‘;

}

int main(void) {
char pad[16], buf[16];

foo(buf);
return 0;

}

0000000000011a28 <foo>:
addi a1, zero, 65
sb a1, 16(a0)
sb a1, 32(a0)
ret

0000000000011a36 <main>:
addi sp, sp, -40
sd ra, 32(sp)
mov a0, sp
auipc ra, 0
jalr -20(ra)
mv a0, zero
ld ra, 32(sp)
addi sp, sp, 40
ret

RISC-V

Stack as of entry to foo()

sp+32 main’s saved %ra

sp+16 pad[0] … [15]

sp+0 buf[0] … [15] a0 = &buf[0]

Stores relative to address in a0

a0 holds address of buf on stack

Call to foo

So, with those operations in mind, and by way of reminder, here’s what things looked
like before, on a non-CHERI compilation target…

16

Misbehaving C Program, Now With CHERI

17

void foo(char *buf) {
buf[16] = ‘A‘;
buf[32] = ‘A‘;

}

int main(void) {
char pad[16], buf[16];

foo(buf);
return 0;

}

0000000000001b00 <foo>:
addi a1, zero, 65
csb a1, 16(ca0)
csb a1, 32(ca0)
cret

0000000000001b10 <main>:
cincoffset csp, csp, -48
csc cra, 32(csp)
csetbounds ca0, csp, 16
auipcc cra, 0
cjalr -28(cra)
mv a0, zero
clc cra, 32(csp)
cincoffset csp, csp, 48
cret

CHERI RISC-V

ca0

Stack as of entry to foo() V

sp+32 main’s saved %cra 1

sp+16 pad[0] … [15] 0

sp+0 buf[0] … [15] 0

Stores through cap in ca0

Capability bounds
narrowed by caller

Program received signal SIGPROT, CHERI protection violation
Capability bounds fault caused by register ca0
… in foo (buf=0x3fffdfff70 [rwRW,0x3fffdfff70-0x3fffdfff80] …)

gdb says:

Another example on the CHERI compiler explorerThis example on the CHERI compiler explorer

Call to foo

And now, if we compile to CHERI RISC-V… the program looks pretty similar.

1. The first thing to note is that our “store byte” instructions have become
“capability-authorized store byte” instructions, citing the capability register ca0
(the augmented a0 register).

2. The second thing to see is that the callsite of foo has not simply copied the stack
capability from csp into the argument register ca0, as it did the stack address
before, but it now builds a capability with narrower bounds to pass as the
argument.
(The 16 here is an immediate, since we statically know the desired size. There is
also a form that takes the length from a register.)

3. This program crashes when run, in foo: 16 up from ca0 is out of bounds.

17

Not Just For Stacks: CHERI Heap Spatial Safety

Capability (allocator-owned)

Shared Heap

Allocator (TCB)

Client (untrusted)

Capability (allocated object)

Capability (subobject)

Derive for client

Narrow bounds

18

We can use capabilities for more than just stack allocations, too. Our malloc, for
example, can return bounded capabilities to heap objects.
malloc internally has a capability allowing it to access the entire heap.

1) When deriving capabilities in response to client requests, allocator sets capabily
bounds. No action by the client will let it use this capability to access beyond those
initial bounds.

2) The client is free to derive its own sub-object pointers, but these must be to
subsets of the original allocation.

Asides:
- When client returns capability to free(), bounds can only have been monotonically
changed: must be a subset of the bounds given out, and so are a kind of architectural
handle on the original allocation.
- This puts malloc in the TCB: enforces (and so, can violate) spatial memory safety.
- Existing CHERI-fied malloc implementations are imperfectly defensive and especially
open to temporal attacks on their own metadata and/or allow clients to violate C’s
model by creating temporal aliases.

18

CHERI: The Big Idea™

Allocation

Address
space

Valid bit

Metadata, including bounds (64 bits)

Address (64 bits)12
9

-b
it

 C
H

ER
I

C
ap

ab
ili

ty

19

▪ CHERI introduces architectural capabilities

• Held in registers and memory

• 2x integer pointer size (+1 bit) in memory

• Pair protected metadata with address

▪ Clear valid bit if cap improperly manipulated.

▪ Every load and store instruction executed must be
to an address in bounds of a valid capability

▪ Software can use capabilities to implement pointers

(@14m00)

So, that’s the core of CHERI:
1. add architectural capabilities to the machine,
2. ensure that they come about only through legitimate operations,
3. check every load or store against the capability bounds,
4. and rewrite the compilers to use capabilities for pointers. Enlighten runtimes to

take advantage of capabilities.

19

20

▪ CHERI is secret-free and deterministic.

▪ An adversary cannot forge a capability even if they know every bit of system state.

• No ASLR slide, stack canaries, MTE colors, PAC secrets, …

• Can’t re-inject data as pointers: no more Smashing The Stack For Fun And Profit even ignoring bounds

▪ Out-of-bounds or invalid dereference always traps.

▪ Byte-level corruption or attempts to widen bounds always caught (clear tag or trap).

Secret-Free, Deterministic Mechanism

Amar et al. An Armful of CHERIs. (2022)

We should emphasize that CHERI is secret-free and completely deterministic.

1. A would-be attacker cannot forge a capability, like they could forge addresses,
even if they know every bit of the system state. It’s not that you can’t leak
addresses anymore, it’s that knowing the address probably doesn’t do you much
good. Even if we ignore bounds, you can’t ship a tagged capability across the
network.

2. A CHERI system will always trap if the program tries to dereference out of bounds
or through an invalid capability.

3. Byte-level corruption or attempting to widen bounds will always be caught and
inhibited, either by clearing the tag of the result or by raising a trap.

20

CheriABI
CHERI Memory Capabilities Meet *NIX

21

So, now that we understand the architectural nature of CHERI, let’s see what
software can do with it.

21

22

▪ CHERI capabilities used for both
• Language-level pointers visible in source program
• Implementation pointers implicit in source

▪ Compiler generates code to
• bound address-taken stack allocs & sub-objects
• build caps for vararg arrays

▪ Loader builds capabilities to globals, PLT, GOT
• Derived from kernel-provided roots
• Bounds applied during reloc processing

▪ Small changes to C semantics!
• intptr_t, vaddr_t
• memmove() preserves tags
• Pointers have single provenance
• Integer ↔ pointer casts require some care

Compiling C to CHERI

Language-level memory safety

Pointers to heap
allocations

Pointers to stack
allocations

Pointers to
global variables

Pointers to TLS
variables

Function
pointers Pointers to

memory mappings

Pointers to sub-
objects

Sub-language memory safety

GOT
pointersReturn

addresses

PLT entry
pointers

ELF aux arg
pointers

Stack
pointers

C++ v-table
pointers

Vararg array
pointers

See CHERI C/C++ Programming Guide.

We can take this idea to its logical conclusion: let’s use capabilities for everything, or,
at least, all pointers in a process.

1. That means both the pointers you see and think about in the language as well as
the ones you don’t see or think (much) about below the language.

2. So, the compiler, loader, and even kernel also must be active participants in the
implementation.

3. The C language semantics do have to change a little bit; please do see our
programming guide for details.

22

23

CheriABI: Spatially safe UNIX Processes

▪ Compiler uses capabilities to implement all pointers in a process

▪ Result is a capability graph between allocations

Davis et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment. (ASPLOS 2019)

(@16m00)

And if we do use capabilities to represent every pointer in a process, what we get is a
capability graph between different objects, with the thread register files forming the
roots. We call this environment “CheriABI”.

23

24

CheriABI System Call Interface

Significant ambient authority in modern *nix-like systems: system calls!

▪ Attacker might try to trick kernel into violating spatial safety (“confused deputy”). Consider:

char buf[1024];

… read(fd, buf, attacker_controlled_length /* == 2048 */); …

▪ CheriABI also makes system calls take and return capabilities instead of integer addresses!
• Kernel uses passed-in capabilities to limit its own behavior.

• read(fd, buf, len) won’t write beyond buf’s capability bounds, even if len says to!

• It can’t, if it passes the user’s buf to copyout(). No new bounds-check instructions!

Davis et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment. (ASPLOS 2019)

But wait, user-space software does more than just follow user-space pointers.
Sometimes it takes advantage of a huge ball of ambient authority, the kernel, and
makes system calls.

1. There’s risk that the kernel could be tricked into violating our carefully
orchestrated capability system, making it a “confused deputy”. After all, it has,
legitimate, intended access to the entirety of user-space.

In this example, user-space has allocated a 1K buffer and is asking the kernel to
write into that buffer some larger number of bytes, perhaps because an attacker
has control over the length of the request. A completely implausible scenario, I
know.

2. In order to deliberately limit its own behavior, a CheriABI-aware kernel changes
the system call interface so that pointers are now passed as capabilities.

This way, the overlong read request above will fail, gracefully, when the kernel
copies data out.

24

In fact, the implementation takes advantage of the existing, fault-safe copyout()
logic in the BSD kernel: simply making sure that we pass the user’s buffer
capability to this routine makes sure that the store instructions that perform the
copy down to the user will enforce the passed bounds. We did not need to add –
manually or automatically! – any new instructions to check that the bounds were
consistent!

24

Different Yet Familiar
Beyond the CPU Core

25

(@18m00)

So, that’s, in a nutshell, how CHERI’s different than current architecture. But I also
promised that it wasn’t as disruptive as it might first have sounded…

25

26

Entering Reality: Morello, An experimental ARMv8 with CHERI

Morello Platform Open Source Software

Richard Grisenthwaite. Arm Morello: What Is It and Why Is It Important? (2022)

Morello Program – Arm®

Perhaps the greatest indication, so far, that CHERI is practical is that Arm and its
partners (including us at Microsoft) are doing an industrial-scale science experiment,
named Morello (it’s a kind of cherry): ARMv8.2 with CHERI with a modern CPU
microarchitecture, clocked at 2.5GHz.
Morello is (emphatically) not, but will hopefully influence, successors to ARMv9.

Given this, for present and future systems programmers: it is looking increasingly
likely that CHERI will be part of the world we live in.

Photo from DSbD Consortium Update. (2021/05)

26

27

CHERI Tags in Cores and Caches

L1D$

Regs

PC

CPU

L1I$

⁞

L2$

⁞

⁞

DRAM

Bigger registers
hold caps

Tag in register

Tags in data caches

Tag controller

New tag controller, L2$ splits tags & data

Reserved
RAM for
tag table

Joannou et al. Efficient Tagged Memory. (ICCD 2017)

One of the central design objectives of CHERI was that it couldn’t need a whole new
everything. Importantly, it needed to be compatible with commodity memory (and
busses and so on).
Peeking beneath the architectural covers, as it were, let’s look at a slightly more
detailed view of what happens in the memory hierarchy.

1. As said before, we augment the CPU core to hold capabilities in registers: so,
roughly 2x the size plus tag bits.

2. Add tags to data cache lines; tags now move in tandem with data through the
cache hierarchy.

3. L2$ splits lines, holding both data and tags, into separate channels, sends data
directly to DRAM and tags to a new tag controller. This might be as simple as a
bitmap, but prior work shows great gains from a small hierarchical caching
scheme here.

The tag controller is backed by a carve-out of RAM, which is not accessible to
software: software cannot manipulate tags except as part of a capability.

27

28

CHERI Ecosystem At A Glance

QEMUExecutable
ISA spec

QEMUExecutable
ISA spec

FVP SoCFPGA cores

RISC-V Morello (ARMv8.2)

Kernels (VM, swap,
exec, mmap, …)

FreeBSD (“CheriBSD”) Linux (early work) FreeRTOS CheriOS

FreeBSD libc, libc++ musl, glibc (others)C runtime (malloc,
varargs, TLS, ld.so, …)

CheriBSD userspace PostgreSQL QTWebKit

KDE

nginxApacheUserspace

gdb

LLVM

(@20m00)

In fact, CHERI has two primary architectural incarnations these days: as Arm’s Morello
(SoC) and atop RISC-V (FPGA). Both also have executable, human-readable ISA
specifications and emulators (QEMU and Arm’s Morello “Fixed Virtual Platform”).
Looking “above” the architecture, into software…

1. Atop these substrates, most of our software work takes place with a modified
FreeBSD (“CheriBSD”). The kernel and C runtime components have been made
CHERI-aware.

2. The whole software stack is built primarily (so far) in cross-compilation using a
capability-aware branch of LLVM (so clang and lld); self-hosting on Morello is
likely to be the norm soon.
We have, similarly, educated gdb for native and cross-debug.

3. Continuing upwards, we have the FreeBSD userspace programs; servers like
Apache, nginx, and PostgreSQL; and client software like WebKit, the QT library,
and almost all of KDE ported.

28

CHERI Source Compatibility

Codebase kind LoC Changes for CHERI

CheriBSD Kernel 0.2%

Low-level runtime libraries < 0.5%

JSC JIT 1-2%

QT, KDE libraries < 0.1%

CLI applications, libraries ≈ 0.02%

QT, KDE applications < 0.05%

29

DSbD Consortium Update. (2021/05)

Capabilities Limited. Assessing the Viability of an Open Source CHERI Desktop Software Ecosystem. (2021)

There’s a whole lecture’s worth of material about porting C/C++ programs to CHERI,
but generally, higher in the stack means significantly less work.
By design, CHERI is also broadly compatible with modern C-based software stacks, so
most of its obligations are felt at lower levels of the software stack.
We can quantify this by noting that the impact, measured in source LoC changes,
diminishes as we move away from support and runtime layers, with many KDE
applications requiring no modifications for CHERI at all once QT and libraries had
been adapted.

29

30

Entering Reality: KDE on CHERI-RISC-V over VNC

Capabilities Limited. Assessing the Viability of an Open Source CHERI Desktop Software Ecosystem. (2021)

Everybody likes screenshots, right? So, here’s KDE and some of its applications
running fully CHERIfied on RISC-V, in qemu over VNC.

This all runs on Morello, too, and Morello has a GPU and drivers, so, it will, Real Soon
Now™, be a viable workstation! (Just a little bit more bring-up to do.)

30

31

▪ As of ASPLOS’19, on earlier CPU in FPGA:

• 0 - ~10% cycle (= wall clock) overheads in most cases

▪ L2 cache misses increase for pointer-heavy workloads from increased pointer size

▪ Many caveats in both directions with these numbers
• Morello will give us better understanding; work in progress!

Performance Overhead Measurements

se
cu
rit
y-
sh
a

of
fic
e-
st
rin
gs
ea
rc
h

au
to
-q
so
rt

au
to
-b
as
ic
m
at
h

ne
tw
or
k-
di
jk
st
ra

ne
tw
or
k-
pa
tr
ic
ia

te
lc
o-
ad
pc
m
-e
nc

te
lc
o-
ad
pc
m
-d
ec

sp
ec
20
06
-g
ob
m
k

sp
ec
20
06
-li
bq
ua
nt
um

sp
ec
20
06
-a
st
ar

sp
ec
20
06
-x
al
an
cb
m
k

in
itd
b-
dy
na
m
ic

-10
+ 0
+ 10
+ 20
+ 30
+ 40
+ 50
+ 60
+ 70
+ 80 instruct ions cycles l2cache misses

Davis et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment. (2019)

31

CHERI Compartmentalization
Mitigating Unknown Vulnerabilities

32

(@24m00)

The fact that all of that works is, I think, fairly exciting, but it turns out that there’s
much more to be gained from CHERI. An active area of research is exploring how
CHERI can be used to compartmentalize software, confining the impacts of arbitrarily
bad behavior in one compartment to just that part.

32

33

▪ Can build confined pieces of software with access to only particular resources

• Without a (transitive) capability to a given resource, no way to access it! (Even if address known!)

▪ Sandboxing CODECs (gzip, libpng, …) is an attractive idea! If all we give some CODEC code is…

• … then even a fully compromised CODEC has very limited consequence on the broader program!

▪ Entering sandbox is easy; getting back out might be tricky?

Research: Building a CODEC Sandbox

Resource Permissions

CODEC code (& constants) Read, Execute

Input buffer(s) Read-only

Output buffer(s) Write-only

Ephemeral stack / scratch region Read, Write

Return pointer Execute only?

Capabilities let us build confined pieces of software, with guaranteed-at-construction
limits on the resources that can be accessed. If there is no path in the capability
graph from the register file to a given resource, then that resource is inaccessible,
even if we know its address.

1. We can envision a kind of capability-based sandboxing mechanism, say, for
CODECs like gzib and friends. If the only resources they have are [as per table],
then even arbitrary code vulnerabilities here are very weak: controlled input gives
rise to controlled output.

2. On the other hand, it’s pretty easy to get into a sandbox like that, but how do you
get back out to a more permissive context? That is, how do you prove that you’re
allowed back out?

33

34

Sealed and Sealing Capabilities

RW RW RW

RW

RX

RW

RX

RW

RX

Sealing
Capability

Sealed Capability
(immutable, inert)

Unsealing
Capability

PCC

IDC

Seal and Unseal
types must match

Unseal and jump
w/ equal-seal pair

RX, RW capabilities
under same seal

One answer, it turns out, is to enrich CHERI with additional kinds of capabilities. We’ll
consider two, here: sealed capabilities as well as sealing (and unsealing) capabilities.
At last, we’ll come to talk about some of that other metadata inside the capability
structure I alluded to way back in the intro.

1. A CHERI capability can be combined with a sealing capability to produce a sealed
capability. These are immutable (try, and you’ll clear the tag) and inert, in that
they do not authorize other operations.

2. You can only pass around, or drop, a sealed capability until it is combined with an
unsealing capability to reveal the original input, which can now be used as it was.

3. The sealing and unsealing capabilities must match: if they don’t, unsealing fails.

These kinds of capabilities are useful to represent resources that we want
software to be able to reference but not directly use without executing code that
has access to the appropriate unsealer.

4. Expanding on that mechanism, we can also do something interesting if we

34

construct two sealed capabilities with the same seal.

5. We can invoke the sealed pair, handing them both to an instruction, which will
unseal and jump. You can think of this in an OOP way: the sealed capabilities
represent an object’s data and a method that we want to call on that object. Or
we could use this to exit a sandbox in a very continuation-passing style: the data
is the outer context’s continuation’s data, and the method is the continuation’s
code.

34

35

▪ MMU-based isolation

• Programs in separate address spaces

▪ IPC by context switch
• Data copy by kernel (write/read on pipe)

• TLB switching costs

▪ Flush (time, power) or ASIDs (area, power)

▪ Selective sharing through shared pages
• Pointers to shared memory: fine

• Pointers in shared memory: … carefully

• Pointers from shared memory: WTF‽‽‽

Research: Collocation: Multiple Processes In One Address Space

P
ro

ce
ss

 1
P

ro
ce

ss
 2

‽

Another thing we can revisit with CHERI is the need for process isolation.
Traditionally, processes live in different address spaces, and we use the MMU to
isolate them.

1. If we want to do IPC, we context switch between the two…
2. And probably have the kernel copy some data for us.
3. This incurs TLB switching costs, in time, power, and/or silicon area.

4. We could also establish shared memory pages between the two address spaces,
but there’s something funny here.

5. Pointers to the shared region are fine…
6. Pointers in the shared region are dubious, but can work if we’re careful…
7. But pointers from the shared region are probably nonsense.

35

36

▪ Collocated Processes

• Many programs in one address space

• Isolation maintained with CHERI

▪ IPC by sealed capabilities
• Copy on call through “trusted switcher”

• Kernel-bypass for IPC!

▪ Really fast sharing: pass capability across IPC

• No interpretation risk from shared pointers

Research: Collocation: Multiple Processes In One Address Space

P
ro

ce
ss

 1
P

ro
ce

ss
 2

CHERI lets us tear down the MMU-based walls between processes, so that we can
run many processes in a single address space!
Isolation is maintained by the capability system: you can’t access what you can’t point
at with a capability.

1. In this model we can do IPC through sealed capabilities, and, if we want copy
semantics, we can use a trusted switcher that does that copying before
completing the call. This is kernel-bypass IPC, with user threads directly crossing
the traditional process boundary!

2. We get really fast sharing in this model, if we just pass a capability across that IPC
layer.

3. And there’s no risk of mis-understanding an address in the shared region; shared
capabilities are just… capabilities.

36

CHERI Heap Temporal Safety

37

(@31m00)

I’d like to very quickly touch on the part of the CHERI project I’m most directly
involved with: investigating the use of CHERI for temporal safety.

37

38

What about use-after-free?

char *p = malloc(1024);

free(p);

char *q = malloc(1024); // == p (!)

strcpy(p, “oh no”);

Use After Free?

Another way of phrasing temporal safety is “What about UAF?” It’s a reasonable
question. After all, even having gone through and made pointers into capabilities at
runtime, it’s still possible to use a capability after free-ing it.

38

39

▪ Focused on heap temporal safety

• More complex lifetimes than stack objects, resist static approaches

▪ Heap pointers end up in globals, stacks, registers, kernel heap, …

▪ Risk: retain references to free() object, overlap new allocation

▪ Eliminate “use-after-reallocation” by revoking dead references

• UAF still possible, but accesses old object

▪ “Dual” of garbage collection: (lazily) enforce free()

Capability Revocation

Kernel

Stack

Globals

Heap

Address Space

Thread registers
Xia et al. CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety. (MICRO 2019)

Focusing on temporal safety of heap allocation, since heap objects have a wider
variety of, and more complicated, lifecycles than stack objects. That’s not to say that
stack temporal safety is trivial, just momentarily out of scope.

As part of those complex life cycles, pointers into the heap tend to spread: into other
heap objects, globals, onto the stack, and even into the kernel heap (for example, as
part of asynchronous I/O).

1. That means that there’s a risk that the application inadvertently retains a
reference to a free object, which then comes to overlap a new allocation.
This is, of course, undefined behavior in C, but that doesn’t mean it doesn’t
happen.

This opens the possibility of “use after reallocation” wherein a stale reference is
dereferenced and accesses or corrupts the new object, often either exposing data
or corrupting data structures.
(“Use after free”, before addresses are repurposed, is typically less of a concern.)

2. The basic approach we’re considering is to revoke these stale references, and be

39

sure that we have eliminated them all, before reusing address space.

3. This is the dual of garbage collection: we destroy references to enforce free(),
rather than extend object lifetime until there are no references.

39

40

Free Allocated

Address Space Quarantine

malloc

free

To pull this off, we’re going to expand the usual view of heap memory, in which things
are either free or allocated and just bounce back and forth…

40

41

Free

AllocatedQuarantined

Address Space Quarantine

malloc

free

revoke

By introducing a new state – quarantined. Address space becomes quarantined when
the application calls free() and only actually becomes free (ready for allocation) again
after a global sweep through the application’s memory.

This sweep will remove capabilities pointing into quarantine. Since sweeping is global
and involves testing every capability in the system, we allow quarantine to
accumulate for a while and make each revocation pass process a batch of
quarantined address space at once.

41

42

CHERI Tags identify capabilities

• Don’t have to guess; revoker justified in erasing!

Capability-Dirty PTE Flags

• Set by PTW; skip sweep of pages w/o capabilities

Capability-Load Trap PTE Flags

• Cause CPU to trap; revoker scans (WIP)

Architectural Acceleration for Revocation

Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps. (Oakland 2020)

This turns out to be feasible for CHERI because it is a capability architecture. We
don’t have to guess whether words are pointers to objects or just suspicious
numbers, and since we know with certainty, we are justified in erasing capabilities.

Beyond merely being possible, it turns out we can add just a little bit of architecture
to speed things up significantly: we can have the CPU assist us in tracking which
pages have capabilities on them (so we don’t need to sweep the ones that don’t), and
we can avoid stopping the world by arranging for the CPU to trap when it tries to load
a capability through a page we haven’t yet scanned.

42

43

▪ Cornucopia, SPEC CPU2006, no cap-load traps, revoke @ 33% heap in quarantine:

▪ Using load traps (WIP):
• Lowers overheads by ~10%

• Significantly improves (nearly eliminates) application pause times

▪ Additional software and architecture tricks up our sleeves to tamp down on costs

Revocation Performance?

Geomean Worst case

Revocation on 2nd core 2.4% 7.9%

Single core 5.2% 21.2%

43

Is CHERI In Competition
With Safe Languages?

44

(@35m30)

The last thing I’d like to touch on today is: is CHERI in competition with safe languages
like Rust? If you know Betteridge’s law of headlines, you already know the answer is
“no”.

With thanks to David Chisnall for his help with this section.

44

45

… it’s all C’s fault!

Safe languages solve all these problems!

Why do we need CHERI?

… it’s all the architecture’s fault.

CHERI fixes that!

Why do we need safe languages?

Safe Architecture vs. Safe Languages?

“OK, yes, everything’s on fire, but …”

Depending on which side people think they’re on, this supposed competition is
phrased in one of two ways.

45

46

• Spatial and temporal errors lead to arbitrary code execution

C/C++ w/o CHERI

• Spatial errors fail-stop (and maybe heap temporal errors, too!)

C/C++ w/ CHERI

• Array index errors throw exceptions; other spatial errors impossible
• Temporal errors impossible

Java / C# / TypeScript / ML / Haskell / Rust / …

Safe Languages?

Why might people think there’s competition between the two efforts? Let’s look in a
little more detail.

46

47

▪ OpenHub.net estimates ~10B LoC of C, ~3B LoC of C++ just in the open world.

• That probably works out to $130G - $1.3T to rewrite everything.

▪ TCB code is intrinsically unsafe (sit below safe language abstraction)
• Memory managers, garbage collector, context switcher, …

▪ Different safe language runtimes likely view each other as unsafe!

▪ Rewrite parts of programs?

Rewrite Everything to be Safe?

47

Unsafe code

A two-worlds abstraction

Safe code Function calls

When we think about rewriting part of a program in a safe language, we have a two-
worlds mental model: a safe world for the new safe code, which communicates with
an unsafe world with some well-defined interfaces.

48

Unsafe code

A two-worlds abstraction

Safe code Function calls

Unfortunately, in the real world, the safe code is inside the unsafe world and any
memory safety bugs in the unsafe code can violate all of the invariants that the safe-
language code depends on.

49

Unsafe code

A safe many-worlds abstraction

Safe code

Function calls

Unsafe codeFunction calls

Unsafe codeFunction calls

Memory
safety error

Error report

Chisnall et al. CHERI JNI: Sinking the Java security model into the C. (ASPLOS 2017)

CHERI sandboxes provide us with a mechanism to confine memory safety errors to
instances of unsafe code. We can catch CHERI’s architectural traps and turn them
into error reports or exceptions for the safe language, which can then gracefully
recover, because the error cannot have corrupted the safe world.

50

51

▪ Recently, Rust community has been fretting about semantics of unsafe Rust.

• Compiler transformations threatening correctness

▪ Recent proposal to use CHERI-like “strict provenance” semantics!

• No integer-to-pointer casts, trivially “NPVI” semantics

• Distinguish usize from uaddr from uptr?

• Integers must be recombined with pointers: address from integer but provenance from pointer

▪ Unsafe strict provenance Rust code should be less unsafe on CHERI!

CHERI + (Unsafe) Rust

Aria Beingessner. Rust's Unsafe Pointer Types Need An Overhaul. (2022) Tracking Issue for strict_provenance on GitHub

I’d just like to give a shout out to the Rust community where, for not entirely
unrelated reasons, there is already a bit of a move towards a very compatible story.

51

▪ CHERI enriches CPUs to have tagged capabilities with architecturally-enforced invariants

• Addresses many root causes of long-standing security vulnerabilities

• Promising new compartmentalization mechanisms

▪ Looks quite real: FPGA RISC-V & Arm Morello SoC, LLVM, CheriBSD, Qt, KDE, …

▪ If you want to know more, please do get in touch:
• http://www.cheri-cpu.org/ for (much) more reading material, slack, email lists, &c

▪ Play along at home, too; almost everything is FLOSS:
• https://github.com/CTSRD-CHERI/cheripedia/wiki/Getting-Started a how-to

• https://github.com/ctsrd-cheri/cheribuild one-stop-shop cross-build system

• https://github.com/CTSRD-CHERI/cheri-exercises hands-on introductory exercises

CHERI Summary

52

(@40m00)

52

Links on bottom left of many slides to relevant material. In addition,

▪ Davis et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX
C Run-time Environment. (Extended report, 2019).

▪ Esswood. CheriOS: designing an untrusted single-address-space capability operating system utilising
capability hardware and a minimal hypervisor. (2021).

▪ Watson et al. Balancing Disruption and Deployability in the CHERI Instruction-Set Architecture. (2017).

▪ Watson et al. CHERI Instruction-Set Architecture (Version 8). (2020).

▪ Levy. Capability-Based Computer Systems. (1984).

Additional Reading

53

53

CVEs and High Severity Bugs from (Lack of) Memory Safety

54Matt Miller. Trends, challenge, and shifts in software vulnerability mitigation. (BlueHatIL 2019)

Sources: Matt Miller BlueHat 2019

54

CVEs and High Severity Bugs from (Lack of) Memory Safety

55Google. Safer Usage of C++. (2021)

55

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid
transformations; invalid pointers cannot be used

• Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

• E.g., Received network data cannot be interpreted as a code/data pointer – even previously leaked pointers

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection, but
also higher-level policies such as scalable software compartmentalization

56

GlobalsGlobals

Data

HeapHeap StackStack

Code

Control flowControl flow

MonotonicityMonotonicity PermissionsPermissions
Integrity and

provenance validity

Integrity and

provenance validity
BoundsBounds

56

Misbehaving C Program, Now With CHERI but Without Narrowed Bounds?

57

void foo(char *buf) {
buf[16] = ‘A‘;
buf[32] = ‘A‘;

}

int main(void) {
char pad[16], buf[16];

foo(buf);
return 0;

}

0000000000001b00 <foo>:
addi a1, zero, 65
csb a1, 16(ca0)
csb a1, 32(ca0)
cret

0000000000001b10 <main>:
cincoffset csp, csp, -48
csc cra, 32(csp)
cmove ca0, csp
auipcc cra, 0
cjalr -28(cra)
mv a0, zero
clc cra, 32(csp)
cincoffset csp, csp, 48
cret

CHERI RISC-V, w/o
csetbounds

ca0

Stack as of entry to foo() V

sp+32 main’s saved %cra

sp+16 pad[0] … [15] 0

sp+0 buf[0] … [15] 0

Whoops! Forgot
to narrow bounds.

01
Program received signal SIGPROT, CHERI protection violation
Capability tag fault caused by register cra
… in main ()

gdb says:

Call to foo

What happens if we forget to narrow the stack capability? Then…

1. The stores now happen without trapping

2. The store over the saved return address clears the valid bit

3. The program still crashes, just later, when main goes to return.
When we reload the saved return address, it won’t be a valid capability.
When we try to jump to that, the processor will trap.

57

58

CheriABI: Capability Provenance Overview

R
W

X
to

 a
ll

u
se

r-
sp

ac
e

RX

RW

R

RW

.text .rodata .data stack

exec()

U
se

r-
sp

ac
e

A
d

d
re

ss
es

C

RW

crt/rtld

heap

mmap()

g_foo

RW CRW

malloc()

RW

code

alloc alloc

Davis et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment. (ASPLOS 2019)

So, where does a process get its very first capability?
User capabilities originate from the kernel, which holds a capability to all of
userspace with full permissions.
On exec(), the kernel constructs subset capabilities for the program sections (text,
rodata, data and bss) and the initial stack.
It uses the .text capability to jump to the entrypoint (so that capability ends up in the
program counter) and installs the initial stack capability in the stack capability
register; .rodata and .data put somewhere agreed upon.

1. As the program runs, it can refine its own capabilities, as we saw it do with an on-
stack array allocation.

2. If the program calls malloc(), malloc() calls mmap() and retrieves a capability to
the new pages…

3. and then derives subset capabilities for each allocation.

4. We can even have the startup code or program loader narrow the capabilities
used to access globals inside .data or .bss, so that the program can’t access out of
bounds there, either.

58

(The details here are shockingly involved, but I think it’s important to note that
this isn’t a hole in CHERI’s defenses.)

58

CheriABI: Spatially Safe UNIX Processes
Discussion: read() and capability bounds

59

CheriABI system calls take capabilities, and

voluntarily act with implied restricted authority!

Write OK
lower=0x80922400 upper=0x80922410
Read 0x20 OK; lower[0]=0x10 upper[0]=0x20

Write OK
lower=0x3fffdfff28 upper=0x3fffdfff38
Bad read (Bad address); lower[0]=0x10 upper[0]=0x0

RISC-V Baseline CHERI-RISC-V

Kernel overwrite! Kernel return –EFAULT;

Does not write OOB

Fault detected during copy-out

read(fd, lower, sizeof(lower) + sizeof(upper))

What happened when we asked the kernel to write out of bounds?

1. On the baseline architecture, the kernel had no way of knowing what our bounds
were, so it took our word for the length of the structure.

2. With CHERI, the system call passed a capability to the kernel, and the kernel used
that capability when writing to user memory, rather than using its own elevated
authority.

3. [as it says]

4. In fact, we can see that the kernel only noticed the discrepancy between
capability length and request length after it had started copying data to the user
program. *nix-like kernels generally have well-defined points where they copy
data in from or out to the user program; making these use capabilities is enough
to catch these kinds of misbehaviors of userspace, and relatively little of the
read() path needs to be altered from what was already there.

59

60

▪ CHERI also defines some flavors of “sentry” (“sealed entry”) capabilities which unseal in jumps.

▪ Single capability, becomes PCC when unsealed

• useful for function entry, return addresses

• PCC-relative data inaccessible to caller

▪ Pointer to PCC, becomes IDC when unsealed, PCC loaded from target
• PCC- and IDC-relative data inaccessible to caller

• “pointer to intrusive v-table”

▪ Pointer to pair, PCC and IDC loaded

• PCC- and IDC-relative data inaccessible to caller

• “proxy for method and instance”

Sealed Entry Capability Flavors

60

CheriBSD Code Changes

Notes:

▪ Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files

▪ Kernel includes changes to be a hybrid program and most changes to be a pure-capability program

• Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello

• Count includes partial support for 32 and 64-bit FreeBSD and Linux binaries.

• 67 files and 25k LoC added to core in addition to modifications

• Most generated code excluded, some existing code could likely be generated

Area Files total Files modified %
files

LoC
total

LoC
changed

%
LoC

Kernel 11,861 896 7.6 6,095k 6,961 0.18

• Core 7,867 705 9.0 3,195k 5,787 0.18

• Drivers 3,994 191 4.8 2,900k 1,174 0.04

Userspace 16,968 649 3.8 5,393k 2,149 0.04

• Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48

• libc++ 227 17 7.5 114k 133 0.12

• Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02

61DSbD Consortium Update. (2021/05)

61

Clang/LLVM/LLD Code Changes

Notes:

▪ Changes predominantly (u)intptr_t vs size_t/ptrdiff_t confusion, static_asserts about struct
sizes/layouts no longer true with 128-bit pointers, and a few instances of using uint64_t for pointers

▪ Able to compile and link a pure-capability C hello world natively on CHERI-RISC-V

▪ (*) One outstanding known issue in the frontend prevents compiling a C++ hello world

• Implementation and header files in question only total an additional 193 lines, or 0.021%, as a worst-case
upper bound

▪ Just over half the Clang changes (99 LoC) are for its bytecode-based C++ constexpr interpreter

Area Files
total

Files
modified

%
Files

LoC
total

LoC
changed

%
LoC

LLVM 4220 44 1.0 1656k 217 0.013

Clang* 1593 30 1.9 911k 190 0.021

LLD 249 5 2.0 67.8k 30 0.044

Total 6062 79 1.3 2365k 432 0.018

62

(From CL-internal presentation)

62

WebKit - JSC Code Changes

Notes:

▪ JSC-C is a port of the C-language JavaScriptCore interpreter backend

▪ JSC-JIT includes support for a meta-assembly language interpreter and JIT compiler

▪ Runs SunSpider JavaScript benchmarks to completion

▪ Language runtimes represent worst-case in compatibility for CHERI

• Porting assembly interpreter and JIT compiler requires targeting new encodings

▪ Changes reported here did not target diff minimization

• Prioritized debugging and multiple configurations (including integer offsets into bounded JS heap) for
performance and security evaluation

• Some changes may not be required with modern CHERI compiler

Area Files
total

Files
modified

%
Files

LoC
total

LoC
changed

%
LoC

JSC-C 3368 148 4.4 550k 2217 0.40

JSC-JIT 3368 339 10.1 550k 7581 1.38

63DSbD Consortium Update. (2021/05)

63

64

▪ Focused on heap temporal safety

• More complex lifetimes than stack objects, resists static approaches

▪ Heap pointers end up in globals, stacks, registers, kernel heap, …

▪ Risk: retain references to free() object, overlap new allocation

▪ Eliminate “use-after-reallocation” by revoking dead references

• UAF still possible, but accesses old object

▪ Hold address space in quarantine to amortize sweep cost

• Quarantine state held out of band

▪ “Dual” of garbage collection: (lazily) enforce free()

Cornucopia: Heap Temporal Safety Atop CHERI
Address Space Quarantine, Revocation

Kernel

Stack

Globals

Heap

Address Space

Thread registers
Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps. (Oakland 2020)

We’ve been considering temporal safety of heap allocation, since heap objects have a
wider variety of, and more complicated, life cycles than stack objects. That’s not to
say that stack temporal safety is trivial, just momentarily out of scope.

As part of those complex life cycles, pointers into the heap tend to spread: into other
globals, onto the stack, and even into the kernel heap (for example, as part of
asynchronous I/O).
That means that there’s a risk that the application inadvertently retains a reference to
a free object, which then comes to overlap a new allocation.
This is, of course, undefined behavior in C, but that doesn’t mean it doesn’t happen.

This opens the possibility of “use after reallocation” wherein a stale reference is
dereferenced and accesses or corrupts the new object, often either exposing data or
corrupting data structures.
(“Use after free”, before addresses are repurposed, is typically less of a concern.)
The basic approach we’re considering is to revoke these stale references, and be sure
that we have eliminated them all, before reusing address space.

Revocation is global and involves testing every capability in the process, so we

64

quarantine

64

65

Cornucopia’s Kernel Revocation Service

Kernel

Stack

Globals

Heap

Shadow • Kernel offers revocation service to user programs

• Exposes “shadow bitmap”
• Encodes live/free state of memory, 1 bit per 16 bytes

• Deletes capabilities to addresses with set bits
• Promises to inspect itself as well as program memory

• Thread-safe & mostly concurrent implementation

Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps. (Oakland 2020)

We have an implementation of this idea in CheriBSD, which we call Cornucopia.

The kernel offers a revocation service.
It builds on CHERI’s typed view of memory (and registers); CHERI precisely captures

pointer/non-pointer distinction via tags.
It relies on CHERI’s spatial safety, and the bounds set by the allocator, to map

capabilities to shadow bits.

1. Exposes a “shadow bitmap”, a kernel-provided mapping of anonymous memory
within the process’s address space.

2. A system call requests that the kernel apply the shadow bitmap to the address
space, deleting all capabilities pointing into freed memory, including those held by
the kernel.

3. Cornucopia is a thread-safe and mostly concurrent implementation; subsequent
work leans further into concurrency.

65

1. Allocators mmap() their heap and can ask the kernel for access to the
corresponding region of the shadow.

2. The cost of a revocation pass is roughly independent of the quarantined address
space or number of capabilities revoked; the bulk of the time is spent in finding
and testing capabilities.

The shadow bits also give us a defense against double-free, even in highly
decoupled/per-thread allocators like snmalloc: we LL/SC CAS the first word of the
shadow that needs to change and bail if the bits are already set.
The same atomic sequence also guards us against concurrent revocation, where the
shadow is clear but the pointer given to free is revoked.

65

66

Cornucopia’s User-space: Quarantine & Revocation Batches

• Application free()-s object, might retain references.
Risk: allocator creates new, overlapping object.

• Instead: quarantine space, set bits in shadow.

• Eventually, ask kernel to sweep to revoke access.
• Sweep phase of M&S collector, w/ free() doing the marking.

• Now safe to re-issue memory.

Kernel

Stack

Globals

Heap

Shadow

Heap temporal safety violation contains: application free()-s but retains pointer and
allocator creates overlapping object.
Cornucopia gives allocators a mechanism to know when there are no more
references to an address, and so reuse is safe.

In more detail, on free, the allocator marks the shadow of the freed object and holds
the address space in quarantine, to amortize the cost of sweeping revocation.

1. When quarantine fills, allocator calls revoker
2. Which deletes capabilities to addresses with marked shadows
3. After revocation finishes, it is safe to reuse address space
4. The allocator has to clear the shadow before reissuing memory, lest the revoker

strike again

Of course, revocation is expensive, so we don’t call it after every free(). Instead, we
“quarantine” address space until a significant fraction of the heap is quarantined.
The cost of a revocation pass is roughly independent of the quarantined address

66

space or number of capabilities revoked; the bulk of the time is spent in finding and
testing capabilities.

The shadow bits also give us a defense against double-free, even in highly
decoupled/per-thread allocators like snmalloc: we LL/SC CAS the first word of the
shadow that needs to change and bail if the bits are already set.
The same atomic sequence also guards us against concurrent revocation, where the
shadow is clear but the pointer given to free is revoked.

66

Cornucopia Architecture
Per-Page Sweep in More Detail

Shadow bitmap

Cache lines w/o tags: skip

Load cap, get (trusted!) base address

Load bitmap bit, CAS NULL if set

…

4K page being swept

…

67Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps. (Oakland 2020)

For each capability, probe the shadow bitmap based on the trustworthy capability
base value. (Recall: monotonicity ensures that base must be in bounds of original
allocation.)

4) Have added CLoadTags instruction to coherently fetch CHERI tags w/o fetching
data; lets us skip entire lines w/o capabilities.

67

68

CHERI Tags identify capabilities

• Don’t have to guess; revoker justified in erasing!

Capability-Dirty PTE Flags

• Set by PTW; skip sweep of pages w/o capabilities

Capability-Load Trap PTE Flags

• Cause CPU to trap; scan on capability loads (WIP)

Architectural Acceleration for Revocation

Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps. (Oakland 2020)

This turns out to be feasible for CHERI because it is a capability architecture. We
don’t have to guess whether words are pointers to objects or just suspicious
numbers, and since we know with certainty, we are justified in erasing capabilities.

Beyond merely being possible, it turns out we can add just a little bit of architecture
to speed things up significantly: we can have the CPU assist us in tracking which
pages have capabilities on them (so we don’t need to sweep the ones that don’t), and
we can avoid stopping the world by arranging for the CPU to trap when it tries to load
a capability through a page we haven’t yet scanned.

68

Cornucopia Evaluation: SPEC Cycle Overheads

69

• Baseline is “spatial safety” assumed (for us, CHERI)
• Initiate revocation at 25% heap in quarantine

• Worst case is omnetpp: 21.2% sequential, 7.9% concurrent
• Geomean: 5.2% sequential, 2.4% concurrent

Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps. (Oakland 2020)

69

Cap-
dirtyable

Cap-
clean

Cap-
dirty

Cornucopia Architecture
Per-Page “Capability-Dirty” Tracking

Capability store to page; trap

70

OK, but how do we know which pages to sweep? Kernel tracks bits of AS that are
forbidden to hold capabilities, but within permissive regions, many pages still do not
hold capabilities. The revoker should ignore pages that are known to contain no
capabilities.

We extend CHERI’s page table bits to help track the spread of capabilities, adding a
notion of “capdirty”, a low-overhead “card-marking” store barrier scheme (though
without generational considerations).
PTEs dictate the behavior of cap stores: forbid, permit, or permit subject to
automatic, atomic marking.

70

71

Cornucopia Architecture
Per-Page Capability Load Generations

TTBR PD PT Phys mem

0

1

0

0

1

1-bit generation counter in core

… and in each PTE

Trap: tag set, gen ≠

No trap: tag clear

No trap: tag set, gen =

Loads trap if (loaded CHERI tag set) and (core gen ≠ source page PTE gen)

First Cornucopia design, published at IEEE S&P 2020, demonstrated viability but
suffered from large pause times. As we want to sweep responsively as the
application accesses memory (as well as completely, to allow reuse of memory), we
have subsequently introduced an architectural notion of capability load generations:
a per-PTE and per-core bit that must match on capability loads.

Data dependence means independent instructions after load may not retire until
CHERI tag value is available to be checked. PTE generation value available as part of
the translation.

71

72

Cornucopia Architecture
Revoking With Capability Load Generations

0

1

0

0

1

0

01

1

1

1

1

Revocation begins by stepping
global load generation on all cores

As loads cause traps, sweep per page
and update PTE generation

Background scan visits all pages w/ caps,
updates PTE generation

1

TTBR PD PT Phys mem

Steady state is all generation bits equal

1) Revocation begins by incrementing the in-core generation. Now all capabilities is
considered untested.

2) Sweep on pages as traps arrive, mark them as up to date.

3) Visit pages in background as well (currently done with a dedicated thread, so
takes advantage of SMP systems w/ idle core)

4) Eventually, back in the steady state with all generations equal.

(Optimization: pages known to not contain capabilities are not brought up to date,
but generation bits can’t matter)

72

73

Research: Hybridizing CHERI and MTE
Heap Allocator Use

Capability (allocator-owned)

Shared HeapCapability color

Memory granule color

Allocator (TCB)

Client (untrusted)

Capability (allocated object)

Capability (allocated object)

Capability (freed object)

MTE augments each pointer and memory granule with a “color”. In CHERI, color bits
are part of the capability metadata, and so protected against corruption.

1) On allocation, allocator derives bounded, colored capability to heap memory and
grants this to the client.
The distinguished “rainbow” color value is allowed to derive capabilities of any
color and change the color of memory.
Other colors can only produce the same color progeny and cannot change
memory’s color.

2) The client is then free to use the derived capability, and eventually frees it.

3) The allocator uses its elevated authority to recolor memory, preventing the
client’s valid capability from reaching memory. (Can zero memory itself with
little/no additional cost at the same time.)

4) Recolor-on-free closes UAF window, which gives a better debugging story, and
enables secure in-band metadata, simplifying allocator design. (More on that in a
moment.)

73

5) CHERI handles the spatial safety concerns, so adjacent heap objects can have the
same color without loss of security.

6) Re-allocation proceeds as last time, with the allocator constructing a new
capability of the right color for the client. (Any in-band metadata cleared before
return.)

7) Clients cannot change the color of their capabilities, nor can they recolor memory.

• Mismatching loads trap; data dependence may delay retirement of subsequent
independent instructions, but no other costs.
Mismatching stores can fizzle: can retire immediately and will be dropped from the
store buffer rather than updating in L1. Some complexity around store-to-load
forwarding (wait, don’t trap, if colors mismatch?), but should hide latency of fetch
for color comparison.

• A purpose-built atomic compare-and-decrement-color instruction catches would-
be double-frees and handles concurrent interaction with the revocation.

• Even 1-bit “scaled down” MTE has useful security properties (closes UAF window)
and simplifies software design (allows in-band metadata) but loses performance
win of delayed revocation

73

74

Unsafe
Spatially

safe
Temporally

safe
Type safe

Concurrency
safe

Formally
verified

What is safety, anyway?

C/C++
today

Java, .NET,
JavaScript

Pony, safe Rust,
Erlang, Verona

CHERI C/C++
Environment.NET, JVM,

JavaScript, Pony,
Erlang, Rust with FFI

Ongoing Research
for CHERI C/C++

“Language safety” is a spectrum, from completely unsafe (that is, everything is the
programmer’s responsibility not to break) to fully concurrency safe and formally
verified.

1. Very nearly all C today has its pointers lowered to integers as we saw back at the
very beginning, landing us firmly in the unsafe bin; maybe it’s C’s fault and we
should rewrite the world in something (anything) else.

2. Candidate languages all bring different things to the table, but notably they all
tend to have data representations and runtime systems that (claim to) rule out
the kinds of problems we’re considering.

3. Some languages go much further than we’ve discussed, even.

4. There are, however, two small problems with that proposal:
1. There’s a lot of C/C++ out there, some of which we might even want to

keep using (like optimized libraries). We could introduce FFI bridges for
such things, but now we’ve shot a hole through our runtime system and
its defenses.

74

2. The runtimes for these languages can be enormous! They’re very often
some of the trickiest parts (e.g., garbage collector) and are written in C,
and by humans, at that!

1. CHERI aims to give us, at a minimum, a spatially safe C/C++ runtime environment.
This is the bare minimum for safe composition of software!

2. Ongoing work is working to compositionally and efficiently provide additional
safety for our C/C++ environment.

OK, so what?

74

75

• Spatial and temporal errors lead to arbitrary code execution

C/C++ w/o CHERI

• Spatial errors fail-stop (and maybe heap temporal errors, too!)

C/C++ w/ CHERI

• Array index errors throw exceptions; other spatial errors impossible

• Temporal errors impossible

Java / C# / TypeScript / ML / Haskell / Rust / …

Safe Languages?

It’s important to talk about what “safety” means.

75

76

▪ On modern architectures, safe languages cannot safely interoperate

• With unsafe languages or among each other

▪ CHERI brings a new common denominator, especially useful at boundary

• 1-bit tag system distinguishes references from data, prevents reference forgery

• Spatial safety prevents cross-environment damage (lang A cannot access lang B’s heap)

• Sealing allows safe exchange of references w/ callbacks for invariant enforcement

▪ “CHERI JNI” work demonstrated extending Java object model into native code

• C code had to call back to the VM to manipulate objects; forced to play by the JVM’s rules!

Safe Architecture and Safe Languages?

Chisnall et al. CHERI JNI: Sinking the Java security model into the C. (ASPLOS 2017)

76

