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Abstract
Modern, high-performance memory allocators must scale
to a wide array of uses, including producer-consumer work-
loads. In such workloads, objects are allocated by one thread
and deallocated by another, which we call remote dealloca-
tions. These remote deallocations lead to contention on the
allocator’s synchronization mechanisms. Message-passing
allocators, such as mimalloc and snmalloc, use message
queues to communicate remote deallocations between threads.
These queues work well for producer-consumer workloads,
but there is room for optimization.

We propose and characterize BatchIt, a conceptually sim-
ple optimization for such allocators: a per-slab cache of
remote deallocations that enables batching of objects des-
tined for the same slab. This optimization aims to exploit
naturally-arising locality of allocations, and it generalizes
across particular implementations; we have implementations
for both mimalloc and snmalloc. Multi-threaded, producer-
consumer benchmarks show improved performance from
reduced rates of atomic operations and cache misses in
the underlying allocator. Experimental results using the
mimalloc-bench suite and a custom message-passing work-
load show that some producer-consumer workloads see over
20% performance improvement even atop the high perfor-
mance these allocators already provide.

CCS Concepts: • Software and its engineering→Alloca-
tion / deallocation strategies; • Theory of computation
→ Data structures design and analysis.

Keywords: memory allocation, producer-consumer work-
loads
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1 Introduction
Modern, general-purpose, high-performance memory alloca-
tors must scale to a wide array of uses: allocated heaps may
measure from kilobytes to terabytes, clients may have be-
tween one and hundreds of threads, objects’ lifetimes range
between ephemeral to immortal, and so on. These pressures
have generally caused allocators to evolve hierarchical in-
ternal designs, with a variety of caching and “fast path” ap-
proaches, often with a first client-facing layer whose state is
entirely thread local. The goal is that the majority of client
requests can be serviced cheaply and asynchronously, with
geometrically fewer requests triggering successively heavier
forms of synchronization. This would be especially straight-
forward if objects were always deallocated by their allocating
thread, that is, were they locally deallocated.

Alas, some objects are allocated by one thread and re-
motely deallocated by another. In particular, there is a sizable
class of real-world workloads with a “producer-consumer”
model: many objects are allocated by producer thread(s) and
flow to be remotely deallocated by consumer(s). Because a
general-purpose allocator is not told the fate of an object –
indeed, the program may not know ahead of time – it must
be prepared for any object to be either locally or remotely
deallocated by any other thread. Thus, complex application
object passing necessarily taxes the allocator’s synchroniza-
tion mechanisms.

Hoard [1],1 an early and influential design for scalable
allocators, dynamically partitions the heap between threads.
The heap is divided into “superblocks”, and, while the full
superblock lifecycle is elaborate, the salient point for us is
that superblocks sourcing allocations are affinitized to (usu-
ally singleton) subsets of threads; only these threads draw
their allocations from their affinitized superblocks. Each
(de)allocation locks the relevant superblock; thus, any thread
can deallocate into any superblock, as necessary. The first
versions of jemalloc [2]2 behaved similarly. While attrac-
tive, this approach still incurs the expense of a critical section
1https://emeryberger.github.io/Hoard/
2https://github.com/jemalloc/jemalloc
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entry and exit for each (de)allocation; while most entries are
likely without contention, the requisite lock acquisitions are
still an expense. Local and remote deallocations differ only
in which lock is involved, with local operations less likely to
experience contention.

Later efforts, such as TCMalloc [3],3 observed that caching
deallocated objects per thread would often allow subsequent
allocations to be serviced entirely locally, without synchro-
nization or even cross-thread cache traffic. For many work-
loads, this approach works admirably: access to the thread-
local cache can be done without atomics, by construction,
and, once caches are warm, few (de)allocations need to syn-
chronize with the shared heap. Unfortunately, producer-
consumer workloads are not well served by this approach:
the producers’ caches run empty and the consumers’ over-
flow, with each such event requiring synchronization with
the underlying, global heap.

The two allocators we study herein, mimalloc [4]4 and
snmalloc [5],5 embody hybrids of the above strategies. Ex-
ploiting locality of the sizes of objects requested by threads,
they manage “small” objects in slabs, regions of many equally-
sized objects. Refining Hoard, these slabs are affinitized to
individual threads,6 and, like tcmalloc, these slabs are ac-
cessed exclusively by their threads, without synchronization.
While this might increase the address space (or even mem-
ory) used by the heap, in practice, we believe the growth is
tolerably small and the gained scalability worth the trade-off.
Both allocators answer the challenge of remote deallocations
with lock-free message passing: a remote deallocation (even-
tually) results in the object being queued for later processing
by the owning thread.

In mimalloc, each slab has its own message queue. Occa-
sionally (such as when the slab empties or when no active
slab can service a request), the owning (producer) thread
processes incoming messages (from consumers), making
the messages’ underlying memory available for reallocation.
This processing is inexpensive: a single atomic compare-and-
swap (CAS) claims the message queue, which is then walked
and appended to the slab’s free list. Each remote dealloca-
tion results in an atomic CAS on the slab’s message queue,
promptly making deallocated memory visible to the owner.

snmalloc, by contrast, attaches two message structures,
an inbox queue and an outbox hash table, to each thread.
Occasionally (such as when one of its active slabs empties or
the outbox grows too large), a thread consumes the entirety
of its inbox, distributing the objects it owns into its affinitized

3https://github.com/google/tcmalloc
4https://github.com/microsoft/mimalloc
5https://github.com/microsoft/snmalloc
6Strictly speaking, snmalloc draws a distinction between “allocator” and
“thread”, with allocators being longer-lived constructs reused across threads’
creation and destruction. In general practice, though, each live thread has
just one associated allocator, and each allocator is in use by at most one
thread, and so we elide the distinction.

slabs; this requires one atomic exchange but incurs linear
processing time and cache traffic. Each thread’s outbox is,
like its slabs, manipulated exclusively by its thread. Remote
deallocations are first placed in the deallocating thread’s out-
box, onto a chain keyed on the identity of the object’s owning
thread. Only when the outbox becomes sufficiently large,
each chain is appended, with a single atomic exchange, to the
message queue of the allocator that owns its head object. Of
note, inbox processing may involve forwarding messages (via
the outbox) and deallocated objects may take some time to
become visible to their owning thread, increasing the heap’s
total footprint.

These two points in the design space represent a trade-
off. mimalloc promptly returns memory to slabs and its
message queues are especially simple to process, at the cost
of a message queue per slab and an atomic operation per
remote deallocation. snmalloc uses only per-thread message
structures and needs only a pair of atomic operations to
return many objects, at the cost of delayed memory reuse
and more complex message queue processing threatening
linear amounts of random-access cache traffic. Both of these
approaches are fully general, in that one stream of remote
deallocations is much like any other: each object is enqueued
in turn without much overt effect on subsequent operations.

In an attempt to reduce the costs associated with these
strategies, we propose BatchIt, the addition of small, per-
thread caches of slabs into which objects have been remotely
deallocated recently. By collecting, in the deallocating thread,
a batch of multiple objects destined for the same slab, BatchIt
enables constant-time operations for each such batch. Ap-
plying BatchIt to mimalloc and snmalloc can be seen as
creating two new strategies that are closer to some mid-
point in the design space. For example, mimalloc can now,
somewhat like snmalloc, return multiple objects with a sin-
gle atomic. On the other hand, the batched objects within
a snmalloc message are, by definition, from same slab, as
with objects in mimalloc’s message queues.

The next sections discuss BatchIt’s common design (sec-
tion 2) and its implementation within each of mimalloc
(section 3.1) and snmalloc (section 3.2). We measure the per-
formance impacts of our changes in section 4. Some possible
avenues of future work are discussed in section 5.

2 Design
The central observation underlying our optimization is that
natural, well-justified, extant optimizations result in local-
ity of objects flowing through a producer-consumer system:
producer(s) will sequentially allocate from their owned al-
location slabs to create application objects, which will then
flow to the consumer(s), wherein we may expect multiple ob-
jects from the same slab to arrive in rapid succession. We can
exploit this locality: by having consumers collect collocated
objects and transmit them back to their owning (producer’s)

https://github.com/google/tcmalloc
https://github.com/microsoft/mimalloc
https://github.com/microsoft/snmalloc
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allocator in batch, we can reduce the number of messages
that must be sent and processed.

For slab-based allocators such as mimalloc and snmalloc,
there is already a notion of a free list per slab. The most
straightforward granularity of batching, then, is for each
batch to be composed only of objects the same slab, so that it
is a segment of a slab’s free list, built locally by the consumer
without any cross-thread synchronization.7 An owning al-
locator can process such a batched message of arbitrarily
many objects in constant time, and with constant amounts
of cache traffic, if the batch additionally communicates its
size in its head object.

Such batch collection is opportunistic; there is no guaran-
tee that a sequence of deallocations necessarily involves two
objects from the same slab. We should expect the efficacy
of batching to increase as the messages arriving at a given
consumer thread (and, so, the deallocations it performs) tend
towards being increasingly concentrated within smaller sets
of producer slabs. That is, applications that have 1:1 relation-
ships between producers (or, strictly, their allocation arenas)
and consumers can expect larger batches than those with
more general communication networks, which are likely to
spread a given slab’s contents across more consumers.

Such batching is quite natural for mimalloc’s existing,
per-slab communication structure, as deallocation paths al-
ready look up the object’s containing slab. For snmalloc,
while it is built around a per-allocator communication de-
sign, its central data structure, the so-called “pagemap”, for-
tuitously already stores the requisite information. In the ex-
isting snmalloc implementation, deallocating threads query
the pagemap to find recipient allocators, which then query
it to find per-slab metadata. The address of a per-slab meta-
data object serves as a convenient identifier of the slab itself;
deallocating threads will now use these addresses to label
batches of objects.

BatchIt, all told, then, is the addition, to remote dealloca-
tion paths, of small per-thread caches of objects associated
with recently-seen slabs. Eviction of a slab from this cache
causes all associated objects to be sent as one message: one
atomic append in the case of mimalloc or one append to
the thread’s outbox in snmalloc. Growth of this cache is
limited, both in the maximum number of slabs that may be
present and in the total amount of memory held within. In
snmalloc, the cache’s contents are accounted within the
existing outbox quota. The shape and placement policy of
this cache is subject to experimental tuning; see section 5.1.

7In principle, we could apply such batching to more general heap shapes
than slabs, but constant-time batch processing would be at odds with coalesc-
ing free regions in most shapes. Likely such challenges could be overcome,
but our description herein will focus on the slab case.

While there could be some gain in snmalloc from an orthogonal, per-
allocator batching, which could eliminate the need to consider messages
for forwarding, processing such a batch would still incur linear costs, and
we do not consider it further herein.

For mimalloc, we expect that this collection may signifi-
cantly reduce the number of atomics executed by consumers
(and may slightly speed up the average local deallocation,
having replaced the atomic with a local memory operation),
at the cost of a slight delay in deallocated objects becoming
visible to their owning allocators. For snmalloc, we expect
no reduction in atomics but significant speed-up of message
queue processing, at the cost of a slight slow-down of remote
deallocations due to the cache logic.

3 Implementations
3.1 mimalloc
We implemented a primitive batching system for mimalloc,
aiming to change as little as possible therein. The result is an
approximately 175 LoC patch to the latest, at time of writing,
mimalloc source (commit 2cca58).

We added an allocator local cache that holds a fixed num-
ber (16) free lists for remote slabs. This is organized as a
2-way set associative cache. If we get a collision on the cache,
we simply evict the entry with the longest list back to the
owning thread using a single atomic CAS operation.

We keep the remote free list in mimalloc as a singly linked
list of single objects, rather than making it a singly linked
list of batches of objects. This means the receiving side must
walk the list to find out how many objects have been added.
We could have preserved batch structure in the message
queue (as we did in snmalloc, as discussed below), but this
would have required deeper changes to the allocator.

The code needs to handle the case where the receiving
slab is not being monitored by the owning thread. In this
case, two messages are required: one to notify the owning
slab that it should monitor, and the second to send the rest
of the free list. This could be optimised to a single send, but
this would, again, affect more of the allocator code.

3.2 snmalloc
The existing structure of snmalloc is well suited for BatchIt.
Remote deallocations are already queued locally in each
thread’s outbox, which classifies objects by their owning
allocator; it is a straightforward change to add a cache to first
collate by containing slab and, upon eviction, enqueue the
entire collection for delivery to its owning allocator. The net
effect on the message queue is as depicted in fig. 1. However,
in the interest of pursuing an implementation that might be
worthy of inclusion in future snmalloc releases, we had to
address several small, but interesting, challenges elsewhere
in the codebase.

First, the existing code relies on the fact that (absent heap
corruption) an object is on at most one of a slab free list or a
remote message queue; in particular, the same words within
the object are reused for the link pointer(s) in these two cases.
BatchIt requires that an object can be both part of a free list
segment and on the message queue. We disentangle these
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Figure 1. Schematic representation of a snmalloc message
queue without (top) and with (bottom) BatchIt. While the
original message queue might have spans of objects belong-
ing to the same slab, these will be intermixed with each other,
and so will require the recipient to act on each mesasge. By
contrast, each batched message is guaranteed to be within
one slab and so needs only a constant amount of processing,
regardless of its size. (The message queue may contain mul-
tiple batches for the same slab, from different deallocating
threads or due to contention in BatchIt’s caches.)

two cases, moving the message queue link pointer(s) to be
after the free list’s.

Second, a thread receiving a message must be able to splice
the message into the target slab’s free list. In order that this
be constant time, the message must convey. . .

1. both the head and tail of the new segment.
2. the batch size, so that slabs’ accounting metadata can

be updated without traversal to count.
These requirements are trivial when messages are singletons,
but threaten to require more space within batched messages.
Instead, our BatchIt implementation uses singly-linked cyclic
lists (or rings); upon receipt, the message is treated as the
tail of the segment and the object it points to is treated as
the head. In order to fit both a pointer to the head and this
size into the same message word, our BatchIt implementa-
tion encodes the message’s pointer to the next element as a
relative displacement, in bytes, from the message/tail object.
This displacement is guaranteed to be a small value, as both
objects are within the same slab, and the batch size is at most
the maximum capacity of the slab; these two small numbers
can be fit in the footprint of a single pointer. The other links
in the batched message remain encoded as ordinary free list
pointers; all special handling happens only on the single link
between tail and head and is finished before the segment is
spliced back into the slab’s free list.

Third, among snmalloc’s several corruption-detection
mitigations is one that obfuscates the in-band free list and
message queue pointers. The existing obfuscation mecha-
nism is keyed, that is, a different obfuscation function is used,
by each thread for its free lists and globally for all message
queues. If this mitigation is enabled alongside BatchIt, we
continue to use a global key for the message queues, but
move free lists to using a global key and per-slab “tweak”
of that key, so that consumers can compute the obfuscation

without reading from remote threads’ state. The specially
encoded link from above is also subject to this obfuscation.

Fourth, another of snmalloc’s corruption-detection miti-
gations is one that adds obfuscated backwards pointers for
consistency checking. Because BatchIt requires that even the
smallest objects be able to hold two linkages, enabling both
BatchIt and this mitigation requires that we increase the
minimum allocation size from that of two pointers to four.
This may have performance implications, and so we intend
that BatchIt be optional before attempting to get it merged
to snmalloc proper. The specially encoded link discussed
above is also subject to this integrity check.

All told, our implementation changes around 1500 lines
of code, including comments, relative to the latest snmalloc
commit as of this writing (b8e9e99c). It implements a sim-
plistic, lightly-configurable cache of recently seen slabs’ ob-
jects in front of the existing outbox structure and adapts
the existing list and inbox processing logic as described.
The cache uses a light-weight multiply-and-shift hash to
distribute slabs between a power-of-two number of small
associativity sets, with a naïve eviction policy of selecting
the way with the most objects batched.

4 Evaluation
To investigate the performance changes of BatchIt in practice,
we run the mimalloc-bench suite of benchmarks8 (specif-
ically, commit a131c30b). The benchmark suite is a collec-
tion of microbenchmarks, and small applications, that are
designed to stress different aspects of the allocator. We eval-
uate the performance of our BatchIt implementations in four
configurations: each of mimalloc and snmalloc in each of
their default (highest performance) and “secure” (corruption
detecting) configurations. We ran each benchmark 20 times
per configuration, and present results relative to the corre-
sponding baseline mean. We ran all the benchmarks on an
Azure F72s v2 VM with 72 cores and 144GiB of memory;
these are 3rd generation Intel® Xeon® CPUs, and at this size,
Azure allocates an entire physical machine for one customer.
Our machine ran Ubuntu 22.04.3 with the Azure-patched
Linux kernel version 6.5.0-1021-azure. Allocators and
the msgpass benchmark (section 4.3) were built with clang
14.0.0-1ubuntu1.1, while mimalloc-bench was built with
gcc 11.4.0-1ubuntu1 22.04.

Within the mimalloc-bench suite, we focus especially on
the xmalloc-test benchmark, as it was designed to stress
allocators with an intensive producer-consumer workload.
The benchmark creates a number of producer threads that
allocate memory, which send the memory to the consumer
threads, which then deallocate the memory. Our primary
aim with the evaluation is to show that producer-consumer
workloads can be sped up by batching deallocations. We

8https://github.com/daanx/mimalloc-bench

https://github.com/daanx/mimalloc-bench
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Figure 2. Relative performance of BatchIt optimisation on snmalloc across the mimalloc-bench suite. To provide a sense of
scale for the benchmarks, absolute values are shown for baseline means: time, in seconds, and memory, in tens of megabytes.
The benchmarks glibc-thread, larson, redis, rptest and xmalloc-testN use a fixed duration of time. We report the fixed duration
as the absolute number of seconds as it is intended to give a sense of the size of benchmark. For these five benchmarks
mimalloc-bench provides a “relative time”, which we use for the calculation of the throughput.
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Figure 3. Relative performance of BatchIt optimisation on mimalloc across the mimalloc-bench suite. To provide a sense of
scale for the benchmarks, absolute values are shown for baseline means: time, in seconds, and memory, in tens of megabytes.
The benchmarks glibc-thread, larson, redis, rptest and xmalloc-testN use a fixed duration of time. We report the fixed duration
as the absolute number of seconds as it is intended to give a sense of the size of benchmark. For these five benchmarks
mimalloc-bench provides a “relative time”, which we use for the calculation of the throughput.
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also aim to show that the batching does not slow down the
allocator in other workloads.

Both implementations use a 16-way cache of recently seen
slabs, configured as 8 sets with 2-way associativity. Slabs are
mapped to rows through a simple multiply-and-shift hash,
and eviction from a full row selects the largest batch therein.

4.1 snmalloc
We first present results for snmalloc, our more complete
implementation, in fig. 2. Promisingly, the xmalloc-test
benchmark shows 14.7% ± 0.5 speed up with BatchIt, albeit
with significant increase in RSS. The original snmalloc pa-
per [5] has some discussion of the complexity of measuring
memory in this benchmark. The core issue is that there is
no back pressure, so speeding up allocation relative to deal-
location can increase memory usage. The other benchmarks
mostly are within the noise of the baseline. The sh8benchN
benchmark regresses slightly (8.3% ± 2.8), but it is a very
short micro-benchmark (0.19s) and so may be more sensi-
tive to the start-up costs of our caching. This benchmark is
designed as a stress test rather than a real-world workload.

We see smaller regressions with glibc-simple (5.1% ±
1.1), glibc-thread (3.1% ± 2.2), alloc-testN (1.6% ± 0.5)
and alloc-test1 (1.5% ± 0.3). These benchmarks are also
stress tests with tight loops around allocation and dealloca-
tion, so small changes can have a large impact. The other
benchmarks are under 1% and/or within measured noise.

For the secure version of snmalloc, xmalloc-test again
has a 14.7% speed up and we see a maximum run-time re-
gression of 2.1%. In addition to the expected memory usage
increase in the xmalloc-testN benchmark, we see striking
increases in the sh8benchN and alloc-testN benchmarks;
these could be due to the requisite increase in the minimum
allocation size for enabling BatchIt with snmalloc’s security
features.

4.2 mimalloc
Our results for mimalloc, shown in fig. 3, also appear promis-
ing, despite the simpler implementation. On the standard
version of mimalloc, the xmalloc-testN benchmark shows
an approximately 9.9%±0.5 reduction in time, a little smaller
than the improvements seen in snmalloc. Likely, the cause
is that the mimalloc integration still walks all the objects in
the remote free list, which the snmalloc integration does not.
(That is, we believe the deeper integration suggested in sec-
tion 3.1 could yield significant improvements.) BatchIt also
has a larger impact on the behaviour of the allocator. With
snmalloc, the deallocations were always batched, but not
in as useful a way. With mimalloc, the deallocations were
not previously batched, so the change is more significant in
terms of fragmentation and reuse patterns. We see additional
speed-ups of cache-scratch1 (3.7% ± 0.8), glibc-simple
(3.4% ± 0.5), and sh8benchN (7.1% ± 2.6), with the only sig-
nificant slowdown being glibc-thread (7.3% ± 4.6). We

have been unable to explain the regression in glibc-thread
as the code changes should not be exercised in this example.
There is no dramatic increase in memory use other than the
already-discussed xmalloc-testN, suggesting that BatchIt’s
new delays in memory reuse are not inducing excess frag-
mentation.

The results for the secure version of mimalloc are strik-
ing. Here we see a 27.6% ± 0.2 reduction in time for the
xmalloc-test benchmark when using BatchIt. Likely the
cause is that the CAS loop for posting a message in the se-
cure setting has a higher overhead than in the non-secure
setting, as it has some arithmetic instructions to encode the
next pointer. This means that the time between reading and
performing the CAS is longer. In a heavily contended sce-
nario, such as xmalloc-test, this can lead to a significant
slow down. With BatchIt, we can enqueue multiple objects
in a single CAS, which reduces the contention on the remote
free list. While mstressN exhibits a 6.0% ± 2.1 regression
in this setting, it is a stress-test of the allocator and is not
intended to be representative of a real-world workload.

4.3 A Message Passing Benchmark
Beyond the results shown above, we have written a bespoke
producer-consumer benchmark, intended for inclusion into
the snmalloc test suite. The benchmark is parametric in the
number of producer and consumer threads, among other
parameters. The benchmark runs as follows: producers re-
peatedly sample small batches of up to sixteen messages,
from one of four different message sizes (each a different
snmalloc size class, and so sourced from different slabs), to
be sent to a randomly-selected consumer thread; consumers
simply free each received message. Unlike xmalloc-test,
this benchmark includes back-pressure to limit the global
number of allocated messages (that is, those produced and
not yet consumed; herein, the limit is 4096). Moreover, it
performs a fixed amount of message-passing “work” per pro-
ducer. These differences make our benchmark’s behavior
easier to analyse.

Figures 4 (snmalloc) and 5 (mimalloc) show results for
some points in this parametric space; msgpass-𝑁 runs 𝑁

producer and 𝑁 consumer threads. First, note that, BatchIt
makes essentially no change to the memory requirements
of this benchmark (barring a few noisy or many-thread con-
figurations, likely due to interactions of start-up allocations
crossing some threshold), verifying the benchmark’s back-
pressure mechanism.

For snmalloc, regardless of build configuration, we see
BatchIt giving over 20% speedup on some low-thread-count
configurations, with efficacy generally decreasing as thread
count increases, with high-thread-count configurations show-
ing as little as 3% speedup. This general trend is explicable
as increased contention in BatchIt’s caches, causing more
frequent returns of smaller batches of freed objects.
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Figure 4. Relative performance of BatchIt optimisation on snmalloc sampled at various configurations of our msgpass
benchmark (section 4.3). To provide a sense of scale for the benchmarks, absolute values are shown for baseline means: time,
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With mimalloc’s high-performance configuration, we see
BatchIt also giving up to 20% speedup, but, here, on the
higher-thread-count msgpass-24, with impact falling off
with either more or fewer threads. We believe this to be
the result of a product of effects: as we scale to more threads,
there is increased contention in mimalloc’s per-slab message
queues, but the relative utility of BatchIt’s reduction in mes-
sage queue contention increases, until increased contention
in the BatchIt caches causes it to become less effective. The
lack of performance gain at 3 or 4 threads is difficult to ex-
plain, but could just be a consequence of a poor hash function
in our implementation.

With mimalloc’s corruption-detection configuration, per-
formance gains are generally more modest. There again ap-
pears to be a product-like interplay resulting in a peak at
msgpass-20, but BatchIt also appears to help the uncon-
tended msgpass-1 and low-contention -2 and -4 cases more
here than in mimalloc’s high-performance configuration.
The outsized performance gain shown by msgpass-40 is
likely due to this benchmark’s 80 threads contending for the
machine’s 72 cores.

5 Future Work
5.1 Cache Policy Exploration
The shape and placement and eviction policies of BatchIt’s
deallocation caches would benefit from additional experi-
mentation. The implementations tested so far have been
merely an educated guess at policy, with no tuning of the
number of lines, the hash used to distribute slabs between
lines, the size of associativity sets, or exploration of evic-
tion policies; LRU or other temporal policies may be a better
choice than the size-based policies of our implementations.

5.2 Allocator Budget Tuning
A consequence of BatchIt in snmalloc is that allocations are
on average faster, since time spent servicing the message
queue is now dominated by the number of batches, rather
than the number of objects, and remote deallocations are on
average a little slower, due to the new caching logic in the
outbox. As mentioned above, this shift in costs can cause

producer-consumer workloads without back-pressure to in-
crease their memory usage. It may be possible to compensate
for this increase by explicitly treating the allocator itself as
a back-pressure mechanism, perhaps by making its “budget”
of how many allocations it will grant between processing
its message queues either configurable and/or dynamically
tuned. (It may also be desirable to have snmalloc process
message queues more “smoothly”, in stages, rather than, as
it does at the moment, all at once.)

6 Conclusion
We have designed, implemented, and evaluated BatchIt, a
straightforward potential optimization for message-passing
allocators under producer-consumer workloads. BatchIt aims
to exploit the locality of allocations that naturally arise in
modern, high-performance allocator design. Our experimen-
tal results show that its opportunistic optimization can have
some producer-consumer workloads seeing 20% speed ups,
with other workloads largely undisturbed.

References
[1] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.

Wilson. 2000. Hoard: a scalable memory allocator for multithreaded
applications. In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (Cambridge, Massachusetts, USA) (ASPLOS IX). Association for
Computing Machinery, New York, NY, USA, 117–128. https://doi.org/
10.1145/378993.379232

[2] Jason Evans. 2006. A Scalable Concurrent malloc(3) Implementation for
FreeBSD. (4 2006). https://www.bsdcan.org/2006/papers/jemalloc.pdf

[3] Sanjay Ghemawat and Paul Menage. [n. d.]. TCMalloc: Thread-Caching
Malloc. https://goog-perftools.sourceforge.net/doc/tcmalloc.html

[4] Daan Leijen, Ben Zorn, and Leonardo de Moura. 2019. Mimal-
loc: Free List Sharding in Action. Technical Report MSR-TR-2019-18.
Microsoft. https://www.microsoft.com/en-us/research/publication/
mimalloc-free-list-sharding-in-action/

[5] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou,
Juliana Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Win-
tersteiger, and David Chisnall. 2019. snmalloc: a message passing al-
locator. In Proceedings of the 2019 ACM SIGPLAN International Sym-
posium on Memory Management (Phoenix, AZ, USA) (ISMM 2019). As-
sociation for Computing Machinery, New York, NY, USA, 122–135.
https://doi.org/10.1145/3315573.3329980

Received 2024-03-22; accepted 2024-05-10

https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/378993.379232
https://www.bsdcan.org/2006/papers/jemalloc.pdf
https://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://doi.org/10.1145/3315573.3329980

	Abstract
	1 Introduction
	2 Design
	3 Implementations
	3.1 mimalloc
	3.2 snmalloc

	4 Evaluation
	4.1 snmalloc
	4.2 mimalloc
	4.3 A Message Passing Benchmark

	5 Future Work
	5.1 Cache Policy Exploration
	5.2 Allocator Budget Tuning

	6 Conclusion
	References

