
IEN # 18 J. D. Burchfiel
Supercedes: None W. W. Plummer
Replaces: None R. S. Tomlinson

BBN
Section: 2.4.4.3 26 October 1976

IEN # 18

Proposed Revisions to the TCP

Jerry D. Burchfiel
William Plummer

Raymond S. Tomlinson

Bolt, Beranek and Newman, Inc.
50 Moulton Street

Cambridge, Mass. 02173

10/26/1976

IEN # 18 TCP Revisions 10/26/1976

2

Experiments with TCP have shown it to have marginal performance and also be lacking certain
functions. Under certain source-destination letter size to buffer size mismatch conditions, real-
time response has been poor and excessive network traffic generated. The CPU load caused by
running TCP is much higher than with simpler, e.g. NCP, protocols. Suggestions are made in the
following which will improve these deficiencies. Since several of the improvements will require

new packet formats and large scale software changes to existing TCPs, we suggest that they all
be done in one large change, yielding “Protocol Version 3”.

1. New Sequence Number Scheme

Because the current protocol permits using sequence number space without using (user) buffer
space by sending control information (INTERRUPT, DSN, etc.) a receiving TCP cannot do
partial, out of order reassembly of the incoming data; instead, it must store the packets and pass
them to the user in order in case there might be control information in one of the packets. This
results in complicated and time consuming computations in order to do the reassembly process
and a high load on the free storage area if any reasonable size window is being used.

To correct this we will use a 24-bit sequence number space for data bytes and a 8-bit space for
control information. Since control information is to be interpreted as occurring “between” data
bytes so that overall sequencing remains correct, the control sequence may be thought of as a
fraction of the data sequence. Many of the current routines which deal with sequence numbers in

the current TCP will still work if the 24-bit data sequence number is handled as the most
significant bits of an overall 32-bit sequence number.

The advantage in this arrangement is that a receiving TCP can infer the address of each data byte
by looking at the data sequence number at the time of reception. This allows placing the data in
the user’s buffer at this time; no actual reassembly is needed even though packets may arrive out
of order.

For this scheme (and previous versions!) to function correctly, we require that an INTERRUPT
not be sent if any other control is outstanding, especially a previous INTERRUPT. As with the
previous protocols, nothing may be sent after the end of a sequence (i.e., after a DSN or FIN)

without first re-establishing a valid sequence.

Example: Assume 6 packets are sent: (1) 3 bytes of data, (2) 2 control bytes, (3) 2 controls, (4) 2
data, (5) 2 leading controls plus 3 data, and (6) 1 data byte. If the current data
sequence is 100 and the control sequence is 0, the packets will have the following
sequence numbers:

IEN # 18 TCP Revisions 10/26/1976

3

100[3],0[0] ;3 of data at sequence 100. No control.
103[0],0[2] ;2 controls, sequenced after previous packet.
103[0],2[2] ;2 more controls, after previous ones.
103[2],4[0] ;More data. Note control sequence.

105[3],0[2] ;Data only. Note control sequence reset.
108[1],0[0] ;The final data.

Thus, in a packet containing both controls and data the controls are sequenced before
the first data byte.

A problem arises when the 8-bit control sequence field overflows. To simply let the carry go into
the data field almost works but destroys the simple relation between data sequence number and
user byte address. The receiving TCP is made aware of the change with DSN. Thus, if a control
byte is to be sent and the control sequence is at 377 (octal) a DSN is sent, followed by a SYN at
ISN,0 where ISN is the “initial sequence number” which is geared to time. Of course, DSN will

continue to be used as it was in the old protocol in addition.

2. Windowing

During testing of TCPs using server and user programs written by different individuals, it was

noted that transmission became very inefficient with many retransmissions required to get even a
few letters across a connection. The problem was eventually identified as having to do with three
factors:

• A mismatch in the size of the RECV buffers (large) and the size of the letters sent
(small). This is the major problem area.

• Long delays in the network and/or slow processing in the TCPs, causing window
information to be stale.

• The design choice made in the receiving TCP to discard all packets on a connection

except the one specifically required. This is a valid technique; retransmissions by the
sender should eventually supply the needed packet.

By way of example, consider the following “worst” case scenario:

IEN # 18 TCP Revisions 10/26/1976

4

(1) Assume the Sender sees a 0 window and is blocked with 10 1-character letters waiting to
be sent.

(2) The receiver does one 10-character RECV and sends this 10 character window to the
Sender.

(3) The sender sees the window open and sends all 10 letters each with EOL. Note that the
window has not been violated.

(4) The Receiver receives the first of the ten letters and returns the one RECV buffer to his
user because the EOL forced completion of the buffer. An ACK is now returned to the
Sender which specifies a window of 0 bytes.

(5) Since the network is slow, the Sender continues to retransmit the 10 letters. Note that the
initial retransmission rate is high in most implementations.

(6) The user on the Receive side does another RECV. Since his TCP is being flooded with
packets from the sender, he stands only a 1/10 probability of getting the “right” next
packet. After some amount of processing in order to determine that the current packet is
wrong, he will try again.

(7) Eventually the sender receives the packet saying that the window has closed down to
zero, and ceases retransmitting. At this point one packet will have been ACKd and
deleted from the retransmission queue.

(8) Somewhat later an ACK packet will arrive which specifies another 10-character window.
This is generated when the second RECV was done. This will allow the sender to

generate one more 1-character letter, replacing the one which was acknowledged.

Note: Should the user on the Send side decide to switch to 10-character buffers the
performance improvement will not be immediate. For some time afterwards the TCP will
chop the bigger buffers into 1-character packets, because the receiving TCP is
acknowledging only single characters. Thus, the “bad” performance will continue until
all of the single character letters have been acknowledged by the receiver. Until the
improvement actually happens, both ends of the connection will be generating 10 times
as many packets (in the example) as needed, and using 10 times as much computing
power.

IEN # 18 TCP Revisions 10/26/1976

5

In this example, the culprit was the EOL which went along with the first letter. It was this which
caused the window to decrease to 0. In effect it claimed the 9 unfilled bytes in the RECV buffer.
But the Sender had no way of knowing this—he has no information about how big the buffers
are on the RECV side.

In general the situation arises because EOL (end-of-letter signal from a sender to a receiver) will
claim an unknown amount of buffer space. The existing protocol has no way to cause the sender
to decrease his available window by the number of bytes implicitly sent by the EOL which
caused a RECV buffer to complete. In a sense it has been filled with non-existent bytes which do
get removed from the window because the buffer gets (by definition of EOL) returned to the
user.

To cure this we extend the protocol by defining contents of the window field of a packet as being
the size of the user’s RECV buffers if (1) the sending TCP does not already know this for the
connection in question, and (2) the number in the window field is not zero. Note: Receive buffer
size remains constant for the life of the connection. To insure reliable transmission of the buffer

size information, the ARQ control bit should be on in the packet which carries it. See Section 7.

The buffer size information is used by the packetizer process in a sending TCP to compute the
actual amount of window space that can be used. Each actual data byte sent decreases the
available window by one. Sending an EOL decreases the available window (advances the
packetizing sequence number) by all of the bytes remaining in the current buffer (which may be
zero). Sending an INTERRUPT will also cause completion of the receiver’s current buffer.
Packet ends need not correspond with buffer ends.

3. Checksum and Fragmentation

For the near future the original fragmenting concepts will be retained. Specifically, only the last
fragment (marked with EOS) will carry a checksum. The checksum found in fragments with
EOS on will be that for the entire segment, as copied from the fragmented parent. This is an end-
to-end check and has the advantage of requiring little computation by gateways and makes it
possible to change the current checksum function without changing all of the gateways.

Destination TCP’s will not be burdened by having to checksum the fragments.

With the exception of the BOS and EOS bits, the DataLength, and the SequenceNumber, the
headers of all fragments can be the same. This is a consequence of the fact that none of the
information in the packet (DSN, ACK, etc.) can be acted on until the whole segment has been
reassembled. It is not until then that the segment checksum can be verified. After an entire

IEN # 18 TCP Revisions 10/26/1976

6

segment has been reassembled, all of the information in the segment will be processed at one
time and an ACK issued. The fact that all fragment headers may be nearly the same simplifies
the gateway code since it does not have to be very selective in constructing the fragment headers.
No problem arises because two fragments have (say) two INTs on because the header was copied
from the parent.

There are a few comments which bear on segment reassembly. First, packets (fragments) which
are outside of the window are rejected on the basis of their apparent, unchecked
SequenceNumber or ACKSequence (if not synchronized). If the packet has EOS on, the entire
header is saved, at least conceptually, for later checksum verification. Since the ACKSequence
and Window of a packet may change from one retransmission to the next, care must be exercised
so that these fields and the checksum used for validation are taken from the same packet header,
i.e. the one marked with EOS. The checksum function is computed for the data portion of the
packet and “added” into what will be the checksum of the entire segment. Since the
SequenceNumber tells where in the user’s buffer this data belongs, the data may be transferred
there directly.

As fragments are received and the data moved to the user’s buffer(s), the TCP must keep a table
which describes the portion(s) of the segment which have been filled. Fragments received from
different gateways may overlap so not every packet processed will contribute to filling the
missing data by an amount equal to the DataLength of the fragment. The TCP must be able to
know the data length of the original segment for use in the header checksum computation
however.

When a set of fragments big enough to cover the entire segment have been processed, the TCP
will know the value of the checksum function over the data portion(s) and will have enough
information to reconstruct the header associated with the entire segment. The checksum of the

header is generated and combined with that for the data. If it is zero, the segment is valid and all
of the control information including ACK if present may be acted on. If the segment checksum
turns out bad, the entire segment is forgotten and the TCP waits for retransmissions.

4. Half-Open Connections

A solution to the problem of dealing with half-open connections has been found. Because of this,
there is no longer a need for the “RESET(connection)” control command, and TCP code has
been made simpler.

IEN # 18 TCP Revisions 10/26/1976

7

Basically, the change is to the interpretation of the EFP+7 “no such TCB” error message.
Typically, this error will be generated by a TCP which has crashed and restarted upon receipt of
a packet for a connection which existed before the crash. The ACKSequence of the error packet
will acknowledge the entire packet which provoked the error reply and its sequence number will
be taken from the ACKSequence of the provoker, which guarantees that the error packet will be

acceptable for processing by its receiver. A TCP receiving an acceptable EFP+7 error packet
should delete the TCB associated with the connection and inform the user owning the connection
of the fact.

It is possible for delayed copies of packets from a previous incarnation of a connection to arrive
at a TCP which has already closed the connection. These will also elicit EFP+7 errors. Should a
delayed copy of one of the error packets arrive at the other end, which has by then opened a new
incarnation of the connection, it will not be acceptable for processing because (depending on the
state of this end) its Sequence number or ACKSequence will be out of bounds due to the
properties of the Sequence number selection algorithm.

5. ABORT User Call

A new user call “ABORT(connection)” has been implemented. This simply deletes the local
copy of the TCB after sending an EFP+7 error to the remote end. Note that sending this error
packet is a courtesy and is not required. The other end will find out that the connection has gone

away if it attempts to send a packet on it—see the description above.

ABORT is intended to be used by a user when he has (for instance) given up on trying to
CLOSE a connection. This can occur if the remote end has become very slow at processing data
sent to it, and never makes it to the point of handling the FIN (which is sequenced).

6. Optional Information in Header

N.B. The discussion which follows pertains not only to TCP packets but also to InterNet packets.

Timestamp(s) and security information are examples of information which might appear in some
packets but not others. Thus, it would be wasteful to preallocate fields in the header of all
packets to hold this data. Instead, we will permit using the area between the end of the actual
header and the beginning of the data. The presence of this optional information is discovered by
noticing that the HeaderLength of the packet in question contains a number larger than the
minimum header length required by the protocol.

IEN # 18 TCP Revisions 10/26/1976

8

Within the options area will be found any number of repetitions of the pattern “1 byte of count, 1
byte of kind, and N bytes of actual option information”. This permits an arbitrary amount of
option information to be added to any InterNet or TCP packet. In particular, multiple timestamps
may be added.

One special code will be specified here: 0 in the count and kind bytes of any option will be
understood to mean “this is a null option which occupies all of the space remaining in the options
area”. This assignment permits padding the header with bytes containing zeros as is now done in
the TENEX TCP in order to align the beginning of the data area with a word boundary inside
TENEX.

The fine-structure of options is not specified here. One rule to be followed in designing options
is that they must be a multiple of 16 bits in length to avoid complicating programming in
minicomputers. Multiples of 32 bits are favored even more due to limitations of some common
higher-level languages.

The reader should not confuse the InterNet Format field indicating “Secure TCP” or not, and the
(possible) existence of options of the kind “security information”. The Format field is purely a
specification to gateways of what fragmentation algorithm is to be used, independent of what is
in the packet.

7. Acknowledge Request (ARQ) Control Bit

It frequently occurs that information such as window size or buffer size must be passed reliably
across a connection. Normally these are not acknowledged, but in some cases the sender must
know that the information has been heard by the receiver. Thus the ARQ bit has been added to
the Control Flags field of TCP packets. This occupies one slot in the control sequence space and
must therefore be acknowledged by the receiver. The exact position of ARQ in the packet is
shown in Section 11. ARQ is to be processed after INT (which is after SYN), but before the
packet data or “trailing controls”.

8. Delete FSH (Flush) Control Bit

FSH was originally intended to be used to “clear the pipe” so that a FIN could be forced through
the remote TCP. This was need to guarantee prompt closing of connections. With the above
discussion of half-open connections and the ABORT call, there is no longer a need for FSH.

IEN # 18 TCP Revisions 10/26/1976

9

9. Delete REJect

No use is seen for the REJect primitive in the protocol. It may safely be deleted.

10. Delete the T (Trace Control Bit)

The T bit of the TCP header control flags was previously used to control timestamping. Since
timestamping is an InterNet function which can apply to non-TCP packets, it cannot be
controlled by a TCP header bit. The definition of the T bit has been deleted.

11. Version 3 Packet Format

The revised packet format is shown below. It is nearly the same as the Version 2 format. The
major differences are in the deletion of several control bits, and the space provided for options.

InterNet Header (11.5 bytes)
Byte 0: Destination Network
Bytes 1–3: Destination TCP (host)
Byte 4: Source Network
Bytes 5–7: Source TCP (host)
Bytes 8–9: Data Length (in bytes)

Byte 10: Header Length (in bytes)
Byte 11: 13 Hex

Bits 0–3: Format = 1 for TCP, (2 for Secure TCP, etc.)

TCP Header
Bits 4–7: TCP Protocol Version = 3

Bytes 12–15: Sequence Number
Bits 0–23: Data Sequence
Bits24–31: Control Sequence

Bytes 16–17: Window for data
Bytes 18–19: Control Flags

Bit 0: SYN
Bit 1: ACK
Bit 2: FIN
Bit 3: DSN
Bit 4: EOS
Bit 5: EOL

IEN # 18 TCP Revisions 10/26/1976

10

Bit 6: INT
Bit 7: (unused)

Bit 8: BOS
Bit 9: (unused)

Bit 10: ARQ
Bits11–12: (unused)
Bits13–15: Control Dispatch (1 for ERROR, 2 for SPECIAL)

Byte 20: Control Data (for ERRORs, etc.)
Bytes 21–23: Destination Port (socket)
Byte 24: Label (for debugging)
Bytes 25–27: Source Port (socket)
Bytes 28–31: ACK Sequence
Bytes 32–33: Checksum

Optional Data begins here if HeaderLength > 34.

Bytes 34 – (34 + 2 + L0 – 1): Option 0
Byte 0: L0 (length of Option 0 in bytes)
Byte 1: K0 (kind of Option 0)
Bytes 2 – (2 + L0): Data associated with Option 0

Bytes (34 + 2 + L0) – (34 + 2 + L0 + 2 + L1 – 1): Option 1
.
.
.

Actual TCP Packet Data begins here
Bytes (HeaderLength) – (HeaderLength + DataLength – 1): Data

