1 Covariant Hom functors

These are defined in §3.20.4, but a longer example never hurt anybody, right? Suppose $a^2 = id_A$, $b^2 = id_{B'}$, and $f' = g \circ f$ in this category **A**.

If we actually draw out all the arrows, we get this diagram:

where the four arrows from A to B' are $\{f', f' \circ a, b \circ f', b \circ f' \circ a\}.$ $hom(A, -)$ is the following full subcategory of **Set**; please note the similarities—the *representation* of the structure reachable from A:

The two arrows from $hom(A, A) = \{id_A, a\}$ to $hom(A, B) = \{f, f \circ a\}$ are obtained by post-composition:

$$
hom(A, f) = \{id_A \mapsto f, a \mapsto f \circ a\}
$$

$$
hom(A, f \circ a) = \{id_a \mapsto f \circ a, a \mapsto f\}
$$

(the last entry holds because $(f \circ a) \circ a = f \circ (a \circ a) = f \circ id_A = f$). The four arrows from $hom(A, A)$ to $hom(A, B') =$ ${f', f' \circ a, b \circ f', b \circ f' \circ a}$ are again obtained by post-composition:

$$
\text{hom}(A, f') = \{id_A \mapsto f', a \mapsto f' \circ a\}
$$
\n
$$
\text{hom}(A, f' \circ a) = \{id_a \mapsto f' \circ a, a \mapsto f'\}
$$
\n
$$
\text{hom}(A, b \circ f') = \{id_a \mapsto b \circ f', a \mapsto b \circ f' \circ a\}
$$
\n
$$
\text{hom}(A, b \circ f' \circ a) = \{id_a \mapsto b \circ f' \circ a, a \mapsto b \circ f'\}
$$

The two vertical arrows are (again by post-composition, and recall that $f' = g \circ f$):

$$
\text{hom}(A, g) = \{ f \mapsto f', f \circ a \mapsto f' \circ a \}
$$

$$
\text{hom}(A, b \circ g) = \{ f \mapsto b \circ f', f \circ a \mapsto b \circ f' \circ a \}
$$

It is easy to check that, indeed, composition still holds: the four horizontal arrows are each the result of composition of a choice of vertical and diagonal arrows, and we haven't missed any.

2 Proposition 6.18 and The Yoneda Lemma

Let's restrict our attention to this category A (to truly appreciate the significance of this result, I encourage you to work out the details in full for a slightly larger category!):

$$
A \xrightarrow{f} B
$$

The image of this in Set under $hom(A, -)$ is just

$$
\{id_A\} \xrightarrow{\text{hom}(A,f)} \{f\}
$$

Now suppose we have some other functor $F: A \rightarrow Set$, whose image is

$$
\{a_0,\dots\} \xrightarrow{Ff} \{b_0,\dots\}
$$

(where $FA = \{a_0, \dots\}$ and $FB = \{b_0, \dots\}$.)

Now, the claim of Proposition 6.18 is that there exists a unique natural transformation $\tau : \text{hom}(A, -) \to F$ if we additionally constrain $\tau_A(id_A) = a_0$. OK, so, first off: what does that mean? τ being natural means $\forall B, C, g : B \to C$, this commutes:

$$
\begin{array}{c}\n\hom(A,B) \xrightarrow{\tau_B} FB \\
\hom(A,g) \downarrow \qquad \qquad \downarrow Fg \\
\hom(A,C) \xrightarrow{\tau_C} FC\n\end{array}
$$

or more specifically, at A, B, f (first generically, then expanding some computations):

$$
\text{hom}(A, A) \xrightarrow{\tau_A} F A \qquad \{id_A\} \xrightarrow{\tau_A} \{a_0, \dots\}
$$
\n
$$
\text{hom}(A, B) \xrightarrow{\tau_B} F B \qquad \{id_A \mapsto f\} \qquad \downarrow F f
$$
\n
$$
\text{hom}(A, B) \xrightarrow{\tau_B} F B \qquad \{f\} \xrightarrow{\tau_B} \{b_0, \dots\}
$$

and so requiring $\tau_A(id_A) = a_0$ makes sense. If this is to be natural, it must be the case (for all B and $f : A \to B$; note that this works even to define τ_A at inputs other than id_A just as well!) that

$$
\tau_B(f) = \tau_B(f \circ id_A)
$$

= $\tau_B(\text{hom}(A, f)(id_A))$
= $F(f)(\tau_A(id_A))$
= $F(f)(a_0)$

W_x. $f \circ x = \text{hom}(A, f)(x)$
naturality of τ
requirement

So τ is fully determined by naturality and the requirement given, precisely because hom $(A, -)$ on arrows captures postcomposition. So: given a choice of $a_0 \in FA$, we can fully specify a natural transformation τ . Conversely, given a τ' , it must pick out some $\tau_A(id_A) \in FA$. Therefore, the Yoneda lemma:

Given a functor $F: \mathbf{A} \to \mathbf{Set}$, the set $\left\{ \tau \Big| \tau : hom(A, -) \to F \right\}$ is isomorphic (in Set) to FA. The isomorphism is witnessed by the function $Y(\tau) = \tau_A(id_A)$.