1 EXPANDING THE DIAGRAMS

The definition and diagrams given in ACC (§20.1) are sort of terse, so I have taken the liberty of applying the notation in (§6.2) and (§3.23, footnote 15) and applying the functors to particular objects $X, Y \in \mathbf{X}$:

• The definition now reads as: A monad on **X** is $(T : \mathbf{X} \to \mathbf{X}, \eta : id_{\mathbf{X}} \to T, \mu : T^2 \to T)$ s.t.

• The naturality conditions unpack to be

2 TRANSLATION INTO HASKELL

http://en.wikibooks.org/wiki/Haskell/Category_theory#The_monad_laws_and_their_importance may be of use, and I am going to try a brief, more equational, exposition here (with many more parents than strictly necessary; deal with it).

 η pretty clearly corresponds to return, and Tf is fmap f. The naturality condition on η is clear:

 $\begin{array}{rcrcrcr} \mathrm{fmap} & \mathrm{f} & \cdot & \mathbf{return} & -- & top & right \\ = & \mathbf{return} & \cdot & \mathrm{f} & -- & bottom & left \end{array}$

This is properly read as a constraint (part of the definition) of return (η) in terms of fmap applied at the type (constructor / functor) associated with our monad (i.e., the morphism part of the functor).

Similarly, μ corresponds to join, whose Haskell definition is

join :: m (m a) \rightarrow m a join mma = (mma \rightarrow id) - or just "join = (>>= id)"

(Haskell, by convention, uses m for T; sorry for the confusion.) Its naturality condition says that

(fmap f) . join -- top right == join . (fmap (fmap f)) -- bottom left

This says, basically, that you can first run your inner monadic thingie and then apply a "lifted" function to the result, or you can lift the function twice, so that it applies inside your inner monadic thingie and *then* run the inner thing. Again, this should be taken as a constraint (part of the definition) on join (μ) in terms of fmap.

And now the other two laws, which are more interesting and can nicely be executed in terms of Haskell's >>=. First, we have:

$$\mu_X \circ T(\mu_X) = \mu_X \circ \mu_{TX}$$

or

join . (fmap join) === join . join

Which is easy enough to see:

$$join (fmap join mmmx) = (mmmx >>= return . join) >>= id -- defn join, fmap \\ = (mmmx >>= (\mmx -> return (join mmx))) >>= id -- syntax \\ = (mmmx >>= (\mmx -> return (mmx >>= id))) >>= id -- defn join \\ = mmmx >>= (\mmx -> (return (mmx >>= id)) -- assoc >>= \\ = mmmx >>= (\mmx -> id (mmx >>= id)) -- assoc >>= \\ = mmmx >>= (\mmx -> mmx >>= id) -- apply \\ = mmmx >>= id) >>= id -- assoc >>= \\ = (mmmx >>= id) >>= id -- assoc >>= \\ = (mmmx >>= id) -- assoc >>= \\ = (mmmx >>= id) -- assoc >>= \\ = (mmmx >>= id) -- assoc >>= \\ = (mmmx >>= id) -- assoc >>= \\ = (mmmx >>= id) -- assoc >>= \\ = (mmmx >>= id) -- assoc >>= \\ -- assoc >= \\ -- assoc >= \\ -- assoc >= \\ -- assoc >= \\ -- assoc$$

If we label our mmmx object as $m_1m_2m_3x$, this says, in some pseudo-notation, that $join(m_1(m_{23}x))$ is the same as $join(m_{12}(m_3x))$.

And for the last, we have:

$$id = \mu_X \circ T(\eta_X) = \mu_X \circ \eta_{TX}$$

or

id === join . (fmap return) === $\tx \rightarrow$ join . (return tx)

(note that we do not interpret η_{TX} as return . return, but as return tx! There's no guarantee that a (generalized) element of TX is the result of η_X – consider, for example, the Either e (i.e., (e+)) monads!) which again admits executable rewriting (I have taken the liberty of subscripting some functions, just to make the rewrites clearer.)

```
join (fmap return tx)
= join (tx >>= return<sub>1</sub> . return<sub>2</sub>)
                                                                   --- defn fmap
= (tx \gg return_1 \cdot return_2) \gg id
                                                                   -- defn join
= (tx \implies ((x \implies return_1 (return_2 x))) \implies id
                                                                   -- syntax
= tx >>>= (\langle x - \rangle ((return_1 (return_2 x)) >>= id)
                                                                   -- assoc >>=
= tx >>= (\x -> id (return<sub>2</sub> x))
                                                                   -- left-identity >>=
= tx >>= (\x -> return<sub>2</sub> x)
                                                                   -- apply
                                                                   -- syntax
= tx >>= return<sub>2</sub>
= tx
                                                                   --- right-identity >>=
and
   \tx \rightarrow join . (return tx)
= \langle tx \rightarrow ((return tx) \rangle = id)
                                                                   -- defn join
= \langle tx \rightarrow (id tx) \rangle
                                                                   -- left-identity >>=
= \langle tx - tx \rangle
                                                                   -- apply
= id
                                                                   -- defn
```

3 Speaking of Haskell

For the curious, >>= can be implemented in terms of join (which makes the above arguments circular (sorry!), but puts Haskell's typical treatment of Monads on firmer ground):