
1 Expanding The Diagrams

The definition and diagrams given in ACC (§20.1) are sort of terse, so I have taken the liberty of applying the notation
in (§6.2) and (§3.23, footnote 15) and applying the functors to particular objects X,Y ∈ X:

• The definition now reads as: A monad on X is (T : X→ X, η : idX
·→ T, µ : T 2 ·→ T) s.t.

∀X T 3X
T (µX) //

µTX

��

T 2X

µX

��
T 2X

µX // TX

TX
T (ηX)//

idTX ##

T 2X

µX

��

TX
ηTXoo

idTX{{
TX

• The naturality conditions unpack to be

∀X,Y,f X
ηX //

f

��

TX

Tf

��
Y

ηY // TY

T 2X
µX //

T 2f
��

TX

Tf

��
T 2Y

µY // TY

2 Translation into Haskell

http://en.wikibooks.org/wiki/Haskell/Category_theory#The_monad_laws_and_their_importance may be of use,
and I am going to try a brief, more equational, exposition here (with many more parens than strictly necessary; deal with
it).

η pretty clearly corresponds to return, and Tf is fmap f. The naturality condition on η is clear:

fmap f . return −− top r i g h t
=== return . f −− bottom l e f t

This is properly read as a constraint (part of the definition) of return (η) in terms of fmap applied at the type (constructor
/ functor) associated with our monad (i.e., the morphism part of the functor).

Similarly, µ corresponds to join, whose Haskell definition is

j o i n : : m (m a) −> m a
j o i n mma = (mma >>= id) −− or j u s t ” j o i n = (>>= id)”

(Haskell, by convention, uses m for T ; sorry for the confusion.) Its naturality condition says that

(fmap f) . j o i n −− top r i g h t
=== j o i n . (fmap (fmap f)) −− bottom l e f t

This says, basically, that you can first run your inner monadic thingie and then apply a “lifted” function to the result, or
you can lift the function twice, so that it applies inside your inner monadic thingie and then run the inner thing. Again,
this should be taken as a constraint (part of the definition) on join (µ) in terms of fmap.

And now the other two laws, which are more interesting and can nicely be executed in terms of Haskell’s >>=. First, we
have:

µX ◦ T (µX) = µX ◦ µTX
or

j o i n . (fmap j o i n) === j o i n . j o i n

Which is easy enough to see:

j o i n (fmap j o i n mmmx)
= (mmmx >>= return . j o i n) >>= id −− defn jo in , fmap
= (mmmx >>= (\mmx −> re turn (j o i n mmx))) >>= id −− syntax
= (mmmx >>= (\mmx −> re turn (mmx >>= id))) >>= id −− defn j o i n
= mmmx >>= (\mmx −> (re turn (mmx >>= id) >>= id)) −− as soc >>=
= mmmx >>= (\mmx −> id (mmx >>= id)) −− l e f t −i d e n t i t y >>=
= mmmx >>= (\mmx −> mmx >>= id) −− apply
= mmmx >>= (\mmx −> mmx) >>= id −− as soc >>=
= (mmmx >>= id) >>= id −− as soc >>=
= j o i n (j o i n mmmx) −− defn jo in , j o i n

1

http://en.wikibooks.org/wiki/Haskell/Category_theory#The_monad_laws_and_their_importance

If we label our mmmx object as m1m2m3x, this says, in some pseudo-notation, that join(m1(m23x)) is the same as
join(m12(m3x)).

And for the last, we have:
id = µX ◦ T (ηX) = µX ◦ ηTX

or

id === j o i n . (fmap return) === \ tx −> j o i n . (re turn tx)

(note that we do not interpret ηTX as return . return, but as return tx! There’s no guarantee that a (generalized)
element of TX is the result of ηX – consider, for example, the Either e (i.e., (e+)) monads!) which again admits
executable rewriting (I have taken the liberty of subscripting some functions, just to make the rewrites clearer.)

j o i n (fmap return tx)
= j o i n (tx >>= return 1 . r e turn 2) −− defn fmap
= (tx >>= return 1 . r e turn 2) >>= id −− defn j o i n
= (tx >>= (\x −> re turn 1 (re turn 2 x))) >>= id −− syntax
= tx >>= (\x −> ((re turn 1 (re turn 2 x)) >>= id) −− as soc >>=
= tx >>= (\x −> id (re turn 2 x)) −− l e f t −i d e n t i t y >>=
= tx >>= (\x −> re turn 2 x) −− apply
= tx >>= return 2 −− syntax
= tx −− r i ght−i d e n t i t y >>=

and

\ tx −> j o i n . (re turn tx)
= \ tx −> ((re turn tx) >>= id) −− defn j o i n
= \ tx −> (id tx) −− l e f t −i d e n t i t y >>=
= \ tx −> tx −− apply
= id −− defn

3 Speaking of Haskell

For the curious, >>= can be implemented in terms of join (which makes the above arguments circular (sorry!), but puts
Haskell’s typical treatment of Monads on firmer ground):

(>>=) : : m a −> (a −> m b) −> m b
ma >>= f = j o i n (fmap f ma)
−− = (fmap f ma) >>= id
−− = (ma >>= return . f) >>= id
−− = ma >>= (\ a −> (re turn (f a) >>= id))
−− = ma >>= (\ a −> id (f a))
−− = ma >>= \a −> f a
−− = ma >>= f

2

	Expanding The Diagrams
	Translation into Haskell
	Speaking of Haskell

