1 Intro

Unless otherwise notated, references are to Abstract and Concrete Categories: The Joy of Cats, [JHS04]. Notation follows theirs with some contamination from Awodey's Category Theory [Awo10], Pierce's Basic Category Theory for Computer Scientists [Pie91], and Riehl's Category Theory in Context [Rie].

Entries within each section are roughly sorted by definition, alphabetically.

Quantifiers are written perhaps unusually in this document, as Q_{ϕ} , where Q is \forall , \exists , \bigcup , etc. and ϕ is a list of variables or an expression whose free variables are quantified over. Constrained quantification may be written as $v_1 : \tau_1, v_2 : \tau_2.\phi(v_1, v_2)$ to indicate "the pairs of values v_1 $(\in \tau_1)$ and v_2 $(\in \tau_2)$ such that $\phi(v_1, v_2)$ holds". Strings of quantifiers are represented $Q_{\phi}Q'_{\phi'}$ etc. There is not necessarily a dot between quantifiers or between the quantifiers and quantified formula.

2 Basics

1 A category C (§3.1) is a quadruple (\mathcal{O} , Hom, id, \circ) with

- A collection of objects \mathcal{O}
- For each pair of objects A, B, a (disjoint) collection of arrows from **domain** A to **codomain** B, Hom(A, B) (also written **C**(A, B)).
- An associative arrow composition operator \circ .
- Identity arrows (id_A) on each object A, unit of \circ
- **12** Categories may be described (Awodey:p21) as

$$C_2 \xrightarrow{\circ} C_1 \underbrace{< cod}_{i} C_0$$

¶3 A category is (Awodey:p24-25,D1.11-12)...

- small if C_0 and C_1 are sets and large otherwise.
- locally small if $\forall_{X,Y \in C_0} \operatorname{Hom}_C(X,Y) \subseteq C_1$ is a set.

14 A predicate *P* is **essentially unique** (§7.3) if it is unique up to isomorphism:

- If both PA and PB, then $A \simeq B$
- If PA and $A \simeq B$, then PB.

 $_{15}$ **B** is a **subcategory** of **A** if it has subcollections of objects and morphisms with identical composition and identity (§4.1.1). **B** is additionally ...

- full if it has all morphisms from A between objects in B. (§4.1.2)
- reflective if each B has an A-reflection. (§4.16.2) **126**

¶6 A category is...

- **balanced** if all bi are iso (§7.49.2)
- discrete if all morphisms are identities. (§3.26.1)
- thin if $\forall_{A,B} \operatorname{Hom}(A, B) \simeq \{*\}$. (§3.26.2)

3 Derived Categories

¶7 The arrow (Awodey:p16,i3) category \mathbf{C}^{\rightarrow} has arrows for commutative squares in \mathbf{C} . There are two functors $\mathbf{cod}, \mathbf{dom} : \mathbf{C}^{\rightarrow} \rightarrow \mathbf{C}$.

18 The **cone** category over a given diagram, **Cone**(D(J)), has as objects **cones**[**157**] to that diagram and a morphism between cones is an arrow $\phi : C \to C'$ s.t. $\forall_{D_j \in D(J)} c'_j \circ \phi = c_j$.

 $_{19}$ The **dual** (§3.5;Awodey:p15,i2) category A^{op} which exchanges domains and codomains of arrows in A. Any purely-categorical statement implies its dual.

10 The **slice** (Awodey:p16,i4) category \mathbf{C}/C has objects of arrows in \mathbf{C} with codomain C. Arrows are tops of commutative triangles.

4 Object Properties

¶11 C is a coseparator if $\forall_{f,g:B \to A} f \neq g \Rightarrow \exists_{h:A \to C} . h \circ f \neq h \circ g.$ (§7.17) (Contrast monomorphism[¶28].)

¶12 An object 0 is initial if $\forall_B \exists !_{f_B:0 \to B} \top$. (§7.1)

¶13 A limit (Awodey:D5.16) of a diagram D(J) is a terminal object in the category **Cone**(D(J)). Written: c_i : $(\varprojlim_j D_j) \to D_i$. A **colimit** (Awodey:§5.6) is an initial object in the category of cocones; $c_i : D_i \to (\varinjlim_j D_j)$. **¶**57

q14 The pair of $(\Pi A.X) \in \mathbf{C}$ and $\pi : A \to \operatorname{Hom}_{\mathbf{C}}(\Pi A.X, X)$ is the **power** of $A : \operatorname{Set}$ and $X : \mathbf{C}$ if $\forall_{B:\mathbf{C},g:A\to\operatorname{Hom}_{\mathbf{C}}(B,X)} \exists_{(\Delta_{a\in A}.g(a))\in\operatorname{Hom}_{\mathbf{C}}(B,\Pi A.X)} \forall_{f\in\operatorname{Hom}_{\mathbf{C}}(B,\Pi A.X)}.f = \Delta_{a\in A}.g(a) \Leftrightarrow \lambda_{\hat{a}\in A}.\pi(\hat{a}) \cdot f = g.$ (see [Hin]).

q16 The **product category** $\mathbf{C} \times \mathbf{D}$ of two categories \mathbf{C} and \mathbf{D} consists of objects which are each an ordered pair of an object from \mathbf{C} and one from \mathbf{D} ; morphisms are, similarly, pairs of morphisms from \mathbf{C} and \mathbf{D} . This sense of \times is itself the trivial bifunctor[**q45**].

117 (P, p_1, p_2) is a **pullback** (Awodey:p80,D5.4) of f, g iff (UMP)

P may be denoted $A \times_C B$ when f, g are clear.

118 *S* is a **separator** if $\forall_{f,g:A \to B} f \neq g \Rightarrow \exists_{h:S \to A} f \circ h \neq g \circ h$. (§7.10) (Contrast epimorphism[**123**].) *S* is a separator iff Hom(*S*, -) is faithful. (§7.12)

19 A set of objects \mathcal{T} is a **separating set** if $\forall_{f,g:A \to B} f \neq g \Rightarrow \exists S \in \mathcal{T}, h: S \to A.f \circ h \neq g \circ h.$ (§7.14)

g20 An object 1 is **terminal** if $\forall_A \exists !_{f:A \to 1} \top$. (§7.4)

5 Arrow Properties

122 (Q,q) is a **coequalizer** (§7.51) of f, g iff (UMP) qf = qg and

$$\forall_{Z,z.zf=zg} \exists !_u uq = z \quad Z \underbrace{\triangleleft}_u Q \underbrace{\triangleleft}_q B \underbrace{\triangleleft}_f A$$

Coequalizers are essentially unique (\$7.70.1) and epic (\$7.71,\$7.75.2). EX: \$82

123 e is an **epimorphism** (§7.39) (the dual of a monomorphism) (equiv: is **epic** (Awodey:D2.1)) if

$$\forall_{i,j} ie = je \Rightarrow i = j \qquad A \xrightarrow{e} B \xrightarrow{i} C$$

If f and g are epis, then so is $g \circ f$; if $g \circ f$ is epi, then so is g. (§7.41) EX: $\P{81}$

124 (E, e) is an **equalizer** (§7.51) of f, g iff (UMP) fe = ge and

$$\forall_{Z,z.fz=gz} \exists !_u eu = z \quad Z \xrightarrow{u} E \xrightarrow{e} A \xrightarrow{f} B$$

Equalizers are essentially unique (§7.53) and monic (§7.56,§7.59.2). EX: ${}_{\P83}$

125 A mono *m* is a **extremal** (§7.61) if *e* epic and $m = f \circ e$ implies that *e* iso.

126 Let $G : \mathbf{A} \to \mathbf{B}$ and $B \in \mathbf{B}$. A *G*-structured arrow with domain *B* is a pair $(f : B \to GA, A)$. (§8.30) It is

- generating if $\forall_{r,s:A \to A'} Gr \circ f = Gs \circ f \implies r = s$
- extremally generating if it is generating and $\forall_{m:A' \to A, m \mod(g, A')} f = Gm \circ g \implies m$ iso.
- G-universal for B if $\forall_{(f',A')} \exists !_{\check{f}} f' = G\check{f} \circ f$. That is,

$$B \xrightarrow{f} GA \xrightarrow{G\check{f}} GA' \qquad A \xrightarrow{\check{f}} A'$$

When G is a subcategory inclusion, a G-structured universal arrow is a **reflection** (§4.16).

127 $f: A \to B$ is an **isomorphism** if $\exists !_g. f \circ g = id_B \land g \circ f = id_A$. (§3.8; ! in §3.11). Every isomorphism is both monic and epic (Awodey:P2.6).

128 f is a **monomorphism** (§7.32) (equiv: is **monic** (Awodey:D2.1)) if

$$\forall_{i,j} m i = m j \Rightarrow i = j \qquad C \xrightarrow{i} A \xrightarrow{m} B$$

If f and g are monos, then so is $g \circ f$; if $g \circ f$ is mono, then so is f. (§7.34) Objects with monomorphisms to X are called **subobjects** of X (Awodey:D5.1). EX: **181**

129 A point (Awodey:p32) of C is any $c: 1 \to C$. EX: **186**

{}_{130} f is a **regular monomorphism** (§7.56) if it is an equalizer of some pair of morphisms.

131 $f: A \to B$ is a **retraction** if $\exists_g f \circ g = 1_B$ (§7.24) aka **split epi** (Awodey:D2.7). If f and g are retractions, then so is $g \circ f$; if $g \circ f$ is a retraction, then so is g. (§7.27)

132 $f : A \to B$ is a section if $\exists_g g \circ f = 1_A$. (§7.19) aka split mono (Awodey:D2.7). If f and g are sections, then so is $g \circ f$; if $g \circ f$ is a section, then so is f. (§7.21)

133 Several morphism properties combine in useful ways:

- mono, epi \Rightarrow **bimorphism** (§7.49) EX: $_{\P}84$
- section \Rightarrow regular mono (§7.35, §7.59.1)
- regular mono \Rightarrow extremal mono (§7.59.2, §7.63)
- retraction \Rightarrow epi (§7.42)
- mono, retraction \Leftrightarrow isomorphism (§7.36)
- section, epi \Leftrightarrow isomorphism (§7.43)

6 Exponentials

134 (Awodey:p107,D6.1) In a category with binary products, given two objects *B* and *C*, their **exponential** is an object C^B and arrow $\epsilon: C^B \times B \to C$ s.t. $\forall A f: A \times B \to C \exists ! \tilde{i}: A \times C^B$

$$\begin{array}{cccc} A,f:A \times B \to C^{-1}:f:A \to C^B & C^B & C^B \times B \xrightarrow{\epsilon} C \\ \epsilon \circ (\tilde{f} \times 1_B) = f & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

The arrows f and \tilde{f} are "exponential transposes."

 ${\tt 135}$ Exponential transposition is self inverse (Awodey:p108). This implies

$$\operatorname{Hom}_{\mathbf{C}}(A \times B, C) \simeq \operatorname{Hom}_{\mathbf{C}}(A, C^B)$$

{136} The exponential category D^{C} has as objects functors **{139}** from C to D and as morphisms the natural transformations **_{149}** between these functors.

137 A category is **cartesian closed** (Awodey:p108,D6.2) if it has all finite products and exponentials.

7 Functors

138 Default notation here: functors $F, G : \mathbf{A} \to \mathbf{B}$.

139 A covariant functor (or just functor) F (§3.17;Awodey:D1.2) assigns to each **A**-object a **B**-object and to each **A**-morphism a **B**-morphism s.t. composition and identites are *preserved*.

140 A contravariant functor F (§3.20.5) is a (covariant) functor $\mathbf{A}^{\text{op}} \rightarrow \mathbf{B}$.

141 A diagram (Awodey:D5.15) is a functor $D: J \to C$ from some indexing category J.

142 A endofunctor has $\mathbf{A} = \mathbf{B}$. $F \circ F$ may be denoted F^2 , etc. (§3.23; ftn 15)

{}_{\P}43 Functors compose. (§3.23)

44 A functor $F: C \to D...$

- preserves limits of type J if $\forall_{D:J \to C} \forall_{\lim_{j} D_j} F(\varprojlim_{j} D_j) \simeq \varprojlim_{j} F(D_j).$
- creates limits of type J if $\forall_{D:J \to C}$ and all limits $L = \underset{i \to j}{\lim} FD_j$ (i.e., bundle $p_j : L \to FD_j$ in C'), $\exists ! (\bar{p_j} : \bar{L} \to D_j) \in C'$ with $F(\bar{L}) = L$, $F(\bar{p_j}) = p_j$, and $\bar{L} = \underset{i \to j}{\lim} D_j$.

q45 A (covariant) **bifunctor** is a functor from a product category [**q16**] (i.e. $\mathbf{A} \times \mathbf{B} \to \mathbf{C}$) such that each partial application is *also* a functor. (See [HHJ12] and bifunctors.tex for more.) A **profunctor** is a bifunctor which is contravariant [**q40**] in one argument and covariant in the other; i.e. $\mathbf{A}^{\text{op}} \times \mathbf{B} \to \mathbf{C}$. A **diagonal profunctor** is a profunctor where both elements of the product are the same category; i.e. $\mathbf{A}^{\text{op}} \times \mathbf{A} \to \mathbf{C}$.

46 A functor F is (§3.27, §3.33)

- **amnestic** if f is an identity iff Ff is an identity.
- continuous if it preserves all limits. (Awodey:D5.24)
- an **equivalence** if it is full, faithful, and isomorphism-dense.
- an **embedding** if it is injective on morphisms.
- faithful if $\forall_{A,A'}F|_{\mathbf{A}(A,A')} \subseteq \mathbf{B}(FA,FA')$ is injective.
- full if $\forall_{A,A'}F|_{\mathbf{A}(A,A')}$ surjective.
- isomorphism-dense if $\forall_B \exists_A . F(A) \simeq B$.

_{147} All functors **preserve** (in **A** implies in **B**) isomorphisms (§3.21), sections (§7.22), and retractions (§7.28).

148 Some functors **reflect** (in **B** implies in **A**) useful properties:

- Full, faithful functors reflect sections (§7.23) and retractions (§7.29).
- Faithful functors reflect monos (§7.37.2) and epis (§7.44).

7.1 Transformations

149 A natural transformation $\tau : F \xrightarrow{\cdot} G$ assigns each $A \in \mathbf{A}$ to $\tau_A : FA \to GA$ s.t. $\forall_{f:A \to A'}Gf \circ \tau_A = \tau_{A'} \circ Ff$ (§6.1;Awodey:D7.6). That is,

$$\begin{array}{ccc} & \forall_{A,B,f\in C} & FA \xrightarrow{\tau_A} GA \\ Gf \circ \tau_A = \tau_B \circ Ff & & \downarrow_{Ff} \\ & & \downarrow_{Gf} \\ & & FB \xrightarrow{\tau_B} GB \end{array}$$

More generally, given any functor from a product category[$\mathbf{16}$], we may say that it is natural in the *i*-th position if, for all ways of fixing the other positions, the resulting partial applications form natural transformations.

450 There is special notation for functors (H) applied to natural transformations and vice-versa (§6.3): $H\tau : HF \to HG$ defined by $(H\tau)_A = H(\tau_A)$ and $\tau H : FH \to GH$ defined by $(\tau H)_A = \tau_{HA}$.

151 A dinatural transform $\theta : R \xrightarrow{\bullet} S$ between diagonal profunctors[**1**45] $R, S : \mathbf{A}^{\mathrm{op}} \times \mathbf{A} \to \mathbf{C}$ is a A-object-indexed collection of arrows θ where $\forall_{f:A \to A' \in \mathbf{A}} S \ id_A \ f \theta_A \circ R \ f \ id_A = S \ f \ id_{A'} \circ \theta_{A'} \circ R \ id_{A'} \ f \ : RA'A \to SAA'.$

7.2 Special Functors

152 For every category **C** and object $D \in \mathbf{D}$ there is a unique **constant functor** $!_D$ which sends every C to D and every f to 1_D .

¶53 The covariant representable functor (Awodey:p44) at $A \in \mathbf{C}$ is defined by $\operatorname{Hom}(A, -) : \mathbf{C} \to \mathbf{Sets}$. These functors are continuous (Awodey:P5.25).

 extsf{154} Representable functors preserve monos. (§7.37.1)

 ${}_{\rm I\!\!I}55$ Pullback defines a functor

 $h^*: (A \xrightarrow{\alpha} C) \in \mathbf{C}/C \mapsto (C' \times_C A \xrightarrow{\alpha'} C') \in \mathbf{C}/C'$ where α' is the pullback of α along h. (Awodey:P5.10)

156 Hom_C(—,—) is a diagonal profunctor[**1**45] from $\mathbf{C}^{\text{op}} \times \mathbf{C} \to \mathbf{Set}$, assuming that **C** is locally small.

8 Cones and Sources

¶57 A cone (Awodey:D5.15) to a diagram D(J) is a collection of arrows $c_j : C \to D_j$ s.t. $\forall_{D_\alpha \in D(J)} c_j = D_\alpha \circ c_i$. (Cones are also natural transformations[¶49] from the constant functor[¶52] to the inclusion functor of the diagram D. [Mil]) (Cones are sources[¶58] subject to commutation diagrams implied by the diagram.)

158 A source in category **A** indexed by *I* is a pair $(A, \{f_i : A \to A_i\}_{i \in I})$. This source has domain *A* and codomain $\{A_i\}_{i \in I}$. (§10.1)

159 Given $(A, \{f_i\}_{i \in I})$ and $\{(A_i, \{g_{ij}\}_{j \in J_i})\}_{i \in I}$ all sources, their **composite** is $(A, \{g_{ij} \circ f_i\}_{i \in I, i \in J_i})$. (§10.3)

160 A mono-source (§10.5) is $(A, \{f_i\})$ s.t. $\forall r, s : B \to A \left[\forall_{i \in I} f_i \circ r = f_i \circ s \right] \Rightarrow r = s.$

9 **Concrete Categories**

161 For this section, **A** is a **concrete category** over **X** with forgetful functor [39] $U : \mathbf{A} \to \mathbf{X}$ faithful [46], denoted (\mathbf{A}, U) . (§5.1.1)

162 When $\mathbf{A} = \mathbf{X}$, $\mathbf{Alg}(U)$ has U-algebras **[1**72**]** as objects and algebra homomorphisms as morphisms.

163 If X is Set, A is a construct. ($\S5.1.2$)

164 $(UA \xrightarrow{f} UB) \in \mathbf{X}$ is an A-morphism if f has an unique U-preimage in A. $(\S5.3, \S6.22)$

165 A free object $A \in \mathbf{A}$ is one with a (U-structured) universal arrow (u, UA) in B. (§8.22+§8.30) **§**26

10Adjoints and Adjoint Situations

Be sure to see subsection C.3 for examples.

Joy Approach 10.1

166 A functor $G : \mathbf{A} \to \mathbf{B}$ is **adjoint** if $\forall_{B \in \mathbf{B}}$ there exists a G-structured universal arrow with domain B. (§18.1) $_{\P 26}$

167 Adjoints compose (§8.5), preserve mono-sources **[1**60] $(\S8.6)$, and preserve limits [13] $(\S8.9)$

168 Given adjoint G with $\eta_B : B \to G(A_B)$ the G-structured universal arrow with domain $B, \exists !_F$ such that $FB = A_B$ and $\eta: id_B \xrightarrow{\cdot} G \circ F$ is natural; further, there is a unique, natural $\epsilon : F \circ G \xrightarrow{\cdot} id_A$ with $G \epsilon \circ \eta G = id_G$ and $\epsilon F \circ F \eta = id_F$. (\$19.1)

169 $(\eta, \epsilon) : F \dashv G : \mathbf{A} \to \mathbf{B}$ is a **adjoint situation** if the above relationships hold. (§19.7)

Awodey Approach 10.2

T70 An adjunction (Awodey:D9.1) of $F : C \to D$ and $G: D \to C$ is a natural transformation [49] $\eta: I_C \to (G \circ F)$ s.t.

Equivalently (Awodey:D9.7), a natural isomorphism $\phi : \operatorname{Hom}_D(FC, D) \simeq \operatorname{Hom}_C(C, GD), \quad \eta_X = \phi(1_{FX})$

10.3Moving Right Along

171 A monad (§20.1) on **X** is $(T : \mathbf{X} \to \mathbf{X}, \eta : id_{\mathbf{X}} \to T, \mu :$ $T^2 \xrightarrow{\cdot} T$) s.t.

Miscellaneous Terminology Α

T2 Given an endofunctor **[** $_{\mathbf{1}}$ **4**2] *F* on **C**, a *F*-algebra is a pair of a carrier $X \in \mathbf{C}$ and interpretation morphism $h: FX \to \mathbf{C}$ $X \in \mathbf{C}$. A algebra homomorphism is a morphism f such that $f: (X, h) \to (X', h')$ s.t. $f \circ h = h' \circ T(f)$. (§5.37)

T3 A category is **finitely presented** (Awodey:p75) if it is the free category over a finite graph quotiented by a finite set of equations.

174 The local membership relation for generalized element $z : Z \to C$ and subobject M (i.e., with monic $m: M \to C$), $z \in_X M$, holds iff $\exists_{f:Z \to M} \cdot z = mf$.

¶75 An ω -complete Partial Order (ω CPO) is a Poset which has all colimits of type (\mathbb{N}, \leq) . (All countably infinite ascending chains have a top.) (Awodey:p101,E5.33)

Miscellaneous Useful Properties Β

176 (Awodey:p84,L5.8) In the commuting diagram

$$F \xrightarrow{f'} E \xrightarrow{g'} D$$

$$\downarrow h'' \qquad \downarrow h' \qquad \downarrow h$$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

1. If FEBA and EDCB are pullbacks, so is FDCA.

2. If FDCA and EDCB are pullbacks, so is FEBA.

¶77 (Awodey:p84,C5.9) Pullbacks preserve commutative triangles.

 $\P78$ (?) Monic arrows pullback to monic arrows. (In the above, if g is monic, so is g'.)

179 Universal Constructions (or Universal Mapping Properties, UMP) reduce to limits (Awodey:p91,E5.17-20): terminals products equalizers pullbacks

-	-	-
x y	$x \xrightarrow{\alpha} y$	$\begin{array}{c} x \\ \stackrel{\psi}{y} \\ y \succ z \end{array}$

180 Objects defined by UCs are unique up to isomorphism.

\mathbf{C} Examples To Jog Your Memory

C.1Set

 \P 81 Epic[\P 23] is surjective, monic[\P 28] is injective.

182 Coequalizers [12] correspond to equivalence classes (§7.69.1): Let ~ be the smallest eq. rel. s.t. $\forall_{a \in A} f(a) \sim g(a)$; then $(Q,q) = (B/\sim, b \mapsto [b]_{\sim})$ is a coequalizer of f and g.

183 Equalizers [**124**]: $(E, e) = (\{x \mid f(x) = g(x)\} \subseteq X, \subseteq).$

C.2 Mon

 ${}_{\blacksquare}84 \ {\rm Bimorphisms}[{}_{\blacksquare}33]$ are not isos: $(({\bf N},+,0) \rightarrow ({\bf Z},+,0)).$ (Pierce:§1.6.3)

 $\P 85 (\{*\}, \cdot, *)$ is a (the) zero[$\P 21$].

486 Each monoid M has only one point [**429**], $1 \to M$.

C.3 Adjoint Situations and Monads

Definitions in section 10.

187 Consider $(\eta, \epsilon) : F \dashv G : \mathbf{Mon} \to \mathbf{Set}. \ \eta_X : X \to GFX$ is insertion of generators: $\forall x \in X \eta_X x = x. \ \epsilon_Y : FGY \to Y$ is the re-introduction of structure; if $FGY = ((GY)^*, \cdot, \varepsilon)$ and Y = (GY, +, 0) then

 $\epsilon_Y \varepsilon = 0$ $\epsilon_Y (y \cdot z) = y + z$ $\epsilon_Y (y \in GY) = y$

188 Further, $T = G \circ F$ is a monad. Generically, μ ... $\mu_X(TTX) = (G\epsilon F)_X(TTX) = (G\epsilon_{FX})(GFGFX)$ $= G((\epsilon_{FX})(FGFX)) = GFX$

So here μ is the *G*-image of a function which takes $y \in FGFX = F(X^*)$ (that is, a concatenation of symbols from GFX) and re-imposes structure to obtain $\epsilon_{FX}y \in FX$.

D Bootstrapping Category Theory

489 Cat is the category which has locally small categories as objects and functors[**439**] as morphisms. (It is not, itself, locally small, and so is not an object in itself.) Cat is cartesian closed[**437**] (see product category[**416**] and exponential category[**436**]). Its initial object is the empty category and its terminal object is the category of a single object and its identity morphism.

Index

adjoint, **166** adjoint situation, **1**69 adjunction, $\P{70}$ algebra homomorphism, **1**72 amnestic, **4**6 arrow, ¶7 balanced, $\P6$ bifunctor, $\P45$ bimorphism, **133** carrier, ¶72 cartesian closed, ¶37 category, ¶1 codomain, ¶1 coequalizer, $\mathbf{q}22$ colimit, $\P{13}$ composite, **§**59 concrete category, **161** cone, **18**, **157** construct, **463** continuous, **46** contravariant functor, $\P 40$ coseparator, $\P{11}$ covariant functor, **¶**39 covariant representable functor, ¶53 creates limits of type J, $\P 44$ diagonal profunctor, **4**5 diagram. **4**1 dinatural transform, **§**51 discrete, **6** domain, 1 dual, ¶9 embedding, **146** endofunctor, **4**2 epic, **123** epimorphism, $\P{23}$ equalizer, $\P{24}$ equivalence, **46** essentially unique, ¶4 exponential, $\sqrt[4]{34}$ exponential category, $\P{36}$ extremal, **125** extremally generating, **126** faithful, **46** finitely presented, $\P{73}$ forgetful, **161** free object, **465** full, **1**5, **1**46 functor, **1**39 generating, $\P{26}$ initial, ¶12 is an A-morphism, $\P64$ isomorphism, **1**27

isomorphism-dense, $\P{46}$

large, \P^3 limit, \P^{13} local membership relation, \P^{74} locally small, \P^3

monad, ¶71 monic, ¶28 mono-source, ¶60 monomorphism, ¶28

natural transformation, ¶49

point, $\P{29}$ power, $\P{14}$ preserve, $\P{47}$ preserves limits of type J, $\P{44}$ product, $\P{15}$ product category, $\P{16}$ profunctor, $\P{45}$ pullback, $\P{17}$

reflect, $_{\P}48$ reflection, $_{\P}26$ reflective, $_{\P}5$ regular monomorphism, $_{\P}30$ retraction, $_{\P}31$

section, ¶32 separating set, ¶19 separator, ¶18 slice, ¶10 small, ¶3 source, ¶58 split epi, ¶31 split mono, ¶32 subcategory, ¶5 subobjects, ¶28

terminal, ${}_{\P}20$ thin, ${}_{\P}6$

zero, $\P{21}$

References

- [Awo10] Steve Awodey. *Category Theory*. Oxford University Press, Oxford; New York, August 2010.
- [HHJ12] Ralf Hinze, Jennifer Hackett, and Daniel W. H. James. Functional Pearl: F for Functor. *ICFP*, 2012. URL: http://www.cs.ox.ac.uk/people/ daniel.james/functor/functor.pdf.
- [Hin] Ralf Hinze. Kan extensions for program optimisation or: Art and dan explain an old trick. URL: http://www.cs.ox.ac.uk/ralf.hinze/Kan.pdf.
- [JHS04] Jiri Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories: The Joy of Cats. 2004. URL: http://www.prgmea. com/pdf/abstract/9.pdf.
- [Mil] Bartosz Milewski. Understanding limits. URL: http://bartoszmilewski.com/2014/05/08/ understanding-limits-2/.
- [Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. Foundations of Computing Series. MIT Press, Cambridge, Massachusetts, August 1991.
- [Rie] Emily Riehl. Category Theory in Context. URL: http://www.math.jhu.edu/~eriehl/727/ context.pdf.