1 Intro

Unless otherwise notated, references are to Abstract and Concrete Categories: The Joy of Cats, [\[JHS04\]](#page-6-0). Notation follows theirs with some contamination from Awodey's Category Theory [\[Awo10\]](#page-6-1), Pierce's Basic Category Theory for Computer Scientists [\[Pie91\]](#page-6-2), and Riehl's Category Theory in Context [\[Rie\]](#page-6-3).

Entries within each section are roughly sorted by definition, alphabetically.

Quantifiers are written perhaps unusually in this document, as Q_{ϕ} , where Q is \forall , \exists , \bigcup , etc. and ϕ is a list of variables or an expression whose free variables are quantified over. Constrained quantification may be written as v_1 : τ_1, v_2 : $\tau_2.\phi(v_1, v_2)$ to indicate "the pairs of values v_1 $(\in \tau_1)$ and $v_2 \in \tau_2$) such that $\phi(v_1, v_2)$ holds". Strings of quantifiers are represented $Q_{\phi} Q_{\phi'}'$ etc. There is not necessarily a dot between quantifiers or between the quantifiers and quantified formula.

2 Basics

1 A category C (§3.1) is a quadruple $(0, \text{Hom}, id, \circ)$ with

- A collection of objects $\mathcal O$
- For each pair of objects A, B , a (disjoint) collection of arrows from **domain** A to **codomain** B, $Hom(A, B)$ (also written $\mathbf{C}(A, B)$).
- An associative arrow composition operator ◦.
- Identity arrows (id_A) on each object A, unit of \circ

 \bullet 2 Categories may be described (Awodey: p21) as

$$
C_2 \xrightarrow{\circ} C_1 \underbrace{\overbrace{\leftarrow{cod}}^{cod}}_{dom} C_0
$$

 \textbf{I} 3 A category is (Awodey: p24-25, D1.11-12)...

- small if C_0 and C_1 are sets and large otherwise.
- locally small if $\forall_{X,Y \in C_0}$ Hom $_C(X,Y) \subseteq C_1$ is a set.

 \mathbf{q} 4 A predicate P is essentially unique (§7.3) if it is unique up to isomorphism:

- If both PA and PB , then $A \simeq B$
- If PA and $A \simeq B$, then PB .

¶5 B is a subcategory of A if it has subcollections of objects and morphisms with identical composition and identity $(\S 4.1.1)$. **B** is additionally ...

- full if it has all morphisms from A between objects in B. (§4.1.2)
- reflective if each B has an A-reflection. $(\S 4.16.2)$ $\textcolor{red}{\bullet}26$ $\textcolor{red}{\bullet}26$

 $\text{\degree }6$ A category is...

- **balanced** if all bi are iso $(\S7.49.2)$
- discrete if all morphisms are identities. $(\S3.26.1)$
- thin if $\forall_{A,B}$ Hom $(A, B) \simeq \{*\}.$ (§3.26.2)

3 Derived Categories

 \bullet The arrow (Awodey: p16, i3) category C[→] has arrows for commutative squares in C. There are two functors $\mathbf{cod}, \mathbf{dom}: \mathbf{C}^{\to} \to \mathbf{C}.$

 $\textbf{q8}$ The cone category over a given diagram, $\textbf{Cone}(D(J)),$ has as objects cones $[657]$ $[657]$ $[657]$ to that diagram and a morphism between cones is an arrow $\phi: C \to C^{\gamma}$ s.t. $\forall_{D_j \in D(J)} c_j^{\gamma} \circ \phi =$ c_j .

 q9 The **dual** (§3.5;Awodey:p15,i2) category \mathbf{A}^{op} which exchanges domains and codomains of arrows in A. Any purelycategorical statement implies its dual.

 \P 10 The slice (Awodey:p16,i4) category C/C has objects of arrows in C with codomain C. Arrows are tops of commutative triangles.

4 Object Properties

 $_{\textbf{I}}$ 11 C is a coseparator if $\forall_{f,g:B\rightarrow A} f\neq g \Rightarrow \exists_{h:A\rightarrow C}. h\circ f\neq 0$ $h \circ g.$ (§7.17) (Contrast [monomorphism\[](#page-1-1) $[128]$ $[128]$ $[128]$.)

 \P **12** An object 0 is **initial** if $\forall_B \exists!_{f_B:0\rightarrow B} \top$. (§7.1)

 \P 13 A limit (Awodey:D5.16) of a diagram $D(J)$ is a terminal object in the category $\mathbf{Cone}(D(J))$. Written: c_i : $(\varprojlim_j D_j) \to D_i$. A colimit (Awodey:§5.6) is an initial object in the category of cocones; $c_i : D_i \to (\varinjlim_j D_j)$. ¶[57](#page-2-0)

 \P **14** The pair of $(\Pi A.X) \in \mathbf{C}$ and $\pi : A \rightarrow$ $Hom_{\mathbf{C}}(\Pi A.X, X)$ is the **power** of A : **Set** and X : **C** if $\forall_{B:\mathbf{C},g:A\to \text{Hom}_{\mathbf{C}}(B,X)} \exists_{(\Delta_{a\in A}.g(a))\in \text{Hom}_{\mathbf{C}}(B,\Pi A.X)} \forall_{f\in \text{Hom}_{\mathbf{C}}(B,\Pi A.X)} . f=$ $\Delta_{a\in A}.g(a) \Leftrightarrow \lambda_{\hat{a}\in A}.\pi(\hat{a}) \cdot f = g.$ (see [\[Hin\]](#page-6-4)).

\n
$$
\text{15} \ (A \times B, \pi_1, \pi_2) \text{ is a product iff (UMP)}
$$
\n
$$
\forall z, z_1, z_2 \exists !_u
$$
\n
$$
u\pi_1 = z_1 \ \land \ u\pi_2 = z_2
$$
\n
$$
A \xrightarrow{z_1} A \times B \xrightarrow{\pi_2} B
$$
\n

16 The product category $C \times D$ of two categories C and D consists of objects which are each an ordered pair of an object from C and one from D; morphisms are, similarly, pairs of morphisms from C and D. This sense of \times is itself the trivial bifunctor $[$ ^{1[45](#page-2-1)} $].$

17 (P, p_1, p_2) is a **pullback** (Awodey:p80,D5.4) of f, g iff (UMP)

P may be denoted $A \times_C B$ when f, g are clear.

 \exists **18** S is a separator if $\forall_{f,g:A\rightarrow B} f \neq g \Rightarrow \exists_{h:S\rightarrow A} f \circ h \neq$ $g \circ h.$ (§7.10) (Contrast [epimorphism\[](#page-1-2) $\lceil 23 \rceil$ $\lceil 23 \rceil$ $\lceil 23 \rceil$.) S is a separator iff Hom $(S, -)$ is faithful. (§7.12)

 \P **19** A set of objects \mathcal{T} is a separating set if $\forall_{f,g:A\rightarrow B} f \neq$ $g \Rightarrow \exists S \in \mathcal{T}, h : S \rightarrow A.f \circ h \neq g \circ h.$ (§7.14)

 \P **20** An object 1 is **terminal** if $\forall_{A} \exists !_{f:A\rightarrow 1} \top$. (§7.4)

¶21 An object that is both initial and terminal is called a **zero.** (§7.7) EX: $\frac{1}{185}$ $\frac{1}{185}$ $\frac{1}{185}$

5 Arrow Properties

 $\textbf{q22}$ (Q, q) is a **coequalizer** (§7.51) of f, g iff (UMP) $qf = qg$ and

$$
\forall_{Z,z.zf=zg} \exists!_u uq = z \quad Z \underbrace{\underbrace{a \cdots a}_{z} Q \underbrace{\underbrace{q}_{q}}_{z} B \underbrace{\underbrace{q}_{f}}_{f} A
$$

Coequalizers are essentially unique (§7.70.1) and epic $(87.71, 87.75.2)$. EX: $\sqrt{82}$ $\sqrt{82}$ $\sqrt{82}$

 \leq 23 e is an epimorphism (§7.39) (the dual of a monomorphism) (equiv: is **epic** (Awodey: $D2.1$) if

$$
\forall_{i,j} ie = je \Rightarrow i = j \qquad A \xrightarrow{e} B \xrightarrow{i} C
$$

If f and q are epis, then so is $q \circ f$; if $q \circ f$ is epi, then so is g. $(§7.41)$ EX: \P [81](#page-3-0)

 $\mathbf{q24}$ (*E*, *e*) is an equalizer (§7.51) of *f*, *g* iff (UMP) $fe = ge$ and

$$
\forall z, z. f z=gz \exists! u \, eu = z \quad Z \xrightarrow{u} E \xrightarrow{e} A \xrightarrow{f} B
$$

Equalizers are essentially unique (§7.53) and monic $(\S7.56,\S7.59.2)$. EX: η [83](#page-4-2)

 $\textbf{q25}$ A mono m is a extremal (§7.61) if e epic and $m = f \circ e$ implies that e iso.

 \mathbf{q} 26 Let $G: \mathbf{A} \to \mathbf{B}$ and $B \in \mathbf{B}$. A G-structured arrow with domain B is a pair $(f : B \to GA, A)$. (§8.30) It is

- generating if $\forall_{r,s:A\rightarrow A'}\text{G}r \circ f = \text{G}s \circ f \implies r=s$
- extremally generating if it is generating and $\forall_{m:A'\to A,m \text{ mono},(g,A')} f = Gm \circ g \implies m \text{ iso}.$
- G-universal for B if $\forall_{(f',A')} \exists!_{\check{f}} f' = G\check{f} \circ f$. That is,

$$
B \xrightarrow{f} GA \xrightarrow{G\check{f}} GA' \qquad A \xrightarrow{\check{f}} A'
$$

When G is a subcategory inclusion, a G -structured universal arrow is a reflection (§4.16).

 \mathbf{q} **27** $f : A \to B$ is an **isomorphism** if $\exists!_q.f \circ g = id_B \land g \circ f =$ id_A . (§3.8; ! in §3.11). Every isomorphism is both monic and epic (Awodey:P2.6).

 \leq 28 f is a monomorphism (§7.32) (equiv: is monic $(Awoodey:D2.1))$ if

$$
\forall_{i,j} mi = mj \Rightarrow i = j \qquad C \frac{i}{j} A \succ^m B
$$

If f and g are monos, then so is $q \circ f$; if $q \circ f$ is mono, then so is f. (87.34) Objects with monomorphisms to X are called subobjects of X (Awodey:D5.1). EX: \mathbb{R}^8 1

 \bullet **29 A point** (Awodey: p32) of C is any $c: 1 \rightarrow C$. EX: \bullet [86](#page-4-3)

 \leq 130 f is a regular monomorphism (§7.56) if it is an equalizer of some pair of morphisms.

 $\textbf{q31} \ f : A \rightarrow B$ **is a retraction** if $\exists_g f \circ g = 1_B \ (§ 7.24)$ aka split epi (Awodey:D2.7). If f and g are retractions, then so is $g \circ f$; if $g \circ f$ is a retraction, then so is g. (§7.27)

 $\textbf{q32} f : A \rightarrow B$ **is a section** if $\exists_q . g \circ f = 1_A$. (§7.19) aka split mono (Awodey:D2.7). If \tilde{f} and g are sections, then so is $g \circ f$; if $g \circ f$ is a section, then so is f. (§7.21)

¶33 Several morphism properties combine in useful ways:

- mono, epi \Rightarrow bimorphism (§7.49) EX: \triangleleft [84](#page-4-4)
- section \Rightarrow regular mono (§7.35, §7.59.1)
- regular mono \Rightarrow extremal mono (§7.59.2, §7.63)
- retraction \Rightarrow epi (§7.42)
- mono, retraction \Leftrightarrow isomorphism (§7.36)
- section, epi \Leftrightarrow isomorphism (§7.43)

6 Exponentials

¶34 (Awodey:p107,D6.1) In a category with binary products, given two objects B and C , their exponential is an object C^B and arrow $\epsilon: C^B \times B \to C$ s.t.

$$
\forall_{A,f:A\times B\to C} \exists! f:A\to C^B \quad C^B \quad C^B \times B \xrightarrow{\epsilon} C
$$

$$
\epsilon \circ (\tilde{f} \times 1_B) = f \qquad \qquad \wedge \qquad \qquad \zeta^B \quad \zeta \xrightarrow{\epsilon} C
$$

$$
\bar{f} \qquad \qquad \bar{f} \times 1_B
$$

$$
A \qquad A \times B
$$

The arrows f and \tilde{f} are "exponential transposes."

¶35 Exponential transposition is self inverse (Awodey:p108). This implies

$$
\text{Hom}_{\mathbf{C}}(A \times B, C) \simeq \text{Hom}_{\mathbf{C}}(A, C^B)
$$

 $\textbf{I}36$ The exponential category D^{C} has as objects [func](#page-2-2)tors [$[439]$ $[439]$ $[439]$ from **C** to **D** and as morphisms the [natural trans](#page-2-3) $formations[$ ^{[49](#page-2-3)} $]$ between these functors.

¶37 A category is cartesian closed (Awodey:p108,D6.2) if it has all finite products and exponentials.

7 Functors

 $\textsf{⊓38}$ Default notation here: functors $F, G : \mathbf{A} \to \mathbf{B}$.

 $\textbf{q39}$ A covariant functor (or just functor) F $(\S3.17; A \text{wodey:} D1.2)$ assigns to each **A**-object a **B**-object and to each A-morphism a B-morphism s.t. composition and identites are preserved.

 $\textbf{q40}$ A contravariant functor F (§3.20.5) is a (covariant) functor $\mathbf{A}^{\text{op}} \to \mathbf{B}$.

 \blacksquare **41 A diagram** (Awodey:D5.15) is a functor $D: J \to C$ from some indexing category J.

 $\textbf{42}$ A endofunctor has $\mathbf{A} = \mathbf{B}$. $F \circ F$ may be denoted F^2 , etc. (§3.23; ftn 15)

¶43 Functors compose. (§3.23)

 \P 44 A functor $F: C \rightarrow D$...

- \bullet preserves limits of type J if $\forall_{D: J \rightarrow C} \forall \lim_{j} D_{j} F(\varprojlim_{j}$ $(D_j) \simeq \varprojlim_j$ $F(D_j).$
- creates limits of type *J* if $\forall_{D:J\rightarrow C}$ and all limits $L =$ $\varprojlim_j FD_j$ (i.e., bundle $p_j: L \to FD_j$ in C'), $\exists !(\bar{p_j}: \bar{L} \to \bar{L'})$ $(D_j) \in C'$ with $F(\bar{L}) = L$, $F(\bar{p_j}) = p_j$, and $\bar{L} = \varprojlim_j D_j$.

¶45 A (covariant) bifunctor is a functor from a [product](#page-0-0) [category\[](#page-0-0) $\text{\ensuremath{\mathfrak{q}}\xspace 16}$ $\text{\ensuremath{\mathfrak{q}}\xspace 16}$ $\text{\ensuremath{\mathfrak{q}}\xspace 16}$] (i.e. $\mathbf{A} \times \mathbf{B} \rightarrow \mathbf{C}$) such that each partial application is also a functor. (See [\[HHJ12\]](#page-6-5) and bifunctors.tex for more.) A **profunctor** is a bifunctor which is [contravari](#page-2-4)ant $[$ $\llbracket \cdot \llbracket 40 \rrbracket$ $\llbracket \cdot \llbracket 40 \rrbracket$ $\llbracket \cdot \llbracket 40 \rrbracket$ in one argument and covariant in the other; i.e. $A^{\text{op}} \times B \to C$. A diagonal profunctor is a profunctor where both elements of the product are the same category; i.e. $\mathbf{A}^{\mathrm{op}} \times \mathbf{A} \to \mathbf{C}$.

 $\textbf{46}$ A functor F is (§3.27, §3.33)

- amnestic if f is an identity iff Ff is an identity.
- continuous if it preserves all limits. (Awodey:D5.24)
- an equivalence if it is full, faithful, and isomorphismdense.
- an embedding if it is injective on morphisms.
- faithful if $\forall_{A,A'} F|_{\mathbf{A}(A,A')} \subseteq \mathbf{B}(FA,FA')$ is injective.
- full if $\forall_{A,A'}F|_{\mathbf{A}(A,A')}$ surjective.
- isomorphism-dense if $\forall_B \exists_A . F(A) \simeq B$.

¶47 All functors preserve (in A implies in B) isomorphisms (§3.21), sections (§7.22), and retractions (§7.28).

¶48 Some functors reflect (in B implies in A) useful properties:

- Full, faithful functors reflect sections (§7.23) and retractions (§7.29).
- Faithful functors reflect monos (§7.37.2) and epis $(S7.44)$.

7.1 Transformations

 $\textbf{q49}$ A natural transformation $\tau : F \to G$ assigns each $A \in \mathbf{A}$ to $\tau_A : FA \to GA$ s.t. $\forall_{f:A \to A'} Gf \circ \tau_A = \tau_{A'} \circ Ff$ $(\$6.1; Awoodey: D7.6)$. That is,

$$
Gf \circ \tau_A = \tau_B \circ Ff
$$

\n
$$
Ff \downarrow \qquad \qquad FA \xrightarrow{\tau_A} GA
$$

\n
$$
Ff \downarrow \qquad \qquad \downarrow Gf
$$

\n
$$
FB \xrightarrow{\tau_B} GB
$$

More generally, given any functor from a [product cate](#page-0-0)[gory\[](#page-0-0) $[16]$ $[16]$ $[16]$, we may say that it is natural in the *i*-th position if, for all ways of fixing the other positions, the resulting partial applications form natural transformations.

 $\textbf{150}$ There is special notation for functors (H) applied to natural transformations and vice-versa (§6.3): $H\tau : HF \rightarrow HG$ defined by $(H\tau)_A = H(\tau_A)$ and $\tau H : FH \rightarrow GH$ defined by $(\tau H)_A = \tau_{HA}.$

 $\text{I}51$ A dinatural transform θ : $R \stackrel{\bullet}{\rightarrow} S$ between [diago](#page-2-1)[nal profunctors\[](#page-2-1) $\lbrace A5 \rbrace$ R, S : $\mathbf{A}^{\mathrm{op}} \times \mathbf{A} \to \mathbf{C}$ is a A-objectindexed collection of arrows θ where $\forall_{f:A\to A'\in A}S$ id_A f $\theta_A\circ$ $R f id_A = S f id_{A'} \circ \theta_{A'} \circ R id_{A'} f : R A' A \rightarrow S A A'.$

7.2 Special Functors

 $\textbf{152}$ For every category **C** and object $D \in \textbf{D}$ there is a unique constant functor \mathbb{I}_D which sends every C to D and every f to 1_D .

¶53 The covariant representable functor (Awodey:p44) at $A \in \mathbf{C}$ is defined by $\text{Hom}(A, -): \mathbf{C} \to \text{Sets}.$ These functors are continuous (Awodey:P5.25).

¶54 Representable functors preserve monos. (§7.37.1)

¶55 Pullback defines a functor

 $h^* : (A \overset{\alpha}{\to} C) \in \mathbf{C}/C \mapsto (C' \times_C A \overset{\alpha'}{\to} C') \in \mathbf{C}/C'$ where α' is the pullback of α along h. (Awodey:P5.10)

 \bullet 56 Hom_c(-,-) is a diagonal profunctor \bullet [45](#page-2-1) from C^{op} \times $C \rightarrow$ Set, assuming that C is locally small.

8 Cones and Sources

 $\textbf{157}$ A cone (Awodey:D5.15) to a diagram $D(J)$ is a collection of arrows $c_j : C \to D_j$ s.t. $\forall_{D_{\alpha} \in D(J)} c_j = D_{\alpha} \circ c_i$. (Cones are also natural transformations $[49]$ $[49]$ $[49]$ from the [con](#page-2-5)stant functor $[62]$ to the inclusion functor of the diagram D. [\[Mil\]](#page-6-6)) (Cones are sources [≤ 58 ≤ 58] subject to commutation diagrams implied by the diagram.)

 $\textbf{158}$ A source in category **A** indexed by *I* is a pair $(A, \{f_i: A \to A_i\}_{i \in I})$. This source has domain A and codomain $\{A_i\}_{i\in I}$. (§10.1)

 $\text{I59 Given } (A, \{f_i\}_{i \in I}) \text{ and } \{ (A_i, \{g_{ij}\}_{j \in J_i}) \}_{i \in I} \text{ all sources,}$ their composite is $(A, \{g_{ij} \circ f_i\}_{i \in I, j \in J_i})$. (§10.3)

160 A mono-source (§10.5) is $(A, \{f_i\})$ s.t. $\forall r, s : B \to A \left[\forall_{i \in I} f_i \circ r = f_i \circ s \right] \Rightarrow r = s.$

9 Concrete Categories

 \sf q61 For this section, **A** is a **concrete category** over **X** with **forgetful** functor ($\llbracket \cdot 39 \rrbracket U : \mathbf{A} \to \mathbf{X}$ $\llbracket \cdot 39 \rrbracket U : \mathbf{A} \to \mathbf{X}$ $\llbracket \cdot 39 \rrbracket U : \mathbf{A} \to \mathbf{X}$ faithful ($\llbracket \cdot 46 \rrbracket$ $\llbracket \cdot 46 \rrbracket$ $\llbracket \cdot 46 \rrbracket$, denoted (A, U) . (§5.1.1)

 \P_0 62 When $\mathbf{A} = \mathbf{X}$, $\mathbf{Alg}(U)$ has U-algebras $\begin{bmatrix} 72 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 72 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 72 \\ 8 \end{bmatrix}$ as objects and algebra homomorphisms as morphisms.

 $\text{\texttt{I}}63$ If X is Set, A is a construct. (§5.1.2)

 $\P_$ 64 (*UA* $\stackrel{f}{\rightarrow}$ *UB*) ∈ **X** is an A-morphism if f has an unique U-preimage in \mathbf{A} . (§5.3, §6.22)

 \P 65 A free object $A \in \mathbf{A}$ is one with a (*U*-structured) universal arrow (u, UA) in B. (§8.22+§8.30) \triangleleft

10 Adjoints and Adjoint Situations

Be sure to see [subsection C.3](#page-4-5) for examples.

10.1 Joy Approach

T66 A functor $G: \mathbf{A} \to \mathbf{B}$ is adjoint if $\forall_{B \in \mathbf{B}}$ there exists a G-structured universal arrow with domain B. (§18.1) \mathbf{I}^{26} \mathbf{I}^{26} \mathbf{I}^{26}

 \P 67 Adjoints compose (§8.5), preserve mono-sources $\lceil \cdot \cdot 60 \rceil$ $\lceil \cdot \cdot 60 \rceil$ $\lceil \cdot \cdot 60 \rceil$ $(\S 8.6)$, and preserve limits [$\text{\textsterling}13$ $\text{\textsterling}13$] $(\S 8.9)$

 $\textsf{168}$ Given adjoint G with $\eta_B : B \to G(A_B)$ the G-structured universal arrow with domain B, $\exists!_F$ such that $FB = A_B$ and $\eta : id_B \to G \circ F$ is natural; further, there is a unique, natural $\epsilon : F \circ G \to id_A$ with $G\epsilon \circ \eta G = id_G$ and $\epsilon F \circ F\eta = id_F$. (§19.1)

169 $(\eta, \epsilon) : F \dashv G : A \to B$ is a adjoint situation if the above relationships hold. (§19.7)

10.2 Awodey Approach

T70 An adjunction (Awodey:D9.1) of $F: C \rightarrow D$ and $G: D \to C$ is a natural transformation [$\text{\s}49$ $\text{\s}49$] $\eta: I_C \to (G \circ F)$ s.t.

Equivalently (Awodey:D9.7), a natural isomorphism $\phi: \text{Hom}_D(FC, D) \simeq \text{Hom}_C(C, GD), \quad \eta_X = \phi(1_{FX})$

10.3 Moving Right Along

T1 A monad (§20.1) on **X** is $(T : \mathbf{X} \to \mathbf{X}, \eta : id_{\mathbf{X}} \to T, \mu$: $T^2 \to T$) s.t.

$$
\forall x \quad T^3 X \xrightarrow{\Gamma(\mu x)} T^2 X \qquad TX \xrightarrow{\Gamma(\eta x)} T^2 X \xrightarrow{\eta_{TX}} TX
$$

$$
T^2 X \xrightarrow{\mu x} TX
$$

$$
T^2 X \xrightarrow{\mu x} TX
$$

A Miscellaneous Terminology

T2 Given an endofunctor $[$ **[42](#page-2-8)** F on **C**, a **F**-algebra is a pair of a **carrier** $X \in \mathbb{C}$ and interpretation morphism $h : FX \to$ $X \in \mathbb{C}$. A algebra homomorphism is a morphism f such that $f:(X,h)\to (X',h')$ s.t. $\bar{f}\circ h=h'\circ T(f)$. (§5.37)

¶73 A category is finitely presented (Awodey:p75) if it is the free category over a finite graph quotiented by a finite set of equations.

¶74 The local membership relation for generalized element $z : Z \rightarrow C$ and subobject M (i.e., with monic $m: M \to C$, $z \in_X M$, holds iff $\exists_{f:Z \to M} . z = mf$.

 \P 75 An ω -complete Partial Order (ω CPO) is a Poset which has all colimits of type (N, \le) . (All countably infinite ascending chains have a top.) (Awodey:p101,E5.33)

B Miscellaneous Useful Properties

¶76 (Awodey:p84,L5.8) In the commuting diagram

$$
F \xrightarrow{f'} E \xrightarrow{g'} D
$$

\n
$$
\downarrow h''
$$

\n
$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

- 1. If $FEBA$ and $EDCB$ are pullbacks, so is $FDCA$.
- 2. If FDCA and EDCB are pullbacks, so is FEBA.

 \P 77 (Awodey: 84 , C5.9) Pullbacks preserve commutative triangles.

¶78 (?) Monic arrows pullback to monic arrows. (In the above, if g is monic, so is g' .)

¶79 Universal Constructions (or Universal Mapping Properties, UMP) reduce to limits (Awodey:p91,E5.17-20): \bar{t} terminals products equalizers pullbacks

.	progacco	\mathcal{C}	passowese
	\boldsymbol{x}	α w $\ddot{}$	w ١V $y \geq z$

¶80 Objects defined by UCs are unique up to isomorphism.

C Examples To Jog Your Memory

C.1 Set

 \P 81 Epic $\left[\frac{1}{23} \right]$ $\left[\frac{1}{23} \right]$ $\left[\frac{1}{23} \right]$ is surjective, monic $\left[\frac{1}{28} \right]$ $\left[\frac{1}{28} \right]$ $\left[\frac{1}{28} \right]$ is injective.

¶82 [Coequalizers\[](#page-1-3)¶[22](#page-1-3)] correspond to equivalence classes (§7.69.1): Let \sim be the smallest eq. rel. s.t. $\forall_{a \in A} f(a) \sim$ $g(a)$; then $(Q, q) = (B/\sim, b \mapsto [b]_{\sim})$ is a coequalizer of f and g.

¶83 [Equalizers\[](#page-1-4) $\{24\}$ $\{24\}$ $\{24\}$: $(E, e) = (\{x \mid f(x) = g(x)\} \subseteq X, \subseteq)$.

C.2 Mon

 \P 84 Bimorphisms $\left[\bullet, 33\right]$ $\left[\bullet, 33\right]$ $\left[\bullet, 33\right]$ are not isos: $((\mathbf{N}, +, 0) \rightarrow (\mathbf{Z}, +, 0)).$ (Pierce:§1.6.3)

 \P 85 ({*}, ·, *) is a (the) [zero\[](#page-1-6) \P [21](#page-1-6)].

 ■ **86 Each monoid M has only one point** [$\text{■}29$ $\text{■}29$], $1 \rightarrow M$.

C.3 Adjoint Situations and Monads

Defintitons in [section 10.](#page-3-3)

¶87 Consider $(\eta, \epsilon) : F \dashv G : \mathbf{Mon} \to \mathbf{Set}$. $\eta_X : X \to GFX$ is insertion of generators: $\forall x \in X \eta_X x = x$. $\epsilon_Y : FGY \to Y$ is the re-introduction of structure; if $FGY = ((GY)^*, \cdot, \varepsilon)$ and $Y = (GY, +, 0)$ then

 $\epsilon_Y \epsilon = 0 \quad \epsilon_Y (y \cdot z) = y + z \quad \epsilon_Y (y \in GY) = y$

 $\textsf{■88}$ Further, $T = G \circ F$ is a monad. Generically, μ ... $\mu_X(TTX) = (G\epsilon F)_X(TTX) = (G\epsilon_{FX})(GFGFX)$ $= G((\epsilon_{FX})(FGFX)) = GFX$

So here μ is the G-image of a function which takes $y \in$ $FGFX = F(X^*)$ (that is, a concatenation of symbols from GFX) and re-imposes structure to obtain $\epsilon_{FX}y \in FX$.

D Bootstrapping Category Theory

¶89 Cat is the category which has locally small categories as objects and [functors\[](#page-2-2)¶[39](#page-2-2)] as morphisms. (It is not, itself, locally small, and so is not an object in itself.) Cat is [carte](#page-1-8)[sian closed\[](#page-1-8) $[437]$ $[437]$ $[437]$ (see [product category\[](#page-0-0) $[16]$ $[16]$ $[16]$ and [exponential](#page-1-9) $categor_[436]$ $categor_[436]$ $categor_[436]$. Its initial object is the empty category and its terminal object is the category of a single object and its identity morphism.

Index

adjoint, ¶[66](#page-3-4) adjoint situation, ¶[69](#page-3-5) adjunction, 1[70](#page-3-6) algebra homomorphism, ¶[72](#page-3-1) amnestic, 1[46](#page-2-7) arrow, ¶ [7](#page-0-2) balanced, ¶ [6](#page-0-3) bifunctor, ¶[45](#page-2-1) bimorphism, ¶[33](#page-1-5) carrier, ¶[72](#page-3-1) cartesian closed, ¶[37](#page-1-8) category, \P [1](#page-0-4) codomain, ¶ [1](#page-0-4) coequalizer, ¶[22](#page-1-3) colimit, ¶[13](#page-0-1) composite, 1[59](#page-2-9) concrete category, $\sqrt{61}$ $\sqrt{61}$ $\sqrt{61}$ cone, 1[8](#page-0-5), 1[57](#page-2-0) constant functor, $\overline{152}$ $\overline{152}$ $\overline{152}$ construct, $\overline{163}$ $\overline{163}$ $\overline{163}$ continuous, 1[46](#page-2-7) contravariant functor, ¶[40](#page-2-4) coseparator, $\mathbf{1}1$ covariant functor, ¶[39](#page-2-2) covariant representable functor, $\overline{153}$ $\overline{153}$ $\overline{153}$ creates limits of type J , \mathbf{I}^{44} \mathbf{I}^{44} \mathbf{I}^{44} diagonal profunctor, ¶[45](#page-2-1) diagram, ¶[41](#page-2-12) dinatural transform, \mathbf{I}^{51} \mathbf{I}^{51} \mathbf{I}^{51} discrete, ¶ [6](#page-0-3) domain, ¶ [1](#page-0-4) dual, ¶ [9](#page-0-7) embedding, 1[46](#page-2-7) endofunctor, $\frac{42}{3}$ $\frac{42}{3}$ $\frac{42}{3}$ epic, ¶[23](#page-1-2) epimorphism, ¶[23](#page-1-2) equalizer, ¶[24](#page-1-4) equivalence, 1[46](#page-2-7) essentially unique, \mathbf{I}^4 \mathbf{I}^4 exponential, ¶[34](#page-1-10) exponential category, ¶[36](#page-1-9) extremal, \mathbf{I}^{25} \mathbf{I}^{25} \mathbf{I}^{25} extremally generating, \mathbf{I}^{26} \mathbf{I}^{26} \mathbf{I}^{26} faithful, ¶[46](#page-2-7) finitely presented, $\sqrt{73}$ $\sqrt{73}$ $\sqrt{73}$ forgetful, ¶[61](#page-3-7) free object, 1[65](#page-3-10) full, \mathbf{I}^5 \mathbf{I}^5 , \mathbf{I}^4 6 functor, ¶[39](#page-2-2) generating, ¶[26](#page-1-0) initial, ¶[12](#page-0-10) is an A-morphism, ¶[64](#page-3-11) isomorphism, ¶[27](#page-1-12)

isomorphism-dense, ¶[46](#page-2-7)

large, 1[3](#page-0-11) limit, ¶[13](#page-0-1) local membership relation, $\sqrt{74}$ $\sqrt{74}$ $\sqrt{74}$ locally small, \mathbf{I}^3 \mathbf{I}^3

monad, ¶[71](#page-3-13) monic, ¶[28](#page-1-1) mono-source, 1[60](#page-3-2) monomorphism, ¶[28](#page-1-1)

natural transformation, \mathbf{I}^{49} \mathbf{I}^{49} \mathbf{I}^{49}

point, ¶[29](#page-1-7) power, ¶[14](#page-0-12) preserve, $\frac{47}{3}$ $\frac{47}{3}$ $\frac{47}{3}$ preserves limits of type J , \mathbf{I}^{44} \mathbf{I}^{44} \mathbf{I}^{44} product, ¶[15](#page-0-13) product category, ¶[16](#page-0-0) profunctor, ¶[45](#page-2-1) pullback, ¶[17](#page-0-14)

reflect, ¶[48](#page-2-15) reflection, ¶[26](#page-1-0) reflective, 1[5](#page-0-9) regular monomorphism, $\sqrt{30}$ $\sqrt{30}$ $\sqrt{30}$ retraction, ¶[31](#page-1-14)

section, ¶[32](#page-1-15) separating set, \mathbf{I}^{19} \mathbf{I}^{19} \mathbf{I}^{19} separator, $\mathbf{18}$ $\mathbf{18}$ $\mathbf{18}$ slice, [10](#page-0-15) small, ¶ [3](#page-0-11) source, 1[58](#page-2-6) split epi, 1[31](#page-1-14) split mono, ¶[32](#page-1-15) subcategory, \mathbf{I}^5 \mathbf{I}^5 subobjects, ¶[28](#page-1-1)

terminal, 1[20](#page-1-18) thin, ¶ [6](#page-0-3)

zero, $\sqrt{21}$ $\sqrt{21}$ $\sqrt{21}$

References

- [Awo10] Steve Awodey. Category Theory. Oxford University Press, Oxford; New York, August 2010.
- [HHJ12] Ralf Hinze, Jennifer Hackett, and Daniel W. H. James. Functional Pearl: F for Functor. ICFP, 2012. URL: [http://www.cs.ox.ac.uk/people/](http://www.cs.ox.ac.uk/people/daniel.james/functor/functor.pdf) [daniel.james/functor/functor.pdf](http://www.cs.ox.ac.uk/people/daniel.james/functor/functor.pdf).
- [Hin] Ralf Hinze. Kan extensions for program optimisation or: Art and dan explain an old trick. URL: <http://www.cs.ox.ac.uk/ralf.hinze/Kan.pdf>.
- [JHS04] Jiri Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories: The Joy of Cats. 2004. URL: [http://www.prgmea.](http://www.prgmea.com/pdf/abstract/9.pdf) [com/pdf/abstract/9.pdf](http://www.prgmea.com/pdf/abstract/9.pdf).
- [Mil] Bartosz Milewski. Understanding limits. URL: [http://bartoszmilewski.com/2014/05/08/](http://bartoszmilewski.com/2014/05/08/understanding-limits-2/) [understanding-limits-2/](http://bartoszmilewski.com/2014/05/08/understanding-limits-2/).
- [Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. Foundations of Computing Series. MIT Press, Cambridge, Massachusetts, August 1991.
- [Rie] Emily Riehl. Category Theory in Context. URL: [http://www.math.jhu.edu/~eriehl/727/](http://www.math.jhu.edu/~eriehl/727/context.pdf) [context.pdf](http://www.math.jhu.edu/~eriehl/727/context.pdf).