In the paper **Functional Pearl:** F for Functor from ICPF '12, the concept of a **bifunctor** is introduced quickly and somewhat confusingly. Herein, as Neil Gaiman wrote in Good Omens, "the text will be slowed down to allow the sleight of hand to be followed."

1 BIFUNCTORS

A **bifunctor** is a two-argument object, here denoted — ⊗ — ∈ $\mathcal{E}^{\mathcal{C} \times \mathcal{D}}$, which

- Sends an object $C \times D \in \mathcal{C} \times \mathcal{D}$ to an object $C \otimes D \in \mathcal{E}$ and a morphism $f \times g \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}(C \times D, C' \times D')$ to a morphism $f \otimes g \in \text{Hom}_{\mathcal{E}}(C \otimes D, C' \otimes D')$.
- Preserves identities $(id_C \otimes id_D = id_{C \otimes D})$ and composition: $(f' \circ f) \otimes (g' \circ g) = (f' \otimes g') \circ (f \otimes g)$.
- Has a C-object-indexed collection of functors obtained by partial application on the left: a $L_C^{\otimes} = (C \otimes -) \in \mathcal{E}^{\mathcal{D}}$ for each object $C \in \mathcal{C}$, and a D-object-indexed collection from the right: a $R_D^{\otimes}(-\otimes D) \in \mathcal{E}^{\mathcal{C}}$ for each object $D \in \mathcal{D}$.

The question arises: if we have two collections of functors, $\{L_C^{\otimes} \in \mathcal{E}^{\mathcal{D}} | C \in \mathcal{C}\}\$ and $\{R_D^{\otimes} \in \mathcal{E}^{\mathcal{C}} | D \in \mathcal{D}\}\$, can we stitch them together to make a bifunctor? Looking at the object component of our purported bifunctor \otimes , we see that $C \otimes D$ has two possible definitions: $L_C^{\otimes}D$ and $R_D^{\otimes}C$. These must be equal in order for \otimes to be well-defined:

$$
L_C^{\otimes} D = R_D^{\otimes} C \qquad (\forall_{C \in \mathcal{C}, D \in \mathcal{D}}.\text{diagram} \in \mathcal{E})
$$
\n⁽¹⁾

What of the morphism map? Given $f \in Hom_{\mathcal{C}}(C, C')$ and $g \in Hom_{\mathcal{D}}(D, D')$, $f \otimes g$ expands in one of two ways, as indicated by the following diagram. These, too, must be equal for the definition to make sense. Note that [\(1\)](#page-0-1) allows us to label the vertices of this diagram in an unambiguous, familiar syntax.

$$
C \otimes D \xrightarrow{R_{D}^{\otimes} f} C' \otimes D
$$

\n
$$
L_{C}^{\otimes} g \Big| \qquad \circ \qquad \Big| L_{C'}^{\otimes} g \qquad (\forall_{C,C',f \in C; D, D', g \in \mathcal{D}} \text{. diagram} \in \mathcal{E})
$$

\n
$$
C \otimes D' \xrightarrow{R_{D'}^{\otimes} f} C' \otimes D'
$$
\n
$$
(2)
$$

Let us check that any $\{L_C^{\otimes} | C\}$ and $\{R_D^{\otimes} | D\}$ which satisfy [\(1\)](#page-0-1) and [\(2\)](#page-0-2) in fact give rise to a bifunctor. We have our object and morphism maps and purported partial-applications already, all that remains to be seen is preservation of identity and composition. Identity is easy:

$$
id_C \otimes id_D = L_C^{\otimes} id_D \circ R_D^{\otimes} id_C = id_{L_C^{\otimes} D} \circ id_{R_D^{\otimes} C} = id \tag{3}
$$

$$
=R_D^{\otimes}id_C \circ L_C^{\otimes}id_D = id_{R_D^{\otimes}C} \circ id_{L_C^{\otimes}D} = id
$$
\n⁽⁴⁾

where (3) is the right-then-down path and (4) is the down-then-right path in (2) . Note that we did not need to assume anything to get this other than that $L_{\mathcal{L}}^{\otimes}$ and $R_{\mathcal{D}}^{\otimes}$ were functors. Composition unpacks a bit: $(f' \otimes g') \circ (f \otimes g)$ (for $f' \in \text{Hom}_{\mathcal{C}}(\tilde{C}', C'')$ and $g' \in \text{Hom}_{\mathcal{D}}(D', \tilde{D}'')$ in addition to f and g as above) has many possible meanings, each of which is a path through this diagram:

$$
C \otimes D \xrightarrow{R_{D}^{\otimes} f} C' \otimes D \xrightarrow{R_{D}^{\otimes} f'} C'' \otimes D
$$

\n
$$
L_{C}^{\otimes} g \Big| \xrightarrow{R_{D'}^{\otimes} f} L_{C'}^{\otimes} g \Big| \xrightarrow{R_{D'}^{\otimes} f'} R_{D'}^{\otimes} f' \xrightarrow{L_{C''}^{\otimes} g} \Big| L_{C''}^{\otimes} g
$$

\n
$$
C \otimes D' \xrightarrow{R_{D''}^{\otimes} f} L_{C'}^{\otimes} g' \Big| \xrightarrow{R_{D''}^{\otimes} f'} R_{D''}^{\otimes} f' \xrightarrow{L_{C''}^{\otimes} g'} \Big| L_{C''}^{\otimes} g' \Big| \xrightarrow{L_{C''}^{\otimes} g'} C \otimes D'' \xrightarrow{L_{C''}^{\otimes} g'} C'' \otimes D''
$$

\n(5)

However, repeated application of [\(2\)](#page-0-2) lets us see that all paths through this diagram are equal! Moreover, the horizontal and vertical paths correctly compose because each L_x^{\otimes} and R_x^{\otimes} are functors; that is, along the top, for example: $R_D^{\otimes} f'$ $R_D^{\otimes} f = R_D^{\otimes} (f' \circ f)$. We can see that the two possible expansions of $(f' \circ f) \otimes (g' \circ g)$ (the two paths of [\(2\)](#page-0-2) with the compositions in as the functions) are (respectively) equal to the two outermost paths of [\(5\)](#page-0-5) and therefore to each other.

F for Functor arrives at these conclusions in the reverse order. That is, it defines $f \otimes g$ as (in the notation of this document) $L_{C}^{\otimes} g \circ R_D^{\otimes} f$ (the top-right path of [\(2\)\)](#page-0-2). Then it considers identity and composition, arriving (implicitly) at [\(5\).](#page-0-5) "Lambert" computes the right-right-down-down and right-down-right-down paths, in accordance with the bias of the definition and concludes that the top-right rectangle of (5) must commute, thereby *deriving* (2) .

¹Of course, there are also functor families indexed by arrows, which might be designated $\tilde{L}^{\otimes}_f = (f \otimes -) \in \mathcal{E}^{\mathcal{D}}$ for each $f \in \mathcal{C}$. However, these bring no new degrees of freedom to the table, as $\tilde{L}_f^{\otimes}(D) = f \otimes D = R_D^{\otimes} f$ and $\tilde{L}_f^{\otimes}(g) = f \otimes g$.

2 Natural Transformations

We have used the exponential notation $\mathcal{E}^{\mathcal{C}}$ above possibly somewhat prematurely. While we could simply define functor categories as discrete, let us instead not. The objects of such a thing we take to be functors from C to \mathcal{E} . We will recover the definition of morphisms in this category by considering a particular bifunctor (later in the paper denoted \star) in $\mathcal{E}^{\mathcal{E} \times \mathcal{C}}$. This bifunctor's partial application views are $\{L_F^* | F \in \mathcal{E}^C\}$ (denoted F— in the paper) and $\{R_C^* | C \in \mathcal{C}\}$ (denoted $-A$ in the paper). L_F^{\star} behaves as the functor F: it sends $C \in \mathcal{C}$ to $FC \in \mathcal{E}$ and $f \in \text{Hom}_{\mathcal{C}}(C, C')$ to $Ff \in \text{Hom}_{\mathcal{E}}(FC, FC')$. This relies only on the objects of $\mathcal{E}^{\mathcal{C}}$ and so is uninteresting. What about R_C^{\star} ? If it is to be a functor, then:

- The object component of R_C^* takes a functor $F \in \mathcal{E}^{\mathcal{C}}$ to an object $FC \in \mathcal{E}$.
- The morphism component of R_C^* takes a morphism $\alpha \in \text{Hom}_{\mathcal{E}}(F,G)$ to a morphism $R_C^* \alpha \in \text{Hom}_{\mathcal{E}}(R_C^* F, R_C^* G)$ $\text{Hom}_{\mathcal{E}}(FC, GC).$
- It must map the identity morphism to an identity morphism: $R_C^{\star} id_F = id_{FC}$.
- It must preserve composition: for any $\alpha \in \text{Hom}_{\mathcal{E}}c(F,G)$ and $\alpha' \in \text{Hom}_{\mathcal{E}}c(G,H)$, we must have that $R_C^{\star}(\alpha' \circ \alpha) =$ $(R_C^{\star}\alpha') \circ (R_C^{\star}\alpha).$
- Furthermore, if \star is to be a bifunctor, then [\(2\)](#page-0-2) must hold (this diagram is over all $F, G \in \mathcal{E}^{\mathcal{C}}, \alpha \in \text{Hom}_{\mathcal{E}^{\mathcal{C}}}(F, G)$, $C, C' \in \mathcal{C}$, and $f \in \text{Hom}_{\mathcal{C}}(C, C')$; it ultimately takes place in \mathcal{E}):

$$
F \star C \xrightarrow{R_C^{\star} \alpha} G \star C
$$
\n
$$
L_F^{\star} f \downarrow \circ \qquad \downarrow L_G^{\star} f \qquad \equiv \qquad F \circ C \xrightarrow{R_C^{\star} \alpha} G C
$$
\n
$$
F \star C' \xrightarrow{R_{C'}^{\star} \alpha} G \star C' \qquad \qquad F \circ C' \xrightarrow{R_{C'}^{\star} \alpha} G C'
$$
\n
$$
(6)
$$

Thus we can see that if ${\cal E}^{\cal C}$ is to be a category whose objects are functors and if \star is to be a bifunctor, then the morphisms \mathcal{E}^c must exist in correspondence with any subset of the natural transformations in $\mathcal E$ which includes the identity natural transformations of every functor in $\mathcal{E}^{\mathcal{C}}$. We are free to pick the maximal such category, and (abusively) suppress the R^* notation, to claim that the morphisms of $\mathcal{E}^{\mathcal{C}}$ are the natural transformations between its functors. That is, rather than writing $R_C^{\star} \alpha$ we will now write αC ; some texts use the notation α_C to reflect the alternate characterization of natural transformations as object-indexed collections of arrows.

2.1 Composition of Nat. Trans

This has always confused me, so here's an excellent opportunity to expando the notation and hopefully make some things clearer. Frustratingly, **F** for **Functor** uses \cdot for ordinary composition (while standard notation is \circ) and \circ for another composition operator on nat. trans. Here we use \circ and \bigcirc .

We begin by considering a bifunctor which composes functors, called $-\bigcirc$ -. It is an object of the (visually intimidating) category $({\cal E}^{\cal C})^{{\cal E}^{\cal D}\times{\cal D}^{\cal C}}$. Adopting and extending the paper's naming scheme, let

- $F, H, P \in \mathcal{D}^{\mathcal{C}}; \alpha \in \text{Hom}_{\mathcal{D}^{\mathcal{C}}}(F, H); \alpha' \in \text{Hom}_{\mathcal{D}^{\mathcal{C}}}(H, P);$
- $G, K, Q \in \mathcal{E}^{\mathcal{D}}$; $\beta \in \text{Hom}_{\mathcal{E}^{\mathcal{D}}}(G, K)$; $\beta' \in \text{Hom}_{\mathcal{E}^{\mathcal{D}}}(K, Q)$;
- $C, C' \in \mathcal{C}$; $f \in \text{Hom}_{\mathcal{C}}(C, C')$; $D, D' \in \mathcal{D}$; and $g \in \text{Hom}_{\mathcal{D}}(D, D')$.

The behavior of \bigcirc is given as follows:

• $(G \bigcirc F)C = G \star (FC) = GFC \in \mathcal{E}^{\mathcal{C}}$ (i.e. functor composition)

•
$$
(G \bigcirc \alpha)C = (L_G^{\bigcirc}\alpha)C = G(R_C^{\star}\alpha) = G(\alpha C) \in \mathcal{E}
$$

•
$$
(\beta \bigcirc F)C = (R_F^{\bigcirc}\beta)C = R_{L_F^*C}^* \beta = \beta(L_F^*C) = \beta(FC) \in \mathcal{E}
$$

The paper asserts that "the coherence conditions follow from naturality", i.e. that \forall_C

$$
(G \bigcirc F)C \xrightarrow{R_F^{\bigcirc}\beta} (K \bigcirc F)C
$$

\n
$$
L_G^{\bigcirc}\alpha \downarrow \circ \qquad \downarrow L_K^{\bigcirc}\alpha \qquad \equiv G(\alpha C) \downarrow \circ \qquad \downarrow KFC
$$

\n
$$
(G \bigcirc H)C \xrightarrow{R_H^{\bigcirc}\beta} (K \bigcirc H)C \qquad \equiv G(\alpha C) \downarrow \circ \qquad \downarrow K(C)
$$

\n
$$
GHC \xrightarrow{\beta(FC)} KHC
$$

This indeed follows from the naturality of β (not α !). So $\beta \cap \alpha \in \text{Hom}_{\mathcal{EC}}(G \cap F, K \cap H)$ is well-defined.

If we just write down everything we know (a popular technique for earning sympathy on exams), we first get these two "vertical composition" diagrams (in D and E, respectively; the use of \circ takes place in $\mathcal{D}^{\mathcal{C}}$ on the left and $\mathcal{E}^{\mathcal{D}}$ on the right):

$$
(\alpha' \circ \alpha) C \begin{pmatrix} FC & \overbrace{F} &
$$

We also get this "horizontal composition" diagram in \mathcal{E} ; on the left is the diagram using \bigcap and on the right is a version with all \bigcap evaluated.

(G F)C (K H)C (Q P)C (G F)C 0 (K H)C 0 (Q P)C 0 (β α)C (β ⁰ α 0)C (β α)C 0 (β ⁰ α 0)C 0 (G F)f (K H)f (Q P)f ((β ⁰ ◦ β) (α ⁰ ◦ α))C ((β ⁰ ◦ β) (α ⁰ ◦ α))C 0 GF C KHC QP C GF C⁰ KHC⁰ QP C⁰ K(αC) ◦ β(F C) Q(αC⁰) ◦ β(KC) K(αC⁰) ◦ β(F C⁰) Q(α 0C 0) ◦ β 0 (KC⁰) GF f KHf QP f Q((α ⁰ ◦ α)C) ◦ (β ⁰ ◦ β)(F C) Q((α ⁰ ◦ α)C 0) ◦ (β ⁰ ◦ β)(F C⁰)

(8)

The rectangles commute by definition of natural transformations while the upper and lower faces commute by bifunctorality of \bigcirc (namely, that it preserves composition).