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For a given endofunctor F : C → C, let

• (µF, in) denote its initial algebra (in : F (µF )→ µF ) A catamorphism h is the unique arrow from an initial algebra
to any other a; it must be the solution to the equation h ◦ in = a ◦ Fh.

• (νF, out) denote its terminal coalgebra (out : νF → F (νF )) An anamorphism of a coalgebra c is the unique solution
to c ◦ h = Fh ◦ out.

1 Special Fixed Points

1.1 Carrier of Initial Algebra Implies Fixed Point

Assume that (µF, in) exists; then (F (µF ), F (in)) is also an F -algebra (because F (in) : F (F (µF )) → F (µF )) and the
following diagram exists in C:

F (µF ) F (F (µF )) F (µF )

µF F (µF ) µF

F (φF (F (in)) F (in)

in F (in)

φF (F (in)) in

in◦ ◦

where φF (F (in)) is the catamorphism of F (in): the unique arrow guaranteed to exist by initiality of (µF, in) such that
the left square commutes. The right square trivially commutes and is rendered only for convenience.

We see that in ◦ φF (F (in)) (the bottom two arrows of the diagram) form an algebra homomorphism from (µF, in) to
itself. By initiality, (i.e., since the composite arrow forms an algebra homomorphism from (µF, in) to itself, it must be
that φF (in) = id), this must be the identity: in ◦ φf (F (in)) = 1µF
The top-left and middle edges compose to give F (in) ◦ F (φF (F (in)), which is just F (in ◦ φF (F (in))) (because functors
distribute over compostion), which we know to be F (1µF ), which is 1F (µF ) (because functors send identity arrows to identity
arrows). By commutation of the left square, the left and bottom-left arrows’ composition, φF (F (in)) ◦ in = 1F (µF ).

All told, then, in is an isomorphism with inverse in−1 = φF (F (in)). That is, µF satisfies the equation µF ' F (µF ), so
µF is a fixed point of F . (This is apparently known as “Lambek’s Lemma”.)

1.2 Carrier of Final Coalgebra Implies Fixed Point

The above argument dualizes in a straightforward way.

F (νF ) F (F (νF )) F (νF )

νF F (νF ) νF

F (ψF (F (out)) F (out)

out F (out)

ψF (F (out)) out

out◦ ◦

Where ψF (F (out)) is the anamorphism guaranteed by terminality of (νF, out). ψF (F (out)) ◦ out = 1νF by terminality
(and ψF (out) = id; also note that dualization has swapped which half of the isomorphism follows immediately!). In the
other direction, out ◦ ψF (F (out)) = F (ψF (F (out))) ◦ F (out) = F (ψF (F (out)) ◦ out) = F (1νF ) = 1F (νF ).

Thus out is an isomorphism with inverse out−1 = ψF (F (out)) and νF satisfies νF ' F (νF ), making it another fixed point.
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1.3 Other Fixed Points

We know that any fixed point of F in fact, call it θF , has the property of being isomorphic to F (θF ).

1.3.1 An Example or Two of Fixed Points

For the purpose of this section, consider the lovely binary tree functor on the category Set, which has (countable)
(co)products, initial object ∅ and terminal object 1; i.e., Tx = 1 + x× x. Then,

• One fixed point, in fact the smallest, of F is the collection of finite binary trees with 1 at its leaves. This is the usual
thing obtained by inflation.

• The largest is binary trees with countable (including finite) paths (and 1 leaves). This cannot be defined by inflation
but is clearly closed under T : taking the product of two such such objects is clearly another such object.

• Another intermediate structure θT is less obvious: trees which may descend left countably many times but right
only finitely many times. Again, we cannot grow this by inflation but can argue that the product of any two such
objects is, indeed, another such object.

Note that, indeed, as we might expect, µT ( θT ( νT . The “other θT” (which swaps left and right) is also between µT
and νT , but is not comparable to θT : fixed points form a partial order with a single bottom and single top.

Consider a different functor, the diagonal product functor ∆x = x×x, which is like T except that it omits the “1+” part.
In this case,

• µ∆ = ∅. There’s nothing to force us away and ∆∅ = ∅ × ∅ ' ∅.

• The terminal object 1 is ν∆: ∆1 = 1 × 1 ' 1. For ease of understanding, this is the singleton set whose element
represents a tree that is its own root’s left and right child.

• There are no other fixed points of ∆. (Stated without proof!)

As before, µ∆ ⊆ ν∆.

1.4 Induced Duals

Because of the two isomorphisms above, we know that (µF, φF (F (in))) = (µF, in−1) exists and is a coalgebra; similarly,
(νF, ψF (F (out))) = (νF, out−1) exists and is an algebra. That is, we have these diagrams (on the left are F -algebras and
on the right are F -coalgebras; both diagrams take place in C):

F (µF ) F (νF ) F (µF ) F (νF )

µF νF µF νF

in out−1

φF (out−1)

F (φF (out−1))

◦ in−1 out

ψF (in−1)

F (ψF (in−1))

◦

where, again, φF (out−1) = φF (ψF (F (out))) is the unique arrow that makes the diagram commute, guaranteed to exist
by initiality of (µF, in) and, dually, ψF (φF (F (in))) = ψF (in−1) by terminality of (νF, out). Note that this existence
argument does not make these arrows equal.

1.4.1 Example Induced Coalegbra

For this section, we’re going to write fuctions in Haskell, though only for its syntax. Please read all definitions as strict
and total!

Consider the List (of As) Set endo-functor ListF x = 1 +A× x. Let’s give it a Haskell rendering, choosing A = Int just
to dodge polymorphism:

data ListF rec = FNil | FCons Int r e c

µL is (isomorphic to) the traditional lisp-y lists whose elements are of type A:

data MuListF = MLNil | MLCons Int MuListF

in : L(µL)→ µL sends 1 to the empty list and a× l to the list whose head is a and tail is l:
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i n : : ListF MuListF −> MuListF
i n FNil = MLNil
i n (FCons i l ) = MLCons i l

Moreover, we know (stated without proof) that L’s catamorphism is an uncurried foldr: looking at the type, we see
φL : ∀X .(LX → X) → (µL → X). (Expanding things a bit, this is ∀X .((1 + A ×X) → X) → µL → X which is iso to
∀X .(A→ X → X)→ X → µL→ X.) In particular, it is

phiL : : f o r a l l a . ( ListF a −> a ) −> MuListF −> a
phiL f MLNil = f ( FNil )
phiL f (MLCons i l ) = f (FCons i ( phiL f l ) )

As required, φL(in) = id:

phiL i n MLNil = i n FNil = MLNil

phiL i n (MLCons i l )
= i n (FCons i ( phiL f l ) )
= i n (FCons i l ) −− i n d u c t i o n
= MLCons i l

in−1 = φL(L(in)) instantiates φL with X = L(µL). The function L(in) : L(LµL) → LµL then is just fmap in. So
in−1 = φL(L(in)) : µL→ LµL is

phiL ( fmap i n ) MLNil = ( fmap i n ) FNil = FNil

phiL ( fmap i n ) (MLCons i l )
= ( fmap i n ) (FCons i ( phiL ( fmap i n ) l ) )
= FCons i ( i n ( phiL ( fmap i n ) l ) )
= FCons i l

1.4.2 Example Induced Algebra

νL is the set of possibly-infinite lists: it contains all of µL as well as the non-terminating lists. out sends nil to the left
1 and a list with cons cell top to the right product of its head and tail. So what is ψL? We know from looking at the
diagram that it must have type ∀X .(X → LX)→ X → νL.

((X → LX)→ β) = (X → (1 +A×X))→ β
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