
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

SemperOS: A Distributed Capability System
Matthias Hille, Technische Universität Dresden; Nils Asmussen, Technische Universität

Dresden; Barkhausen Institut; Pramod Bhatotia, University of Edinburgh;
Hermann Härtig, Technische Universität Dresden; Barkhausen Institut

https://www.usenix.org/conference/atc19/presentation/hille

SemperOS: A Distributed Capability System

Matthias Hille† Nils Asmussen† ∗ Pramod Bhatotia‡ Hermann Härtig† ∗
†Technische Universität Dresden ‡The University of Edinburgh ∗ Barkhausen Institut

Abstract
Capabilities provide an efficient and secure mechanism for
fine-grained resource management and protection. However,
as the modern hardware architectures continue to evolve
with large numbers of non-coherent and heterogeneous cores,
we focus on the following research question: can capability
systems scale to modern hardware architectures?

In this work, we present a scalable capability system to drive
future systems with many non-coherent heterogeneous cores.
More specifically, we have designed a distributed capability
system based on a HW/SW co-designed capability system.
We analyzed the pitfalls of distributed capability operations
running concurrently and built the protocols in accordance
with the insights. We have incorporated these distributed
capability management protocols in a new microkernel-based
OS called SEMPEROS. Our OS operates the system by
means of multiple microkernels, which employ distributed
capabilities to provide an efficient and secure mechanism
for fine-grained access to system resources. In the evaluation
we investigated the scalability of our algorithms and run
applications (Nginx, LevelDB, SQLite, PostMark, etc.), which
are heavily dependent on the OS services of SEMPEROS. The
results indicate that there is no inherent scalability limitation
for capability systems. Our evaluation shows that we achieve
a parallel efficiency of 70% to 78% when examining a system
with 576 cores executing 512 application instances while
using 11% of the system’s cores for OS services.

1 Introduction

Capabilities are unforgeable tokens of authority granting
rights to resources in the system. They can be selectively
delegated between constrained programs for implementing
the principle of least authority [48]. Due to their ability of
fine-grained resource management and protection, capabilities
appear to be a particularly good fit for future hardware
architectures, which envision byte granular memory access to
large memories (NVRAM) from a large numbers of cores (e.g.
The Machine [31], Enzian [18]). Thereby, capability-based

systems have received renewed attention recently to provide
an efficient and secure mechanism for resource management
in modern hardware architectures [5, 24, 30, 36, 44, 64, 67].

Today the main improvements in compute capacity
are achieved by either adding more cores or integrating
accelerators into the system. However, the increasing core
counts exacerbate the hardware complexity required for global
cache coherence. While on-chip cache coherence is likely to
remain a feature of future hardware architectures [45], we see
characteristics of distributed systems added to the hardware
by giving up on global cache coherence across a whole
machine [6, 28]. Additionally, various kinds of accelerators
are added like the Xeon Phi Processor, the Matrix-2000 accel-
erator, GPUs, FPGAs, or ASICs, which are used in numerous
application fields [4,21,32,34,43,60]. These components also
contribute to the number of resources an OS has to manage.

In this work, we focus on capability-based systems and how
their ability to implement fine-grained access control combines
with large systems. In particular, we consider three types of
capability systems: L4 [30], CHERI [67] (considered for The
Machine [31]), and M3 [5] (see Section 2.1). For all these
capability types it is not clear whether they will scale to modern
hardware architectures since the scalability of capability
systems has never been studied before. Also existing capability
schemes cannot be turned into distributed schemes easily since
they either rely on centralized knowledge, cache-coherent
architectures, or are missing important features like revocation.

Independent of the choice which capability system to use,
scaling these systems calls for two basic mechanisms to be
fast. First, it implies a way of concurrently updating access
rights to enable fast decentralized resource sharing. This
means fast obtaining or delegating of capabilities, which
acquires or hands out access rights to the resources behind the
capabilities. The other performance-critical mechanism is the
revocation of capabilities. Revoking the access rights should be
possible within a reasonable amount of time and with minimal
overhead. The scalability of this operation is tightly coupled to
the enforcement mechanism, e.g. when using L4 capabilities
the TLB shootdown can be a scalability bottleneck.

USENIX Association 2019 USENIX Annual Technical Conference 709

We base our system on a hardware/software co-designed ca-
pability system (M3). More specifically, we propose a scalable
distributed capability mechanism by building a multikernel
OS based on the M3 capability system. We present a detailed
analysis of possible complications in distributed capability
systems caused by concurrent updates. Based on this inves-
tigation we describe the algorithms, which we implemented
in our prototype OS—the SEMPEROS multikernel.

Our OS divides the system into groups, with each of them
being managed by an independent kernel. These independently
managed groups resemble islands with locally managed re-
sources and capabilities. Kernels communicate via messages to
enable interaction across groups. To quickly find objects across
the whole system—a crucial prerequisite for our capability
scheme—we introduce an efficient addressing scheme.

Our system design aims at future hardware, which might
connect hundreds of processing elements to form a powerful
rack-scale system [28]. To be able to experiment with such
systems, we use the gem5 simulator [14] Our evaluation
focuses on the performance of the kernel, where we showcase
the scalability of our algorithms by using microbenchmarks
as well as OS-intensive real-world applications. We describe
trade-offs in resource distribution between applications and
the OS to determine a suitable configuration for a specific
application. We found that our OS can operate a system which
hosts 512 parallel running application instances with a parallel
efficiency of 70% to 78% while dedicating 11% of the system
to the OS and its services.

To summarize, our contributions are as follows.
• We propose a HW/SW co-designed distributed capability

system to drive future systems. Our capability system
extends M3 capabilities to support a large number of
non-cache-coherent heterogeneous cores.

• We implemented a new microkernel-based OS called
SEMPEROS that operates the system by employing
multiple microkernels and incorporates distributed
capability management protocols.

• We evaluated the distributed capability management
protocols by implementing the HW/SW co-design for
SEMPEROS in the gem5 simulator [14] to run real
applications: Nginx, SQLite, PostMark, and LevelDB.

2 Background

We first assess existing capability systems and explain the
basic principles of M3, which is the foundation of our work.

2.1 Capability Systems
The term capability was first used by Dennis and van Horn [20]
to describe a pointer to a resource, which provides the owner
access to the resource. There are three basic types of capabili-
ties: (1) partitioned capabilities, which have been employed in
multiple OSes such as KeyKOS [27], EROS [56] and various

L4 M3 CHERI
Scope Coherence Dom. Machine Address space
Enforcement MMU / Kernel DTU / Kernel CHERI co-proc.
Limitation Coherence Dom. Core count no revoke

Table 1: Classification of capability types.

L4 microkernels [30,36,40,62], (2) instruction set architecture
(ISA) capabilities, as implemented by the CAP computer [49]
and recently revived by CHERI [67] and (3) sparse capabilities
which are deployed in the password-capability system of the
Monash University [2] and in Amoeba [63].

Capabilities can be shared to exchange access rights. ISA
capabilities and sparse capabilities can be shared without
involving the kernel since their validity is either ensured by
hardware or checked by the kernel using a cryptographic
one-way function in the moment they are used. In contrast,
sharing of partitioned capabilities is observed by the kernel.

To analyze capability systems regarding their scalability, we
inspect their enforcement mechanism, their scope, and their
limitation in Table 1. The three categories of capability systems
in Table 1 represent a relevant subset of capability systems for
the scope of this work: (1) L4 capabilities which are partitioned
capabilities employed in L4 µ-kernels [30, 36, 40, 62], (2) M3

capabilities which are a special form of partitioned capabilities
involving a different enforcement mechanism explained in the
following, and lastly (3) CHERI capabilities which are ISA
capabilities implemented by the CHERI processor [64, 67].

L4 capabilities utilize the memory management unit
(MMU) of the processor to restrict a program’s memory access.
Access to other resources like communication channels or
process control are enforced by the kernel. Since L4 is built
for cache coherent machines both the scope of a capability and
the current limitation is a coherence domain.

In contrast, M3 introduces a hardware component called
data transfer unit (DTU) which provides message passing
between processing elements and a form of remote direct mem-
ory access. Consequently, memory access and communication
channels are enforced by the DTU and access to other system
resources by the kernel. The DTU is the only possibility
for a core to interact with other components. Hence it can
be used to control a core’s accesses to system resources via
NoC-level isolation. (We will give a more detailed explanation
of M3capabilities in the following section.) Importantly, M3

capabilities are valid within a whole machine spanning mul-
tiple coherence domains. However, M3 is currently limited by
using a single kernel core to control multiple application cores.

Lastly, the ISA capabilities of the CHERI system are en-
forced by a co-processor. CHERI capabilities contain a de-
scription of the resource, i.e., memory they point to. This infor-
mation is used by the co-processor to determine the validity of
accesses. The scope of a CHERI capability is an address space.
Thus, such a system typically uses one address space for multi-
ple applications. However, CHERI does not support revocation
and therefore does not have the problem we are solving.

710 2019 USENIX Annual Technical Conference USENIX Association

User PE

CU

DTU

Kernel PE

CU

DTU

User PE

CU

DTU

User PE

CU

DTU

User PE

CU

DTU

User PE

CU

DTU

Kernel

App App

App

App

App

S

R

R S

Figure 1: System architecture of M3. Each processing ele-
ment (PE) has a data transfer unit (DTU) connecting them to
the network-on-chip. DTUs are configured by the kernel PE.

For both L4-style and M3-style capabilities, scaling to
larger systems and maintaining consistency demands the
extension to multiple kernels and their coordination. For
L4-style systems, multiple kernels are required to scale beyond
coherence domains. For M3-style systems, multiple kernels
are required to scale to large core counts.

2.2 M3: HW/SW Co-designed Capabilities
To accommodate for the hardware trends of growing

systems without global cache coherence and an increasingly
diverse set of processing elements, we chose M3 as the
foundation of our work. Additionally, M3 already supports
byte-granular memory capabilities including their (selective)
revocation (in contrast to CHERI).

The hardware architecture of M3 is depicted in Figure 1.
The key idea of M3 is to introduce a new hardware component
next to each processing element (PE), which is used as an
abstraction for the heterogeneity of the PEs, ranging from
general purpose cores to accelerators. This hardware compo-
nent is called data transfer unit (DTU). All PEs are integrated
into a network-on-chip (NoC) as prevalent in current multi-
and manycore architectures [15, 39, 60]. The DTU represents
the gateway for the PE to access remote memory (memories
in other PEs or off-chip memory such as DRAM) and to
exchange messages with other PEs. As such, the DTU enables
a different isolation mechanism, called NoC-level isolation,
that does not require the PEs to possess hardware features
like MMUs and privileged mode execution to ensure isolation.
Instead, since all communication between the PEs and all
memory accesses are performed via the NoC, controlling the
access to the NoC suffices to control and isolate the PEs.

The M3 kernel runs on a dedicated PE, called kernel PE.
The M3 kernel is different from traditional kernels because
it does not run user applications on the same PE based on
user/kernel mode and entering the kernel via system call,
interrupt, or exception. Instead, the kernel runs the applications
on other PEs, called user PEs, and waits for system calls in

the form of messages, sent by the applications via the DTU
(red communication channel in Figure 1). Because there is
only a single privileged kernel PE in M3 this kernel PE quickly
becomes the limiting factor when scaling to large systems.

Data Transfer Unit (DTU). The DTU provides a number of
endpoints to connect with other DTUs or memory controllers.
Endpoints can represent send, receive or memory endpoints.
Establishing communication channels requires to configure
endpoints to these representations. This can only be done
by a privileged DTU. Initially all DTUs in the system are
privileged and get downgraded by the kernel during boot
up. Only the DTU of the kernel PE remains privileged. The
kernel is required to establish the communication channels
between applications (blue in Figure 1) which can be used by
applications later on without involving the kernel.

Operating system. The M3 OS follows a microkernel-based
approach, harnessing the features of the DTU to enforce
isolation at NoC-level. So far, it employs a single kernel
PE to manage the system. M3 implements drivers and
OS services such as filesystems as applications, like other
microkernel-based OSes. The execution container in M3 is
called virtual PE (VPE), which represents a single activity and
is comparable to a single-threaded process. Each VPE has its
own capability space and the M3 kernel offers system calls to
create, revoke, and exchange capabilities between the VPEs.

Services on M3. Services are registered at the M3 kernel
and offer an IPC interface for clients. Additionally, clients
can exchange capabilities with services. For example, M3’s
in-memory file system, m3fs, offers an IPC interface to
open files and perform meta operations such as mkdir and
unlink. To access the files’ data, the client requests memory
capabilities from m3fs for specific parts of the file. The client
can instruct the kernel to configure a memory endpoint for the
memory capability to perform the actual data access via the
DTU, without involving m3fs or the kernel again. This works
much like memory mapped I/O, but with byte granular access.
Reading the files’ data via memory capabilities without
involving the OS lends itself well for upcoming non-volatile
memory (NVM) architectures.

3 Design

Our design strives to build a scalable distributed capability
management for an operating system that uses multiple kernels.
An application’s scalability depends on two OS components:
the kernel itself, especially the capability subsystem, and
the OS services, e.g. a filesystem service. To investigate dis-
tributed capability management we concentrate on the kernel.
The kernel sets up communication channels and memory
mappings. How a service implementation uses the kernel
mechanisms depends on the type of service. A copy-on-write
filesystem for example can be implemented efficiently on top
of a capability system with a sufficiently fast revoke operation.

USENIX Association 2019 USENIX Annual Technical Conference 711

PE ID
(Partition #)

Kernel ID

000 000
001 000
010 000
011 001
... ...

Membership Table PE ID
000

VPE ID
001

Type
100

Object ID
000...

Kernel 0
VPE 1

Cap X
DDL Key:
000 001 100 000...

Child:
011 010 101 010...

Kernel 1
VPE 2

Cap Y
Parent:
000 001 100 000...

DDL Key:
011 010 101 010...

Figure 2: DDL addressing with globally valid DDL keys.

When an application performs a write it receives a mapping
to its own copy of data and access to the original data has
to be revoked. In a capability system with slow revocation
it is questionable whether an efficient implementation of
a copy-on-write filesystem is possible. The distributed
capability system presented in this work shall lay a foundation
for various service implementations, however, a discussion
on the scaling of OS services is out of scope for this work.

3.1 System Overview
SEMPEROS employs multiple µ-kernels, each kernel running
on a dedicated PE. This way we can distribute the handling of
system calls to improve the scalability of the capability system.
We use message passing as communication means between
the kernels since we are not assuming a cache coherent system.

PE groups. To maintain a large number of PEs, we divide them
into groups. Each group is managed by a single kernel; that
means, every group has to contain at least one PE capable of
executing a kernel. A simple general-purpose core is sufficient
for this purpose. The group’s kernel has exclusive control
over all PEs of its group and manages the corresponding
capabilities. The mapping of a PE’s capabilities to a kernel is
static in the current implementation of SEMPEROS because we
do not yet support the migration of PEs. The unit of execution
being scheduled on a PE is a virtual PE (VPE). A VPE is in
general comparable to a process. All system calls of a VPE are
handled by the kernel responsible for the PE, which the VPE is
running on. If a system call does not affect any VPEs outside
the group, only the group’s kernel is involved in handling
the request. Operations covering the VPEs of other groups
involve their kernels as well. A more detailed view on the
communication to handle system calls is given in Section 3.3.

Distributed state. The system state consists of the hardware
components (available PEs), the PE groups, and the resource
allocations and permissions, represented as capabilities. The
capabilities represent VPEs, byte-granular memory mappings,
or communication channels. Our high-level approach to
manage the aforementioned kernel data is to store it where
the data emerges and avoid replication as far as possible.
Thereby, we minimize the shared state, which reduces the
communication required to maintain the coherence.

DDL

µ-Kernel µ-Kernel

VPE2VPE1 VPE3 VPE4 . . .
A.1

A.2
A.3A.4

B.1

B.2

B.3
B.4

B.5

B.6

Figure 3: Two VPEs establish a communication channel. Se-
quence A shows the group-internal communication,whereas
sequence B is group-spanning involving two kernels.

3.2 Distributed Data Lookup (DDL)
The distributed data lookup is our capability addressing
scheme and the mechanism to determine the location of
kernel data. Each kernel object or capability which needs to be
referable by other kernels is given a DDL key which acts as its
global ID. In the top right corner of Figure 2 we illustrate how
we split the key’s value into several regions representing the
following: the PE ID and VPE ID, denoting the creator of the
object, and the Type and Object ID, describing the object itself.
To clarify the concept the amount of digits is deliberately kept
smaller than our system requires in practice. We use the PE
ID to split the key space into multiple partitions. Each PE in
the system is allocated to one such partition, which in turn are
assigned to kernels individually. The mapping of partitions
to the kernels designates the PE groups and is stored in a
membership table which is present at each kernel and depicted
on the left of Figure 2. To support the migration of PEs, in
SEMPEROS, the mappings in the membership table would
have to be updated at all kernels of the system However, our
current implementation does not support migration yet.

With this addressing scheme we are able to reference
objects, for example capabilities, across the whole system
which is a key enabler for our capability scheme. The lower
right part of Figure 2 illustrates how the relations between the
capabilities are tracked by this means. It depicts a situation
in which two applications, VPE 1 and VPE 2, are residing
in different PE groups, thus managed by different kernels.
The (simplified) excerpt of the kernels’ internal capability
mappings shows that VPE 1 has a capability Cap X and
delegated it to VPE 2, which in turn created Cap Y. This
group-spanning relation is tracked using the DDL keys.

3.3 System Call Handling
System calls are implemented by messages sent to the kernel
PE. Some of the actions taken by the kernel receiving a system
call involve agreement between the kernels depending on
the involved VPEs. Hence, we divide the handling of system
calls into group-internal and group-spanning operations. The
different message sequences are outlined in Figure 3.

Group-internal operations. Sequence A in Figure 3 depicts
the establishing of a communication channel between two

712 2019 USENIX Annual Technical Conference USENIX Association

VPEs (2 & 3) in the same group. Such an operation only
involves resources managed by a single kernel, thus it is called
a group-internal operation. The sequence starts with a message
to the kernel (A.1), which is the counterpart to the traditional
mode switch. The connection request is forwarded to VPE3
(A.2) which then responds to the kernel. Depending on the
response, the kernel hands out the appropriate capabilities and
informs VPE2 (A.4). Once the endpoint for the exchanged
communication capability is configured, the kernel is not
involved in further communication.

Group-spanning operations. Sequence B in Figure 3 shows
the message flow when VPEs of different PE groups establish
a communication channel. The second kernel is involved in the
operation because it is in charge of VPE4’s capabilities. This
is where our distributed capability protocol will be used. After
receiving the system call in step B.1, the first kernel uses the
DDL to determine which kernel is responsible for VPE4 in step
B.2 and forwards the request. Steps B.3 and B.4 are identical
to A.2 and A.3 of the group-internal operation. After these
steps, the channel at VPE4’s side is prepared which the first
kernel indicates to VPE 1. As for the group-internal operations,
the communication via the created channel does not involve
the kernel anymore after the endpoint has been configured.

3.4 Capabilities
SEMPEROS employs capabilities for managing permissions.
Each VPE has its own set of capabilities, describing the
resources it can access. To share resources with other VPEs,
capabilities can be exchanged. In SEMPEROS delegating
a capability starts with a system call by the supplying VPE
indicating to the kernel which capability should be delegated.
The kernel makes a copy of the selected capability and adds
that copy to the capability’s children. The copied capability
(the child) is handed over to the VPE which shall receive the
new access rights. If the sharing is no longer desired, the access
rights to the resource can be withdrawn recursively by revoking
the capability. These operations require action of the kernel.

From the kernel’s perspective, a capability references
a kernel object, a VPE, and other capabilities. The kernel
object is the resource this capability permits access to
and the reference to the VPE (which is a kernel object
of its own) tells the kernel who holds these access rights.
Individual references to other capabilities are maintained
to track sharing as is done by the mapping database in other
microkernel-based systems [30, 36, 40, 62]. SEMPEROS keeps
sharing information in a tree structure which is used to enable
recursive revocation. In the capability tree, capabilities of
different VPEs are interlinked, as indicated in Figure 2.

Challenges in a distributed setting. Capabilities are modi-
fied by multiple operations, requested via system calls from
applications. For example, when creating a VPE, a capability
to control the new VPE is delegated to the parent VPE. We
call such actions capability modifying operations (CMO).

Running a system with multiple independent kernel instances
introduces new properties of capability handling:

1. Multiple CMOs can be in flight at the same time.
2. CMOs can involve the modification of capabilities owned

by other kernel instances.
3. A capability managed by one kernel can reference a

kernel object owned by another kernel.
The first property requires to assure that the modifications
of one kernel do not overlap with changes of another kernel.
The second and third property are results of our system’s
distributed nature. Resources such as a service, which is
resembled by a service capability, could be used by VPEs of
different PE groups. Consider the connection establishment to
a service. Assuming that the service is controlled by kernel 1
and the connecting VPE by kernel 2, kernel 2 would create
a session capability. A session can only be created between
a client and a service; hence, the client’s session capability
is listed as a child of the service capability. This modification
of the service capability’s list of children involves the other
kernel, because the service capability is owned by kernel 1.

Since capabilities are used to control access to resources,
we host a capability at the kernel which owns the resource. Yet,
this attribution is not always obvious. The example of a session
capability illustrates the third property. One could argue, that
the session is a resource which is used by both, the service and
the client; thus, any of the two corresponding kernels could
actually be responsible for the session. To avoid the overhead
of coordination between multiple resource owners, we allow
only one kernel to be the owner of a resource.

4 Implementation

SEMPEROS implements a distributed capability scheme with
multiple kernels in order to scale to large numbers of PEs. We
based SEMPEROS on M3 [5]. SEMPEROS adds PE groups to
the base system, requiring coordination of the kernels which we
implement by so called inter-kernel calls explained in the fol-
lowing Section 4.1. Furthermore, SEMPEROS is implemented
as a multithreaded kernel for reasons explained in Section 4.2.
The transparent integration of the PE groups into a single sys-
tem presented to the applications requires the kernels to imple-
ment a distributed capability system described in Section 4.3.

4.1 Inter-Kernel Calls
The system call interface of SEMPEROS did not change
compared to M3 though the action to be taken by the kernel
changed to incorporate the coordination with other kernels.
The kernels in SEMPEROS communicate via messages
adhering to a messaging protocol. We call this type of remote
procedure calls inter-kernel calls. These calls can be split into
three functional groups: (1) messages to start up and shutdown
kernels and OS services, (2) messages to create connections
to the services in other PE groups, and lastly, (3) messages

USENIX Association 2019 USENIX Annual Technical Conference 713

used to exchange and revoke capabilities across PE-group
boundaries. Messages of the last two groups are part of the
distributed capability protocol.

The DTU, which is used to send and receive messages,
provides only a limited number of message slots. If this limit
is exceeded then the messages will be lost. To prevent this, we
limit the number of in-flight messages between two kernels. We
dedicate a certain number of DTU endpoints for the kernel-to-
kernel communication, which also determines the maximum
number of kernels supported by the system. We keep track of
free message slots at each kernel to avoid the message loss.

4.2 Multithreaded Kernel

The kernel needs to split some operations, e.g. revocation
or service requests across the PE groups, into multiple parts
to prevent deadlocks. For instance, a revocation might run
into a deadlock in the following situation: three capabilities
are involved forming the capability tree: A1→B2→C1. The
index indicates the kernel which owns the capability. If A1
is revoked, kernel 1 contacts kernel 2 which in turn contacts
kernel 1 again to revoke capability C1. If kernel 1 would block
on the inter-kernel call to kernel 2, the system would end up in
a deadlock because kernel 2 is waiting for kernel 1 to respond.
While this can be implemented as an event-driven system, this
involves the danger to loose the overview of the logical flow
of complicated operations like the revocation.

Therefore, we decided to use cooperative multithreading
within the kernel. This approach allowed us to implement such
capability operations sequentially with dedicated preemption
points in between, which made it comparatively easy to
reason about the code. Note that, in contrast to simultaneous
multithreading, SEMPEROS only executes one thread per
kernel at a time because it executes on one single-threaded
core. The preemption points do not only prevent deadlocks,
but also allow to process other system calls or requests from
other kernels until the suspended operation can be continued.

To prevent the denial-of-service attacks on the kernel,
the kernel cannot spawn new threads on behalf of system
calls. Instead, a fixed number of threads needs to suffice. We
create a kernel’s thread pool at start up. The size of the pool is
determined by the number of system calls and kernel requests
which can arrive at the same time. It is calculated as:

Vgroup+Kmax∗Min f light (1)

Since each VPE can issue only one system call at a time, the
kernel needs one thread per VPE in its PE group, denoted
as Vgroup. The number of kernel requests is limited by the
maximum amount of kernels in the system, denoted as Kmax,
multiplied by the maximum number of in-flight messages
between two kernels, denoted as Min f light .

4.3 Distributed Capability Management
SEMPEROS uses capabilities to control the access to resources
such as VPEs, service connections, send/receive endpoints
and memory. Applications can create, use, exchange, and
revoke capabilities. Creation means to create a new capability
for a given resource (e.g., memory) and usage means to use
a previously created capability without changing it (e.g.,
configure a DTU endpoint for a send capability). Exchanges
and revokes are capability modifying operations (CMO),
requiring the most attention. Exchanging capabilities allows
two VPEs to share resources and it comes in two flavors: a
capability can be delegated to another VPE, and obtained from
another VPE. Capability exchanges can be undone with the
revoke operation. Revocation is performed recursively, that
is, if VPE V1 has delegated a capability to VPE V2, which in
turn has delegated it to V3 and V4, and V1 revokes its capability,
it is revoked from all four VPEs.

As in other capability systems [30, 36, 40, 62], the recur-
sive revoke requires a way to track former exchanges. The
kernel uses a so-called mapping database for this purpose. In
SEMPEROS each capability has a parent and a list of children
to explicitly track all such links. These tree relations can span
multiple kernels; hence,we use DDL keys to identify and locate
the capabilities across all kernels. The mapping database is up-
dated on every CMO. In a multikernel setting multiple CMOs
can be started concurrently potentially involving the same capa-
bility. We next describe how inconsistent updates on the map-
ping database are prevented if multiple CMOs run in parallel.

4.3.1 Interference between CMOs

Exchanging a capability consists of two actions: (1) creating a
new capability based on the donor’s capability and (2) inserting
the new capability into the capability tree. The latter requires
to store a reference to the parent capability and to update the
parent’s list of children. Revoking a capability requires to re-
voke all of its children and to remove it from the parent’s list of
children. Both need to perform inter-kernel calls in case capa-
bilities reside at other kernels, possibly leading to interference.

An important precondition for all operations is that
messages between two kernels need to sustain ordering. More
specifically, if kernel K1 first sends a message M1 to kernel K2,
followed by a message M2 to kernel K2, then K2 has to receive
M1 before M2.

Table 2 shows an overview of all combinations and their
effects. The operation in the leftmost column is started first and
overlaps with the operation in the topmost row. The following
walks through the combinations and describes the effects.

Serialized. Overlapping exchange operations do not present
a problem for our scheme because they serialize at one kernel.
For example, if two VPEs obtain a capability from VPE V1,
these operations serialize at the kernel that manages V1. In
general, each VPE can only perform one system call at a time
preventing two parallel delegates initiated by the same VPE.

714 2019 USENIX Annual Technical Conference USENIX Association

1st 2nd Obtain Delegate Revoke/Crash

Obtain XSerialized XSerialized ! Orphaned
Delegate XSerialized XSerialized E Invalid
Revoke ! Pointless ! Pointless E Incomplete

Table 2: Types of interference with overlapping CMOs.

However, during an exchange operation initiated by a VPE V1
other VPEs could exchange capabilities with V1, which again
serializes at the kernel that manages V1.

Orphaned. The obtain operation needs to ask the capability
owner for permission before being able to obtain the capability.
If the owner resides at a different kernel this requires an
inter-kernel call. Before its completion nothing is changed in
the obtainer’s capability tree. However, the obtainer could be
killed while waiting for the inter-kernel call. This leaves an
orphaned child capability in the owner’s capability tree, in case
the owner agreed to the exchange. The orphaned capability can-
not be accessed by anyone, but it wastes a bit of memory, which
will be freed the latest when its parent capability is revoked.

Invalid. The delegate operation is similar to obtain regarding
leaving the delegator’s capability tree untouched until
the inter-kernel call returns successfully. However, if the
delegator is killed while waiting for the inter-kernel call, the
receiving VPE might have already received the capability. This
constitutes a problem, because the child of the capability in
delegation does not yet exist in the delegator’s capability tree.
That is, although all capabilities of the delegator are revoked,
the delegated capability stays valid at the receiving VPE.

Incomplete. The naive implementation of the revoke operation
would simply perform a depth-first walk through the capability
tree, remove local capabilities on its own and perform the
inter-kernel calls to remove remote capabilities. However, if
two revoke operations run in parallel on overlapping capability
subtrees, this approach results in early replies to revoke system
calls, that is, acknowledgements of incomplete revokes.

For instance, let us consider the following capability tree
with the owning kernel as the index: A1→B2→C3. If a VPE
requests the revoke of A1, kernel K1 performs a call to K2 to
revoke the remaining part of the tree. If another VPE requested
the revoke of B2 in the meantime, K2 does not know B2 any-
more, potentially leading to an early response to K1. The reason
is that K2 might still be waiting for K3 to revoke C3. Since ap-
plications have to rely on the semantic that completed revokes
are indeed completed, we consider this behavior unacceptable.

Pointless. The revoke operation requires inter-kernel calls if
the capability tree spans multiple kernels. Hence, VPEs might
request capability exchanges of not yet revoked capabilities
within this tree. This does not lead to inconsistencies because
these capabilities would be revoked as soon as the running
revoke operation continues. However, the exchange is
pointless because it is already known that the capabilities will
be revoked afterwards.

4.3.2 Capability Exchange

This section details the capability exchange operations to
address the problems described in the previous section. As
already mentioned, the beginning of obtain and delegate is
similar. If a VPE (V1) requests an exchange, the corresponding
kernel (K1) checks whether the other party (V2) is in the same
PE group. If so, the operation is handled by K1. If V1 and V2
are in different PE groups, K1 forwards the exchange request
to the second kernel (K2). K2 asks V2 whether it accepts the
capability exchange. If V2 denies the exchange, the operation
is aborted and a corresponding reply is sent to K1. Otherwise,
we distinguish between obtain and delegate:
(1) Obtain:.V2’s capability (C2) will become the parent ofV1’s
new capability (C1). Hence,C1 will be added toC2’s list of child
capabilities. Afterwards, K2 sends a reply to K1. As outlined
previously, if V1 was killed in the meantime, C2 stays in the
child capability list as an orphaned capability. To prevent a per-
manent memory waste,we let K1 send a notification to K2 on be-
half of K2’s reply for the obtain operation in case V1 was killed.
(2) Delegate: . K2 creates a new capability (C2) for V2 with C1
as its parent. If C1 was revoked in the meantime, V2’s resource
access through C2 would be unjustified. To avoid this, we
implement delegation with a two-way handshake. Instead of
inserting C2 into V2’s capability tree, K2 only sends a reply to
K1. After that K1 adds C2 to C1’s list of children and sends an
acknowledgement back to K2 to actually insert C2 into V2’s
capability tree.

Note that the two-way handshake creates an orphaned capa-
bility if V2 is killed while waiting for the acknowledgement of
K1. As for obtain, we handle this case by sending an error back
to K1 to allow a quick removal of the orphaned capability.

4.3.3 Capability Revocation

Like the capability exchange, the revocation requires inter-
kernel calls in case the capability tree spans multiple kernels.
To keep the kernel responsive it should not wait synchronously
for the reply of another kernel. Instead, the revoke should be
paused using the threading infrastructure introduced in Sec-
tion 4.2. However, in contrast to the exchange operation, the
number of inter-kernel calls for a revoke can be influenced by
applications. For example, two malicious applications residing
in different PE groups could exchange a capability back and
forth, building a deep hierarchy of capabilities at alternating
kernels. Revoking this capability hierarchy would lead to
inter-kernel calls sent back and forth between the two kernels.
Thus, the naive approach of spawning a new thread for every
incoming revoke inter-kernel call cannot be used, because this
would enable denial-of-service attacks. Our solution uses a
maximum of two threads per kernel to avoid this attack.

To avoid acknowledgements of incomplete revokes, our
algorithm uses two phases, similar to mark-and-sweep [46].
Algorithm 1 presents a high-level overview of the approach.
The function revoke_syscall_hdlr is executed by the

USENIX Association 2019 USENIX Annual Technical Conference 715

kernel that receives the revoke system call. First, it calls
revoke_children, which recursively marks all local capa-
bilities and sends inter-kernel calls for remote capabilities.
Each capability maintains a counter for outstanding kernel
replies. If it encountered any remote capabilities, the function
wait_for_remote_children waits for the kernel replies by
pausing the thread.

The inter-kernel call is handled by
receive_revoke_request, which will also call
revoke_children. In this case, the thread will not be
paused to stay at a fixed number of threads. Instead, the
thread calls receive_revoke_reply in case there are
no outstanding kernel replies and returns. The function
receive_revoke_reply is also called whenever a reply to an
inter-kernel call is received, which first updates the counter of
the capability accordingly. If there are no further outstanding
kernel replies, it deletes the capability tree starting at the given
capability. Afterwards, it wakes up the syscall thread or sends
a reply, depending on whether this kernel started the revoke
operation or participated due to an inter-kernel call.

To keep the pseudo code brief it does not show how already
running revocations for a capability are handled. In this
case, revoke_syscall_hdlr will also wait for the already
outstanding kernel replies to prevent acknowledgement of
an incomplete revoke. Furthermore, the two phases allow
us to immediately deny exchanges of capabilities that are in
revocation, which prevents pointless capability exchanges.

5 Evaluation

5.1 Experimental Testbed
We evaluate SEMPEROS using the gem5 system simula-
tor [14], which enables us to evaluate the hardware/software
co-designed capability system and perform experiments on
systems larger than currently available. The system is com-
posed of 640 out-of-order x86_64 cores, which are clocked at
2 GHz. However, the cores used for applications could also be
exchanged with any other architecture or accelerator. Each core
is equipped with a DTU similar to the one used in Asmussen et
al.’s work [5]. We modified the mechanism to store incoming
messages to support delayed replying which enables us to
interrupt kernel threads. Messages are kept in a fixed number
of slots. Each DTU provides 16 endpoints with 32 message
slots each. Kernel PEs use one endpoint to send messages
to other kernels, one endpoint to send messages to services,
and 14 endpoints to receive messages. Six of the receiving
endpoints are used for the system calls. Each kernel can handle
up to 192 PEs in the current implementation since each VPE
can only issue one (blocking) system call at a time. Eight
endpoints are used to receive messages from other kernels. In
contrast to system calls, the inter-kernel calls are non-blocking
and we limit the number of in-flight messages to four messages
per kernel. Thus, at most 64 kernel PEs are supported.

Algorithm 1: Capability revocation
1 Function revoke_syscall_hdlr(capability)
2 revoke_children(capability)
3 wait_for_remote_children()
4 Function revoke_children(capability)
5 mark_for_revocation(capability)
6 foreach child of capability do
7 if child is local then
8 revoke_children(child)
9 else

10 send_revoke_request(child)
11 end
12 end
13 Function receive_revoke_request(capability)
14 revoke_children(capability)
15 receive_revoke_reply(capability) // see line 10
16 Function receive_revoke_reply(capability)
17 if all revoke requests are serviced then
18 delete_tree(capability)
19 if initiator then
20 notify_syscall_hdlr_thread()
21 else
22 send_revoke_reply()
23 end
24 end

Operation Scope SemperOS M3 Increase
(cycles) (cycles)

Exchange Local 3597 3250 10.7%
Exchange Spanning 6484 — —
Revoke Local 1997 1423 40.3%
Revoke Spanning 3876 — —

Table 3: Runtimes of capability operations.

5.2 Microbenchmarks

Capability exchange and revocation. To examine the ex-
change and revocation of capabilities we start two applications
where the second application obtains a capability from
the first, followed by a revoke by the first application. We
distinguish two scopes for these operations: group-local and
group-spanning. In the group-local case one kernel manages
both applications and their capabilities. The group-spanning
case involves two kernels, each handling one application.

Table 3 lists the execution times in cycles for exchanging
and revoking capabilities in the group-local and group-
spanning case. We can only compare the group-local case
to M3, because in M3 there is only one kernel. To support
multiple kernels, SEMPEROS references parent and child
capabilities via DDL keys instead of plain pointers. Analyzing
the DDL key to determine the capability’s owning kernel and
VPE introduces overhead in the local case. Group-spanning
operations involve another kernel, which almost doubles the
time of exchanges and revokes. This suggests, that applications
should be assigned to PE groups such that the group-spanning
operations are minimized.

Chain revocation. In the chain revocation benchmark we
measure the time to revoke a number of capabilities forming
a chain. Such a chain emerges when a capability is exchanged
with an application which in turn exchanges this capability

716 2019 USENIX Annual Technical Conference USENIX Association

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

R
e
v
o
c
a
ti
o
n

 T
im

e
 (

K
 c

y
c
le

s
)

Length of Capability Chain

Local chain (SemperOS)
Group−spanning chain (SemperOS)

Local chain (M
3
)

Figure 4: Revoking capability chains of varying sizes.

again with another application and so on. Figure 4 depicts the
time to revoke such capability chains depending on their length.
A local chain comprises only applications managed by one
kernel and can again be compared to M3. As the previous mi-
crobenchmarks showed, revocation in SEMPEROS needs about
twice the time compared to M3 due to the added indirections.

The group-spanning chain depicts a scenario in which an
ill-behaving application repeatedly exchanges a capability
between two VPEs, which are managed by different kernels.
This creates a circular dependency between the two involved
kernels during revocation. However, as described in Sec-
tion 4.3.3, this is not a problem for our revocation algorithm.
In particular, only the kernel thread for the revoke system
call is blocked during the operation. Still, the revocation of
a group-spanning chain takes about three times longer than
revoking a group-local chain, because messages are sent back
and forth between the two kernels.

Tree revocation. This microbenchmark resembles a situation,
in which an application exchanges a capability with many other
applications, for example, to establish shared memory. This
results in a capability tree of one root capability with several
children. Figure 5 shows the performance of the revocation
depending on the capability count and their distribution among
kernels. The line labeled with 1 + 0 Kernels represents the local
scenario in which the whole capability tree is managed by
one kernel. For all other lines, the second number indicates the
number of kernels the child capabilities have been distributed
to. After exchanging the capabilities, the application owning
the root capability revokes the capability tree. Figure 5
illustrates that the revocation scales to many capabilities and
kernels. It also shows that our current implementation can
take advantage of multiple kernels by performing the revoke
in parallel, but the effect is rather small. It currently leads to a
break-even at 80 child capabilities, when comparing the local
revocation time with a parallel revocation with 12 kernels.
However, we believe that this can be further improved by the
use of message batching. So far, the kernel managing the root
capability sends out one message for each child capability.

5.3 Application-level Benchmarks
We next perform application-level benchmarks to examine
the scalability of SEMPEROS in more realistic settings.

 0

 50

 100

 150

 200

 0 16 32 48 64 80 96 112 128

R
e
v
o
c
a
ti
o

n
 T

im
e
 (

µ
s
)

Capability Count

1 + 0 Kernels
1 + 1 Kernels
1 + 4 Kernels
1 + 8 Kernels

1 + 12 Kernels

Figure 5: Parallel revocation of capability trees with
different breadths utilizing multiple kernels.

5.3.1 Experimental Setup

Applications. We use seven different applications to analyze
the scalability: tar and untar pack or unpack an archive of
4 MiB containing five files of sizes between 128 and 2048 KiB.
The find benchmark scans a directory tree with 80 entries
for a non-existent file. The SQLite database and the LevelDB
key-value store both create a table to insert 8 entries into it and
select them afterwards. The PostMark mailserver application
resembles a heavily loaded mail server, thus does a lot of
operations on the mail files. (In addition, we evaluated Nginx
Webserver in Section 5.3.3.) Note that we were forced to
use rather short running applications to keep the simulation
times of gem5 acceptable (e.g. SQLite required five days on a
48-core machine). The selected applications are well suited for
this evaluation since they make heavy use of the OS in various
ways. In particular they use the in-memory filesystem service
which implements file access by handing out the memory
capabilities to the clients so they can access the memory region
in which the requested file is stored. More specifically, the
filesystem service hands out a memory capability to a range
of the file’s contents. If the application exceeds this range,
for example by appending to the file, it is provided with an
additional memory capability to the next range. When the file
is closed again, the memory capabilities are revoked.

Table 4 lists the number of capability operations for the
individual benchmark applications. We show the numbers for
a single benchmark instance and 512 parallel instances. The
capability operations per second for 512 benchmark instances
are retrieved when employing 64 kernels and 64 filesystem
services; we will explain what this means in the following
paragraph on our methodology. The tar and untar benchmarks
are memory-bound applications exposing a regular read and
write pattern which requires the filesystem service to hand
out several memory capabilities throughout the benchmark
execution. The find benchmark mainly stresses the filesystem
service by doing many stat calls to examine the directory’s
metadata. The small database engine of SQLite exhibits
a more compute intensive behavior with several bursts of
capability operations when opening and closing the database
and the database journal whereas the LevelDB key-value
store accesses its data files with a higher frequency resulting

USENIX Association 2019 USENIX Annual Technical Conference 717

Benchmark Cap. ops Cap. ops/s Cap. ops Cap. ops/s
of instances 1 512
tar 21 7,295 10,752 191,703
untar 11 4,012 5,632 100,772
find 3 1,310 1,536 27,096
SQLite 24 5,987 12,288 207,072
LevelDB 22 8,749 11,264 201,204
PostMark 38 21,166 19,456 348,285

Table 4: Number of capability operations for the selected
applications. Values shown for 1 and 512 parallel bench-
mark instances. The capability operations per second are
the average rate of capability operations over the runtime.

in more capability operations per second. PostMark does
little computation and operates on many files resulting in the
highest load for the capability system.

Performance metric. We use the system call tracing
infrastructure introduced by Asmussen et al. [5] to run the
benchmarks. We run an application on Linux, trace the system
calls including timing information, and replay the trace on
SEMPEROS while checking for correct execution. We account
for the system calls which are not supported by our system
yet by waiting for the time it took to execute them on Linux.
However, all relevant system calls (especially those to interact
with the file system) are executed. We replay the same trace
multiple times in parallel, which is denoted as number of
benchmark or application instances in the graphs. We assess
scalability using the parallel efficiency of these benchmark
instances. In a perfectly scaling system, a benchmark instance
will have the same execution time when running alone as
when running with other instances in parallel. However, due to
resource contention for the kernel and for hardware resources
like the interconnect and the memory controller, each instance
will need more time if multiple of them are executed in parallel.
The discrepancy in runtime is shown by parallel efficiency.

Methodology. There are two main factors influencing the
scalability of applications running in a µ-kernel-based system:
the OS services and the kernel. The OS service used by the
examined applications is the m3fs filesystem. To concentrate
our analysis on the scalability of the kernel, especially the
distributed capability management, we simplify scaling of
the m3fs service by adding more service instances, each
having its own copy of the filesystem image in memory. We
exclude accessing the actual memory locations of the files
because our current simulator does not include a scalable
memory architecture yet. Instead we let the application
compute for the amount of time the access would have taken,
assuming a non-contended memory controller. We argue
that this still produces useful results since we do not want to
show the scalability of the memory architecture but of the
distributed capability scheme. Furthermore, a non-contended
memory puts even more burden on the OS because capability
operations might occur with higher frequency.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 64 128 192 256 320 384 448 512

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

of Benchmark Instances

tar
untar

find
SQLite

LevelDB
PostMark

Figure 6: Parallel efficiency of all six applications using 32
kernels and 32 file service instances.

5.3.2 Results

Scalability. Figure 6 depicts the parallel efficiency of the
six applications when distributing them equally between 32
kernels and 32 filesystem services. With this configuration
the tar benchmark already reaches an efficiency of 78% when
running 512 instances in parallel. However, SQLite achieves
only 70%, which is not the optimal configuration for this
type of application as we will show in the next measurement
(see Figure 7). We next discuss how to determine a fitting
configuration for an application.

Service dependence. To determine the number of services
required to scale an application we set the number of kernels
to a high number and then gradually increase the number
of services. As long as there are less services than kernels,
services are shared between PE groups. Kernels which host
a service in their PE group prefer to connect their applications
to the service in their PE group over a service in another
PE group. Figure 7 shows the parallel efficiency for tar and
SQLite depending on the number of services.

The tar benchmark is not very dependent on the filesystem
service, which can be inferred from the fact that using 48 ser-
vices does not pose any improvement over 32 services. In fact,
it seems already fair enough to use only 16 service instances.
SQLite shows a higher dependence on the number of services.
For example, increasing the number of service instances from
16 to 32 leads to further improvement of 9 percent points.

Kernel dependence. Similarly to the dependence on the num-
ber of services, we now show the influence of the number of ker-
nels. Figure 8 depicts the parallel efficiency of PostMark and
LevelDB using a fixed number of services. LevelDB exhibits
smaller improvements when employing more than 16 kernels
compared to PostMark, indicating that PostMark is even more
susceptible to the number of kernels. However, all applications
show a relatively high sensitivity to the number of kernels,
which in fact are mostly handling capability operations. This
confirms our expectation that a scalable distributed capability
system is a vital part of a fast µ-kernel-based OS for the future
hardware architectures. The analysis so far only involved tun-
ing for parallel efficiency, which is analogous to optimize for
execution time. We next discuss the efficient usage of PEs.

718 2019 USENIX Annual Technical Conference USENIX Association

 60
 65
 70
 75
 80
 85
 90
 95

 100

 128 256 384 512

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

of Benchmark Instances

(a) tar benchmark

 60
 65
 70
 75
 80
 85
 90
 95

 100

 128 256 384 512

of Benchmark Instances

(b) SQLite key-value store

64 Kernels 4 Services
64 Kernels 8 Services

64 Kernels 16 Services

64 Kernels 32 Services
64 Kernels 48 Services
64 Kernels 64 Services

Figure 7: Service dependence: Parallel efficiency of tar and
SQLite with fixed number of kernels.

 60
 65
 70
 75
 80
 85
 90
 95

 100

 128 256 384 512

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

of Benchmark Instances

(a) PostMark mail server

 60
 65
 70
 75
 80
 85
 90
 95

 100

 128 256 384 512

of Benchmark Instances

(b) LevelDB key-value store

4 Kernels 64 Services
8 Kernels 64 Services

16 Kernels 64 Services

32 Kernels 64 Services
48 Kernels 64 Services
64 Kernels 64 Services

Figure 8: Kernel dependence: Parallel efficiency of
PostMark and LevelDB with fixed number of services.

System efficiency. If we consider the whole system and ac-
count for the PEs used by the OS with an efficiency of zero, the
optimal configurations change. We call this measure the system
efficiency, which is depicted in Figure 9. Instead of showing the
efficiency only in relation to the benchmark instances executed
we relate them to the total number of PEs. By means of this
metric we can tune a system for throughput and determine
the optimal number of kernels and services for an application
depending on the number of PEs available. For SQLite this
implies to choose 16 kernels and 16 service instances if the
system had 192 PEs, but if the system would consist of 256
PEs we would run it with 32 kernels and 16 services.

5.3.3 Server Benchmark

We next detail the results for the Nginx webserver [53]. We
used our system call tracing infrastructure to record the
behavior of Nginx on Linux when handling requests. We
stressed Nginx similar to the Apache ab benchmark [1] by
introducing PEs that resemble a network interface. These
PEs constantly send out requests to our webserver processes
running on separate PEs. These PEs replay the trace upon
receiving a request and send the response back. Figure 10
depicts the number of requests per second of all webserver

 62

 64

 66

 68

 70

 72

 128 256 384 512 640

S
y
s
te

m
 E

ff
ic

ie
n
c
y
 (

%
)

PE Count

(a) PostMark mail server

 62

 64

 66

 68

 70

 72

 128 256 384 512 640

PE Count

(b) SQLite key-value store

8 Kernels 8 Services
16 Kernels 16 Services
32 Kernels 16 Services

32 Kernels 32 Services
48 Kernels 32 Services
64 Kernels 32 Services

Figure 9: System efficiency of PostMark and SQLite with
different configurations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 32 64 96 128 160 192 224 256

R
e
q
u
e

s
ts

 /
 s

 (
x
1
0

0
0

)

of Server Processes

8 Kernels, 8 Services
8 Kernels, 16 Services
8 Kernels, 32 Services

16 Kernels, 16 Services
32 Kernels, 16 Services
32 Kernels, 32 Services

Figure 10: Scalability of the Nginx webserver.

PEs. Despite this OS-intensive benchmark, the number of
requests scales almost linearly when employing 32 kernels and
32 services. Using less resources for the OS flattens the graph.

6 Related Work

Capability systems. The evaluation of previous capability sys-
tems typically resorted to performance measurements of single
core or small systems. Since many capability systems, such as
Mach, Fluke or EROS [19,23,56] are based on µ-kernels which
had to prove their enhanced efficiency over previous µ-kernel
generations [29,41], their kernel mechanisms like inter-process
communication, system-call performance, context-switch
overhead or process-creation time have been measured to
demonstrate their in fact competitive performance. With these
measurements it is only partly possible to derive the perfor-
mance of the capability subsystem. So far the only work which
included capabilities in a distributed setting is Barrelfish [11]
but only parts of the capability subsystem’s scalability can be
concluded from the reported results. Barrelfish’s two-phase
commit approach to reach agreement (determining the
relations between capabilities) requires broadcasting to every
other kernel in the system, which is different from our approach.
The revocation in Barrelfish uses a mark-sweep algorithm and

USENIX Association 2019 USENIX Annual Technical Conference 719

so called delete cascades which also require to broadcast to
every kernel if capabilities have cross-kernel relations because
these are not stored explicitly in Barrelfish [25]. Even though
this broadcast operation can be tuned to fit the interconnect
of the machine it is running on [33], it is unknown how well
it performs in conjunction with their capability scheme.

Other capability systems like Capsicum [65] and
CHERI [67] emphasize their sandboxing features and com-
patibility to existing software by executing application bench-
marks. However, these do not include any assessment of large
scalable systems. Further, CHERI does not support revocation,
thus eliminating the overhead of tracking capability relations.

Operating systems. Apart from a scalable capability sub-
system the OS also has to entail mechanisms to drive large
possibly heterogeneous systems. The monolithic architecture
of Linux, which runs a shared-memory kernel on homoge-
neous cores, has many scalability bottlenecks [16, 17, 26].
Developers try to counteract that by utilizing scalable data
structures like RCU [47] within the kernel. To investigate more
profound changes researchers built frameworks like K42 [37]
to enable development and testing of new approaches like
clustered objects [3]. Song et al. proposed Cerberus [61] which
runs multiple Linux instances on top of a virtualization layer.

Systems like Popcorn Linux [8–10],and K2 [42] adapt Linux
for heterogeneous ISAs. These systems also run multiple Linux
instances closely resembling a distributed system. Rack-scale
operating systems like LegoOS employ multiple distributed
components to manage disaggregated resources [55]. They can
benefit from our approach when combined with capabilities.

Barrelfish proposed the multikernel approach which aims
to improve the scalability and support for many heterogeneous
cores by constructing the OS as a distributed system. Cosh [12],
a derivative of Barrelfish, demonstrated how to share and pro-
vide the OS services across different domains. While Cosh de-
fines an interface how to communicate between different coher-
ence islands and adds guarantees regarding memory accesses
after sharing, it is not discussing the underlying capability sys-
tem. Barrelfish/DC [68] examined the separation of kernel
state from a kernel instantiation to provide an elastic system.
Fos [66] targets manycore systems by proposing the concept
of service fleets to provide OS services via spatially distributed
servers. Importantly, these OSes are based on communication
over message passing and do not assume cache coherent shared
memory. Our system SEMPEROS shares the same two design
principles: (1) the multikernel approach, and (2) communica-
tion via message passing. However, the design of Barrelfish
and fos require executing a kernel on every core. Whereas,
we based our work on M3 [5] which runs the kernel only on a
single dedicated core. This allows us to explore another design
point in the multikernel design space in which the capabilities
of several processing units are managed by one kernel which
has to coordinate with other kernels to scale to large systems.

The philosophy of providing OS services without executing
a kernel on every core has also been explored in NIX [7],

which is based on Plan 9 [52]. NIX proposes an OS with a
concept of application cores which do not execute a kernel
to prevent OS noise. However, the communication in NIX is
based on shared memory. Similarly, Helios [50], an extension
of Singularity [22], minimizes the kernel requirement for
some cores to a smaller satellite kernel.

Motivated by the recent trends in hardware, in a similar
spirit but with a different focus, new OSes such as Arrakis [51],
IX [13], and Omnix [57] have been proposed. These OSes
share a similar design philosophy to SEMPEROS where we
aim to provide applications direct control of the underlying
hardware to improve the performance.

Alternatively, there are several proposals to support OS
services for one specific type of accelerator. For instance,
GPUfs [58], GPUNet [35], and PTask [54] are designed
for GPUs. Likewise, BORPH [59], FPGAFS [38], etc. are
designed to support FPGAs. In contrast, using M3 as our
foundation allows us to support different types of accelerators
and general purpose heterogeneous cores as first-class citizens.

7 Conclusion

In this paper, we presented a HW/SW co-designed dis-
tributed capability system based on M3. More specifically,
we presented a detailed analysis of distributed capability
management, covering the inconsistencies which can arise
in a distributed multikernel setting where concurrent updates
to capabilities are possible. Leveraging the results of this
investigation we devised efficient algorithms to modify
capabilities in a scalable and parallel manner.

We implemented these algorithms in our microkernel-based
OS, SEMPEROS, which employs multiple kernels to distribute
the workload of managing the system. We evaluated the
distributed capability management protocols by co-designing
the HW/SW capability system in the gem5 simulator [14]. Our
evaluation shows that there is no inherent scalability limitation
for capability systems for running real applications: Nginx,
SQLite, PostMark, and LevelDB. In particular, we showed
that SEMPEROS achieves a parallel efficiency of 70% to 78%
when running 512 applications and dedicating 11% of the
system’s cores to the OS.
Software availability. SEMPEROS will be open-sourced at
https://github.com/TUD-OS/SemperOS.

8 Acknowledgements

We would like to thank our shepherd, Gernot Heiser, and
the anonymous reviewers for their helpful suggestions. This
work was funded through the German Research Council
DFG through the Cluster of Excellence Center for Advancing
Electronics Dresden (cfaed), and by the German priority
program 1648 "Software for Exascale Computing" via the
research project FFMK, and by public funding of the state of
Saxony/Germany.

720 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/TUD-OS/SemperOS

References
[1] ab - Apache HTTP server benchmarking tool. https://httpd.apache.

org/docs/2.4/programs/ab.html. Accessed: May, 2018.

[2] ANDERSON, M., POSE, R., AND WALLACE, C. S. A password-
capability system. The Computer Journal (1986).

[3] APPAVOO, J., SILVA, D. D., KRIEGER, O., AUSLANDER, M., OS-
TROWSKI, M., ROSENBURG, B., WATERLAND, A., WISNIEWSKI,
R. W., XENIDIS, J., STUMM, M., AND SOARES, L. Experience dis-
tributing objects in an SMMP OS. ACM Transactions on Computer
Systems (TOCS) (2007).

[4] ARNOLD, O., MATUS, E., NOETHEN, B., WINTER, M., LIMBERG,
T., AND FETTWEIS, G. Tomahawk: Parallelism and heterogeneity in
communications signal processing MPSoCs. ACM Transactions on
Embedded Computing Systems (TECS) (2014).

[5] ASMUSSEN, N., VÖLP, M., NÖTHEN, B., HÄRTIG, H., AND FET-
TWEIS, G. M3: A hardware/operating-system co-design to tame hetero-
geneous manycores. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2016).

[6] BALKIND, J., LIANG, X., MATL, M., WENTZLAFF, D., MCKEOWN,
M., FU, Y., NGUYEN, T., ZHOU, Y., LAVROV, A., SHAHRAD, M.,
FUCHS, A., AND PAYNE, S. OpenPiton: An open source manycore
research framework. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2016).

[7] BALLESTEROS FRANCISCO J., EVANS NOAH, F. C., AND GUARDI-
OLA GORKA, MCKIE JIM, MINNICH RON, S.-S. E. NIX: A case for
a manycore system for cloud computing. Bell Labs Technical Journal
(2012).

[8] BARBALACE, A., ILIOPOULOS, A., RAUCHFUSS, H., AND BRASCHE,
G. It’s time to think about an operating system for near data processing
architectures. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems (HotOS) (2017).

[9] BARBALACE, A., LYERLY, R., JELESNIANSKI, C., CARNO, A.,
CHUANG, H.-R., LEGOUT, V., AND RAVINDRAN, B. Breaking the
boundaries in heterogeneous-ISA datacenters. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (2017).

[10] BARBALACE, A., RAVINDRAN, B., AND KATZ, D. Popcorn: a
replicated-kernel OS based on Linux. Ottawa Linux Symposium (OLS)
(2014).

[11] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T., ISAACS,
R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND SINGHANIA, A.
The Multikernel: A new OS architecture for scalable multicore systems.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP) (2009).

[12] BAUMANN, A., HAWBLITZEL, C., KOURTIS, K., HARRIS, T., AND
ROSCOE, T. Cosh: Clear OS data sharing in an incoherent world. In 2014
Conference on Timely Results in Operating Systems (TRIOS) (2014).

[13] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A protected data-
plane operating system for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (2014).

[14] BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT, S. K., SAIDI,
A., BASU, A., HESTNESS, J., HOWER, D. R., KRISHNA, T., SAR-
DASHTI, S., SEN, R., SEWELL, K., SHOAIB, M., VAISH, N., HILL,
M. D., AND WOOD, D. A. The Gem5 simulator. SIGARCH Computer
Architecture News (2011).

[15] BOHNENSTIEHL, B., STILLMAKER, A., PIMENTEL, J., ANDREAS,
T., BIN LIU, TRAN, A., ADEAGBO, E., AND BAAS, B. A 5.8 pJ/Op
115 billion ops/sec, to 1.78 trillion ops/sec 32nm 1000-processor array.
In IEEE Symposium on VLSI Circuits (VLSI-Circuits) (2016).

[16] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV, A.,
KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. An analysis
of linux scalability to many cores. Proceedings of the 9th USENIX
conference on Operating systems design and implementation (OSDI)
(2010).

[17] CLEMENTS, A. T., KAASHOEK, M. F., ZELDOVICH, N., MORRIS,
R. T., AND KOHLER, E. The scalable commutativity rule: Designing
scalable software for multicore processors. ACM TOCS (2015).

[18] COCK ET AL. Enzian: a research computer for datacenter and rackscale
computing. In Poster proceedings of the 13th European Conference on
Computer Systems (EuroSys) (2018).

[19] DAVID GOLUB, R. D., GOLUB, D., DEAN, R., FORIN, A., AND
RASHID, R. Unix as an application program. In In USENIX 1990
Summer Conference (1990), pp. 87–95.

[20] DENNIS, J. B., AND VAN HORN, E. C. Programming semantics for
multiprogrammed computations. Communications of the ACM (1966).

[21] DONGARRA, J. Report on the Tianhe-2A system. Tech. rep., University
of Tennesssee Oak Ridge National Laboratory, 2017.

[22] FÄHNDRICH, M., AIKEN, M., HAWBLITZEL, C., HODSON, O., HUNT,
G., LARUS, J. R., AND LEVI, S. Language support for fast and reliable
message-based communication in singularity OS. In Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on Computer Systems
(EuroSys) (2006).

[23] FORD, B., HIBLER, M., LEPREAU, J., TULLMANN, P., BACK, G.,
AND CLAWSON, S. Microkernels meet recursive virtual machines. In
Proceedings of the second USENIX symposium on Operating systems
design and implementation (OSDI) (1996).

[24] GE, Q., YAROM, Y., CHOTHIA, T., AND HEISER, G. Time protection:
the missing OS abstraction. In Proceedings of the Thirteenth EuroSys
Conference (EuroSys) (2019).

[25] GERBER, S. Authorization, Protection, and Allocation of Memory in a
Large System. PhD thesis, ETH Zurich, 2018.

[26] HAIBO, S. B.-W., RONG, C., YANDONG, C., KAASHOEK, F., MORRIS,
R., PESTEREV, A., STEIN, L., AND WU, M. Corey: An operating
system for many cores. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI) (2008).

[27] HARDY, N. KeyKOS architecture. SIGOPS Operating Systems Review
(1985).

[28] HARRIS, T. Hardware trends: Challenges and opportunities in dis-
tributed computing. ACM SIGACT News (2015).

[29] HÄRTIG, H., HOHMUTH, M., LIEDTKE, J., AND SCHÖNBERG, S. The
performance of µ-kernel-based systems. In Proceedings of the sixteenth
ACM symposium on Operating systems principles - (SOSP) (1997).

[30] HEISER, G., AND ELPHINSTONE, K. L4 microkernels: The lessons
from 20 years of research and deployment. ACM Transactions on
Computer Systems (TOCS) (2016).

[31] HP LABS. The Machine. https://www.labs.hpe.com/
the-machine, 2018. Accessed: May, 2018.

[32] JÄRVINEN, K., AND SKYTTÄ, J. High-speed elliptic curve cryptography
accelerator for Koblitz curves. In Proceedings of the 16th IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM)
(2008).

[33] KAESTLE, S., ACHERMANN, R., HAECKI, R., HOFFMANN, M.,
RAMOS, S., AND ROSCOE, T. Machine-aware atomic broadcast trees
for multicores. In Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation (OSDI) (2016).

[34] KARNAGEL, T., HABICH, D., AND LEHNER, W. Adaptive work place-
ment for query processing on heterogeneous computing resources. In
Proceedings of Very Large Data Bases (VLDB) (2017).

USENIX Association 2019 USENIX Annual Technical Conference 721

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.labs.hpe.com/the-machine
https://www.labs.hpe.com/the-machine

[35] KIM, S., HUH, S., ZHANG, X., HU, Y., WATED, A., WITCHEL, E.,
AND SILBERSTEIN, M. GPUnet: Networking abstractions for GPU
programs. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2014).

[36] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J., COCK,
D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K., KOLANSKI, R.,
NORRISH, M., SEWELL, T., TUCH, H., AND WINWOOD, S. sel4:
Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (SOSP) (2009).

[37] KRIEGER, O., AUSLANDER, M., ROSENBURG, B., WISNIEWSKI,
R. W., XENIDIS, J., DA SILVA, D., OSTROWSKI, M., APPAVOO, J.,
BUTRICO, M., MERGEN, M., WATERLAND, A., AND UHLIG, V. K42:
Building a complete operating system. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006
(EuroSys) (2006).

[38] KRILL, B., AMIRA, A., AND RABAH, H. Generic virtual filesystems for
reconfigurable devices. Proceedings of IEEE International Symposium
on Circuits and Systems (ISCAS) (2012).

[39] KUMAR, A. Intel’s new mesh architecture: The “superhighway" of the
data center – IT Peer Network, 2017.

[40] LACKORZYNSKI, A., AND WARG, A. Taming subsystems: Capabilities
as universal resource access control in L4. In Proceedings of the Second
Workshop on Isolation and Integration in Embedded Systems (IIES)
(2009).

[41] LIEDTKE, J. On µ-kernel construction. In Proceedings of the fifteenth
ACM symposium on Operating systems principles (OSDI) (1995).

[42] LIN, F. X., WANG, Z., AND ZHONG, L. K2: A mobile operating
system for heterogeneous coherence domains. In Proceedings of the
19th international conference on Architectural support for programming
languages and operating systems (ASPLOS) (2014).

[43] LIU, D., CHEN, T., LIU, S., ZHOU, J., ZHOU, S., TEMAN, O., FENG,
X., ZHOU, X., AND CHEN, Y. PuDianNao: A polyvalent machine
learning accelerator. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2015).

[44] LYONS, A., MCLEOD, K., ALMATARY, H., AND HEISER, G.
Scheduling-context capabilities: A principled, light-weight operating-
system mechanism for managing time. In Proceedings of the Thirteenth
EuroSys Conference (EuroSys) (2018).

[45] MARTIN, M. M. K., HILL, M. D., AND SORIN, D. J. Why on-chip
cache coherence is here to stay. Communications of the ACM (CACM)
(2012).

[46] MCCARTHY, J. Recursive functions of symbolic expressions and their
computation by machine, part i. Communications of the ACM (CACM)
(1960).

[47] MCKENNEY, P., APPAVOO, J., KLEEN, A., KRIEGER, O., RUSSELL,
R., SARMA, D., AND SONI, M. Read-copy update. Ottawa Linux
Symposium (OLS) (2001).

[48] MILLER, M. S., YEE, K.-P., SHAPIRO, J., ET AL. Capability myths
demolished. Tech. rep., Johns Hopkins University Systems Research
Laboratory, 2003.

[49] NEEDHAM, R. M., AND WALKER, R. D. The cambridge CAP computer
and its protection system. In Proceedings of the Sixth ACM Symposium
on Operating Systems Principles (SOSP) (1977).

[50] NIGHTINGALE, E. B., HODSON, O., MCILROY, R., HAWBLITZEL, C.,
AND HUNT, G. Helios: Heterogeneous multiprocessing with satellite
kernels. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles (SOSP) (2009), SOSP.

[51] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KRISHNA-
MURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The operating
system is the control plane. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2014).

[52] PIKE, R., PRESOTTO, D., DORWARD, S., FLANDRENA, B., THOMP-
SON, K., TRICKEY, H., AND WINTERBOTTOM, P. Plan 9 from Bell
Labs. In Proceedings of Computing Systems, Volume 8 (1995).

[53] REESE, W. Nginx: the high-performance web server and reverse proxy.
Linux Journal 2008, 173 (2008), 2.

[54] ROSSBACH, C. J., CURREY, J., SILBERSTEIN, M., RAY, B., AND
WITCHEL, E. Ptask: Operating system abstractions to manage GPUs as
compute devices. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP) (2011).

[55] SHAN, Y., HUANG, Y., CHEN, Y., ZHANG, Y., AND OSDI, I. LegoOS
: A disseminated , distributed OS for hardware resource disaggregation.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI) (2018).

[56] SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS: A fast
capability system. In Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles (SOSP) (1999).

[57] SILBERSTEIN, M. OmniX: an accelerator-centric OS for omni-
programmable systems. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems (HotOS) (2017).

[58] SILBERSTEIN, M., FORD, B., KEIDAR, I., AND WITCHEL, E. GPUfs:
Integrating a file system with GPUs. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2013).

[59] SO, H. K.-H., AND BRODERSEN, R. A unified hardware/software
runtime environment for FPGA-based reconfigurable computers using
BORPH. ACM Transaction of Embedded Computing Systems (TECS)
(2008).

[60] SODANI, A. Knights landing (KNL): 2nd generation Intel® Xeon Phi
processor. In Proceedings of Hot Chips 27 Symposium (HCS) (2015).

[61] SONG, X., CHEN, H., CHEN, R., WANG, Y., AND ZANG, B. A case for
scaling applications to many-core with OS clustering. In Proceedings of
the 6th European Conference on Computer Systems (EuroSys) (2011).

[62] STEINBERG, U., AND KAUER, B. NOVA: A microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th European
Conference on Computer Systems (EuroSys) (New York, NY, USA,
2010), ACM, pp. 209–222.

[63] TANENBAUM, A., MULLENDER, S., AND RENESSE, R. V. Using
sparse capabilities in a distributed operating system. In Proceedings
of the 6th International Conference on Distributed Computing Systems
(ICDCS) (1986).

[64] WATSON, R. N., WOODRUFF, J., NEUMANN, P. G., MOORE, S. W.,
ANDERSON, J., CHISNALL, D., DAVE, N., DAVIS, B., GUDKA, K.,
LAURIE, B., MURDOCH, S. J., NORTON, R., ROE, M., SON, S., AND
VADERA, M. CHERI: A hybrid capability-system architecture for scal-
able software compartmentalization. In IEEE Symposium on Security
and Privacy (S&P) (2015).

[65] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND KENNAWAY,
K. Capsicum: Practical capabilities for UNIX. In USENIX Security
Symposium (USENIX Security) (2010).

[66] WENTZLAFF, D., AND AGARWAL, A. Factored operating systems
(fos): The case for a scalable operating system for multicores. ACM
SIGOPS Operating Systems Review (2009).

[67] WOODRUFF, J., WATSON, R. N. M., CHISNALL, D., MOORE, S. W.,
ANDERSON, J., DAVIS, B., LAURIE, B., NEUMANN, P. G., NORTON,
R., AND ROE, M. The CHERI capability model: Revisiting RISC in
an age of risk. In Proceedings of the 41st International Symposium on
Computer Architecture (ISCA) (2014).

[68] ZELLWEGER, G., GERBER, S., KOURTIS, K., AND ROSCOE, T. Decou-
pling cores, kernels, and operating systems. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI) (2014).

722 2019 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Capability Systems
	M3: HW/SW Co-designed Capabilities

	Design
	System Overview
	Distributed Data Lookup (DDL)
	System Call Handling
	Capabilities

	Implementation
	Inter-Kernel Calls
	Multithreaded Kernel
	Distributed Capability Management
	Interference between CMOs
	Capability Exchange
	Capability Revocation

	Evaluation
	Experimental Testbed
	Microbenchmarks
	Application-level Benchmarks
	Experimental Setup
	Results
	Server Benchmark

	Related Work
	Conclusion
	Acknowledgements

