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Abstract

Confinement is a security policy that restricts the outward communication of a

subsystem to authorized channels. It stands at the border of mandatory and discre-

tionary policies and can be used to implement either. In contrast to most security

policies, confinement is composable. In capability-based systems, confinement is val-

idated by a simple decision procedure on newly minted subsystems. However, there

is a long-standing debate in the literature as to whether confinement is enforceable

in capability-based systems. All previous attempts to demonstrate confinement have

arrived at negative results, either due to flawed system models or to proof errors that

have not survived inspection.

This dissertation presents SDM: a formal, general, and extensible system model

for a broad class of capability-based systems. SDM includes: 1) a mechanical formal-

ization for reasoning about capability-based systems that produces a machine-checked

proof of the safety problem, 2) the construction of a system-lifetime upper-bound on

potential information flow based on the safety property, and 3) an embedding of the

confinement test for capability-based systems and the first mechanically verified proof
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ABSTRACT

that such systems support confinement. All proofs in SDM are constructed using the

Coq proof assistant without using or declaring axioms that are not part of the core

logic. In consequence, there is no portion of the specification which relies on an unin-

stantiable assertions. SDM further distinguishes itself from other efforts by enabling

the formal specifications of security-enforcing applications to be embedded without

being injected into the system semantics.
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Chapter 1

Introduction

This dissertation considers the enforcement of confinement in capability-based sys-

tems. In capability-based systems satisfying a trivial requirement, a simple decision

procedure is sufficient to determine whether a new subsystem, upon construction,

will be confined. [Har86] The requirement to support confinement is that the capa-

bility system architecture maintain a Harvard-style, type-based, or similarly enforced

strong separation between capabilities and data. Most modern capability systems sat-

isfy this requirement. However, there has been substantial controversy as to whether

capability-based systems can enforce confinement. This dissertation definitively re-

solves this issue by providing the first axiom-free, mechanically verified proof that

confinement is enforceable in the majority capability-based systems.

1



CHAPTER 1. INTRODUCTION

1.1 Confinement

Lampson defined confinement in 1973 as the policy ensuring that a program “can-

not transmit information to any other program except its caller” [Lam73]. It has

since been generalized to restrict the transmission of information only via authorized

channels. A system structured to effectively exploit confined subsystems gives users

and programs the ability to scope authority securely to the places it is needed. Such

a system largely resolves the problem of “agency,” providing a structure in which a

program wielding a user’s authority can reasonably be known to act on behalf of the

user, rather than some other potentially hostile party. The pervasive use of confine-

ment in capability-based systems offers a strategy to provide defense-in-depth seldom

realized in other systems.

Therefore, in systems where it is feasible, confinement offers a useful and founda-

tional security-structuring tool. Confinement straddles the mandatory/discretionary

policy border: it is discretionary for an enforcing program and mandatory for the

program being confined. Given a composable confinement mechanism, traditional se-

curity policies such as isolation, privilege separation, and Bell-LaPadula or multi-level

security, may all be constructed by a trusted security manager application running in

user-mode. [MS03] Different portions of the system can operate under distinct secu-

rity policies implemented by independent security managers, and mutually suspicious

security managers can precisely limit the interaction of the subsystems under their

control. High-level design patterns also emerge from confinement, often as the most
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straight-forward approach. For example, the “Open File” dialog can run under the

authority of the user without giving the user’s authority to the program requesting a

file. [SM02] Similar approaches are major undertakings in systems unable to enforce

confinement, such as OpenSSH privilege separation in Unix systems. [Pro03]

While confinement is a useful primitive, there has been a great deal of concern

as to whether confinement is enforceable. Lampson presented a system for which

confinement is not enforceable in his article “Protection” [Lam74]. His system intro-

duced the access control matrix, which portrays a static view of the system protec-

tion state, alongside a general permission-based semantics. The access control matrix

structurally equates snapshots of systems using both capabilities and access control

lists, and has long been incorrectly cited as evidence that both systems are equally

expressive. Although the semantics accompanying Lampson’s access control matrix

render confinement impossible in Lampson’s system, this is not evidence that it is

impossible in sufficiently constrained systems, such as capability systems.

Harrison, Ruzzo, and Ullman brought the enforceability of many security policies

under fire. [HRU76] They argue that permission-based analysis of security is a nec-

essary precondition for security of any sort. In a system where the propagation of

permissions cannot be decidably constrained, no control over access and authority

is possible. Their model defines the first formal presentation of the safety problem:

the decidability of determining whether one security domain will come to hold an

arbitrary permission to another. They demonstrated that the answer depends on the
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semantics of the system and is generally undecidable. Therefore, security policies

must also be undecidable in the general case. The answer is decidable for nearly all

finite systems. Unfortunately, with the notable exception of capability-based systems,

the majority of finite systems cannot prevent a permission transfer. It is critical for

a safety result to be decidable and also to produce results that do not trivially defeat

policy expression.

Because capability-based systems are the only general-purpose systems known to

satisfy the safety property, this dissertation is focused on the enforcement of confine-

ment in capability-based systems.

The most frequently cited argument against capability-based systems’ ability to

support security policies is Boebert’s “On the Inability of an Unmodified Capabil-

ity Machine to Enforce the *-Property.” [Boe84] The *-property was introduced as

part of the Bell-LaPadula access control model [BL73]: a mathematical definition of

multi-level security with categories in accordance with the TCSEC standards being si-

multaneously developed. [UsL85] The Bell-LaPadula model partitions the system into

finite domains each labeled with a numeric clearance level and set of categories. Infor-

mation motion in the Bell-LaPadula model is restricted according to the *-property:

information at high level domains may not reach lower levels and information between

categories is restricted by subset ordering. As a purely mandatory security policy,

the *-property makes no mention of how permissions or authority change. Boebert

argued that the *-property could not be enforced in unmodified capability systems,
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but omitted any definition of what unmodified capability systems were. In response,

Kain and Landwehr defined a taxonomy of capability systems, including those to

be considered unmodified, and reiterated Boebert’s argument. [KL87] On the basis

of these, the field largely abandoned capability systems as any system incapable of

enforcing the *-property cannot enforce mandatory security policies. In retrospect,

this abandonment was premature.

Boebert’s argument relies upon a common misconception when structuring capa-

bility systems: in systems where a subject holding a “read” capability is authorized to

fetch another capability, it is possible that the fetched capability authorizes “write”

access to another object, violating certain transitive expectations of information flow.

Boebert constructs a system with an omnipotent security oracle and places all objects

in two security domains: Low and High. As a simplified case of the *-property, his

security oracle must permit information to only move from Low to High and prevent

flow from High to Low. He assumes that the security oracle must grant subjects

(programs) in High “read” capabilities to objects in Low and must also grant sub-

jects in Low “write” access to other objects in Low. A trojan horse in High may now

“read” a “write” capability to Low and use this newly acquired capability to violate

the *-property. Boebert claims that, at this point, if the oracle interferes in any way,

the system is no longer an unmodified capability system.

The two flaws with Boebert’s argument are 1) unmodified capability-based sys-

tems do not exist in practice and 2) the security oracle in the example grants too
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much authority to enforce the *-property. Unmodified capability-based systems do

not exist in practice because the system protection mechanism preserves a separation

between data and capabilities that prevents usable capabilities from being transmit-

ted though data channels. This is often preserved as a Harvard-style separation, but

may also be managed through supervisor protection or type separation. Systems may

safely reveal the bit-string of a capability to applications as long as capabilities cannot

be fabricated from data. The ability to distinguish capabilities from data guarantees

a security enforcing-application the opportunity to restrict capability transfers.

Boebert’s security oracle grants too much authority and does not implement ap-

propriate operations for managing the *-property. If a “read” capability authorizes

fetching a capability from another object, the security oracle should not be granting

any capabilities between Low and High using his own example as proof. However,

this is not sufficient evidence that the *-property cannot be preserved generally, but

only for this system arrangement. Instead of an omniscient oracle, a simple secu-

rity application should be placed between Low and High that prevents all capability

transfers and permits information flow in precisely one direction.

1.2 Systems Providing Confinement

The first capability system to implement confinement in capability systems was

PSOS: the provably secure operating system. [FN79] Confinement in PSOS was care-
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fully phrased to avoid covert channels as “there shall be no inferring of protected

information.” Protected information was defined as information to which a domain

does not possess a capability. The authors then claimed that inference of protected

information was impossible given the invariant: “The information that [domain] A

has about some object for which A does not possess a capability (possibly belong-

ing to the system) cannot increase by A calling any system function or any properly

written [security-enforcing domain].” This invariant is met by PSOS because capa-

bilities prevent direct access, the system offers no such function increasing authority,

and properly written security applications have the ability restrict access as desired

by restricting capability transfers. The PSOS Confined Subsystem Manager (CSM)

enforces confinement by instantiating subsystems that can produce no outward com-

munication with any domain other than their invoker and are incapable of retaining

information between invocations. However, as a system whose principal concern was a

strong mathematical foundation, little practical advice was given on how to structure

a system around the CSM.

The work of Hardy et al. provided a general, practical implementation of con-

finement in the KeyKOS capability operating system. [BFH+92] [Har85] In KeyKOS,

a Factory is the program charged with constructing new instances of a specific pro-

gram, known as its yield, and attesting that their yield is confined. [Har86] Factories

in KeyKOS implemented a confinement test as a simple decision procedure invoked

with respect to an authorized set of capabilities. A successful result indicated that
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all yields of the factory are confined only to the outward information flow present in

the authorized capabilities. Absent any authorized capabilities, no outward informa-

tion flow is authorized. By including a capability to authenticate Factories as part of

the system’s universal trusted code base, all programs could reliably determine if a

Factory’s yield was appropriately confined before requesting instantiation. This con-

finement mechanism has been carried forward into the EROS and Coyotos operating

systems.

Because Hardy’s work was not widely known, the perceived failure of capability

systems to enforce confinement went unchallenged in the literature until 2000 with

the formulation of the SW model. [SW00]. Unfortunately, the verification in the SW

model is flawed, and subsequent hand-executed verifications have erroneously arrived

at negative results. [CDM01] Software continues to be developed and deployed to

reason about high-level security policies in capability systems [Spi07] [EKE08]. Until

SDM, there has been no definitive resolution to the confinement question.

1.3 Confidence through

Automated Verification

The goal of this dissertation is to establish robust confidence in the ability of

capability-based systems to enforce confinement. Confidence is the product of com-

prehension and observation. As there have been a number of capability-based systems
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built demonstrating practical implementations of confinement, this dissertation seeks

to demonstrate the enforceability of confinement through rigor. While published

proofs can increase confidence in system behavior, they have failed to do so in the

case of confinement for capability-based systems.

Proofs fail to produce confidence in a variety of ways. They may be overtly flawed

in their specification or in their execution. Flaws of specification can either exist as an

inability to model the actual system under examination or by misstating the problem

goal. Due to the nature of examining complex models, proof execution flaws can be

very difficult to discover and may go unnoticed for many years. [Gut00] Even when no

flaws have been uncovered, confidence in proofs remains inversely proportional to their

complexity. This has undermined confidence in existing proofs of the enforceability

of security policies in many systems, including capability-based systems.

Machine-checked verification is used to improve confidence in proofs by increasing

rigor while simultaneously decreasing the material checked by review. Though re-

viewers are still obligated to comprehend the model definitions and assumptions, and

the problem statement, they may forgo comprehension of the proof execution. In-

stead, reviewers may infer confidence in the proof execution from existing confidence

in an automated proof assistant. Additionally, the formal rigor necessary to present

a proof in a machine-manipulable form is substantially higher than with traditional

proofs, further increasing confidence.

Unfortunately, mechanized proofs also introduce a host of issues impeding confi-

9



CHAPTER 1. INTRODUCTION

dence. The same formal rigor required to construct a proof in a computational system

can also decrease confidence as theorems and definitions become increasingly obscure.

Proof developers are more prone to introduce specification flaws as they attempt to

ease proof obligations. Model embeddings often axiomatize assumptions in ways that

can also undermine confidence.

By increasing confidence via decreasing complexity for reviewers, the largest gains

from automated verification can be made where proof execution is most complex.

However, the very complexity of these proofs makes them difficult to mechanically

produce and check. This often drives developers to construct models and problem

statements that are easier to verify. Unfortunately, the portions of a system most

amenable to verification are those which benefit confidence least. Multiple proofs have

been performed with the effect of separating a few system concerns [KZB+90] [YH10],

but rarely discussing system policy and those that do have sometimes mischaracter-

ized the problem [EKK06].

Proof developers are also tempted to encapsulate complex problems as axioms,

which erodes confidence by increasing complexity. Axioms are an exceptionally pow-

erful mechanism for theory abstraction but can inadvertently introduce all possible

specification flaws. They may hide issues of decidability and construction in seem-

ingly plausible declarations. They may also interact with core logic or other axioms

in unanticipated ways, producing constrained forms of inconsistency. Many error

patterns become impossible when concrete definitions are provided, and this further
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reduces complexity.

The safety property and confinement proofs are mission-critical properties of

capability-based systems that have been controversial in the literature. Both proper-

ties are excellent candidates for automated verification as each is a simple property

with far-reaching consequences. The safety property is a necessary precondition for

any information flow security policy, and it is decidable in capability-based systems.

Confinement is a complex and pervasive policy in any system, yet the confinement test

is simple a decision procedure in capability-based systems. As confinement forms the

primitive for agency and security in capability-based systems, it is unclear whether

other policies can be enforced without confinement. Therefore, this dissertation estab-

lishes robust confidence in the safety property and confinement for capability-based

systems through automated verification.

1.4 This Dissertation

This dissertation presents SDM: a formal, general, and extensible system model

for a broad class of capability-based systems. Most capability systems can be en-

coded using SDM’s primitives, including the Chicago Magic Number Machine [Fab74],

KeyKOS [Har85], EROS [SSF99] [SSF97], Coyotos [SA08], and seL4 [KAE+14].

The first contribution of this dissertation is a mechanical proof of the safety prop-

erty for capability-based systems. It defines a decidable function computing potential
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access and describes how potential access may evolve over system operations. The

proof that the potential access of the system is attenuating is a demonstration of the

safety property for any capability-based system satisfying this model.

The second contribution of this dissertation is the construction of a least upper

bound on potential information flow in capability systems. All information flow stems

directly from permissions and the conservative approximations for permissions do not

transitively alter information flow. Therefore, the attenuation of authority is directly

extended across all operations to place a useful upper bound on information flow.

The third contribution of this dissertation is providing the first mechanical ver-

ification that capability-based systems support confinement. The confinement test

is embedded as a post-condition of subsystem construction and includes a set of au-

thorized capabilities. The arrangement of all possible subsystems arising from the

authorized set is also defined. SDM then demonstrates the correctness of the confine-

ment test by verifying that the mutability of all possible authorized subsystems is a

subset of the mutability of any subsystem passing the confinement test.

The fourth contribution of this dissertation is providing an axiom-free proof. Ax-

ioms are a source of deep concern for any verification as they can directly encode

direct impossibilities or interact with other definitions to produce inconsistencies. To

relieve readers from the burden of unresolved proof obligations and thereby increase

confidence in the result, SDM ensures that every abstraction can be concretized.

A distinguishing characteristic of SDM is that the definition of confinement is not
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embedded into the system model itself. Instead, SDM offers the ability to embed

the behavior of security-enforcing applications by predicating operation sequences

directly in the proof environment. This permits developers to closely model the be-

havior of applications in the trusted computing base, which is leveraged as part of

the confinement verification. SDM also includes internal object structure pertain-

ing to capabilities permitting future predicates to directly model named capability

invocation.

SDM considers only overt confinement. Covert channels are not addressed. In

systems with covert channels, it is possible to transmit information around permission

boundaries. Mechanisms for mitigating or eliminating covert channels do not follow

permission-based reasoning as they usually involve timing attacks. Therefore, SDM

does not consider the impact of covert leakage. Mitigation of covert leakage is taken

as an orthogonal problem.

This dissertation is structured in four main sections. Chapter 2 discusses how con-

finement is constructed in capability-based systems. The work featured herein is a

part of the Coyotos project and Chapter 2 casts confinement in that light. Chapter 3

presents the confinement verification as an informal but intuitive mathematical model

to provide the scaffolding in the mechanical verification. Chapter 4 addresses verifi-

cation as a tool and presents Coq [BC04] as a tool for building proofs. It also covers

some of the pragmatic issues encountered while using Coq to perform this verifica-

tion. A high-level walk-through of the verification in Coq is presented in Chapters 5
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to 9. Chapter 10 describes how SDM can be applied to existing and future sys-

tems. Chapter 11 discusses future work while related work is covered in Chapters 12

and 13, with Chapter 12 focusing on SDM’s relationship with the SW verification.

This dissertation concludes with a review of the work in Chapter 14.

14



Chapter 2

Capabilities, Confinement,

and the Constructor

This chapter introduces a policy mechanism by which capability-based systems

may instantiate confined subsystems. First, this chapter presents capability-based

systems as they pertain to SDM. This chapter discusses how security is structured

in capability-based systems and then revisits confinement in that context. Then,

it presents a concrete implementation of confinement in the Coyotos Constructor

domain. It concludes with a description of how confinement can be used to produce

other security policies and behavior.
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2.1 Capability-based Systems

The concept of capabilities and a system supervisor based entirely upon them was

first envisioned by Dennis and Van Horn [DVH66] and would form the foundation

of the MIT PDP-1 system [AP67]. In their words, capabilities are a structure that

“locates by means of [an effective name] some computing object, and indicates the

actions that the computation may perform with respect to that object.” [DVH66]

While their model contains many practical details for constructing an operating sys-

tem, they can be distilled to a few general mechanisms that illustrate how capabilities

are used. Each process was associated with a capability list, or C-list, which it could

use only through supervisor implemented meta-instructions. Every action taken by

a process must be authorized by a capability in its C-list, often specified by index

through other meta-instructions. The supervisor implemented capabilities permit-

ted various modes of access to built-in objects such as memory segments, processes,

input/output devices, and capability storage called directories. Capabilities could

be transferred when creating new processes, during inter-processes communication,

or loaded and stored in directories. In addition to objects provided by the super-

visor, the Dennis and Van Horn system was “extensible.” Processes could provide

software-defined objects through a meta-instruction constructing entry capabilities

from a segment capability defining a protected procedure and a collection of capabil-

ities to be made available to the procedure during operation. When invoked, these

protected entry points were initialized with the state specified in the entry capability
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along with additional capabilities permitting access to the caller, presumably already

sufficiently reduced to protect its parent. Levy presents an excellent history of early

capability architectures in his book “Capability-Based Computer Systems.” [Lev84]

Keys are a frequently used metaphor for describing capability-based systems. Ca-

pabilities are like keys to locked objects; entering a home or starting a car ignition

requires possessing the right key. New objects come with their own lock and key,

unique to that object. Like keys, capabilities can be copied and distributed to other

people, locked in boxes, and sent through the mail. Though they may be easily

copied, good keys are extremely hard to forge and good locks are difficult to pick. In

secure systems, these actions should not only be difficult, they should be impossible.

Although critical to capability-based security, the metaphor is not easily extended to

the construction of new agents created with their own lock and key.

A capability is an unforgable and tamper-proof binding of both an object identifier

and permissions to that object. All structures exposed by the system are capability-

protected objects; all operations on objects must be authorized by a capability. There

must be no objects in the system which can be accessed without a capability. The

system may optionally provide an extension mechanism for creating new software-

defined objects also protected by capabilities. These simple rules are the only general

requirements for a capability-based system.

The system must distinguish and preserve a separation between capabilities and

data. Through the ability to distinguish capabilities from data, applications may
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restrict the transfer of capabilities in their possession. This allows applications to

reliably manage not only the transmission of data, but also the transmission of per-

missions. By limiting both data and capabilities, applications can become effective

security enforcing agents within capability-based systems.

In most capability-based systems, the separation between capabilities and data is

often preserved as a Harvard-style separation. Similar to the separation of instructions

and data in a Harvard architecture, these systems partition memory and expose

different operations with independent addressing mechanisms for both capabilities

and data. However, the separation of capabilities and data may also be managed

through supervisor protection or type separation. Should the data representation of

a capability be revealed by the system, this representation must remain insufficient

to authorize any operations within the system. Therefore, capabilities cannot be

obscurely passed through any data channels. Channels which permit the transmission

of both capabilities and data must continue to preserve their separation.

2.2 Ambient Authority and

Covert Channels

Ambient authority occurs when the invocation of an operation is not required

to simultaneously designate an object and specify the object-specific permission au-

thorizing the operation. For example, in most systems using access control lists, file
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names and domain identifiers are designators that can be used along with the system’s

ambient authority. If Di has “owner” access to Dj, then Di is permitted to grant any

other domain any permission to Dj. Although an access control decision did occur to

the other domain, Di makes use of ambient authority because it does not need any

access-control relationship to the other domain to grant access. All that was required

was the name of the domain.

Ambient authority does not arise in capability-based systems. Capability-based

systems eliminate ambient authority by combining names and permissions into a

single entity: a capability. If designators are the exclusive means of wielding authority,

then the absence of designation precludes authorization and, consequently, operation.

When capabilities are the sole means of expressing and conveying permissions, any

permission to access an object must also carry the name of that object. Therefore,

by contraposition, a subject cannot come to hold an object or resource name without

also holding the permission to access that object or resource.

Covert channels are not addressed by SDM. In “Confinement,” Lampson charac-

terized covert channels as “those not intended for information transfer at all.” [Lam73]

The hazard of this definition is that “intent” is a difficult proposition to quantify.

Many overt channels and ambient authority have been mislabeled as “covert” with

an explanation of intent. SDM considers supervisor state and access control struc-

tures to be part of the overt channels in the system. Like all other storage in SDM,

these locations can only be accessed via a capability. In this regard, covert chan-
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nels are more narrowly scoped and generally involve timing attacks that cannot be

mitigated with access control.

2.3 The Discretionary / Mandatory

Dichotomy

Most discussions of security mechanisms devolve into a discussion of mandatory

and discretionary access control. The terms were widely discussed, but first appeared

in the Department of Defense standard: “Trusted Computer System Evaluation Crite-

ria” published in 1985. Discretionary access control polices are those security policies

defined by the users of the system, while mandatory access control was defined by the

security administrator. Discretionary policies are not robust because because their

subjects have the ability to subvert them. Mandatory policies are not robust as they

require the constant interaction of the security administrator. Neither approach helps

us bring the granularity of policy down to something that is practically helpful.

Another definition of mandatory access control is “that a security officer may

constrain the owner of an object in determining who may have access rights to that

object.” [HKN05] Access control mechanisms that rely only upon an unprotected name

for authorizing an action often introduce ambient authority. This can be as simple

as being able to deny access based only upon a name, as previously mentioned. In

systems that rely on public unprotected identities for access control decisions, it is
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unclear how to completely eliminate ambient authority.

Every system enforcing mandatory access control contains some user representing

the security administrator. This user, or superuser, has complete control of the

system and the entire system security policy is discretionary to this user. Therefore, a

generalized view is that mandatory access controls are imposed upon subjects without

their consent, but subjects of discretionary access control choose to abide by the

policy. From this perspective, mandatory and discretionary access controls have to

do with which side of a policy subjects sit upon.

When discretionary/mandatory access control mechanisms are viewed as policy

border mechanisms, it is possible to view the system policy as a hierarchy or lattice

of policies imposed by different subjects. The notion that a user can successfully

enforce a policy and might collaborate in their own defense is absent from the TCSEC

definitions. This property is crucial for systems to enforce robust composable policies,

providing defense-in-depth. Therefore, this dissertation refines the definition of a

mandatory policy as one that an application cannot escape, while a discretionary

policy is one that an application consents to abide by. Note that the focus here shifts

from the users of the system to the agents of the system, the applications.

Confinement is a composable policy that sits at the border between mandatory

and discretionary policies. Confinement is mandatory for the subsystem being con-

structed but applied at the discretion of the constructing subsystem. By leveraging

confinement during initial system construction, it has been used as a building block
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to implement mandatory controls. [Raj89] It permits applications to enforce security

policies and permits different portions of the system to operate under different se-

curity managers. Confinement also allows users to establish clear and fine-grained

distinctions between programs that act on behalf of a user and sub-programs that

presumably do not. Confinement integrates tightly with the encapsulation and mod-

ularity boundary. Viewed as a building block, confinement allows us to restructure

systems in a way that fundamentally reduces their attack surface by selectively local-

izing authority into objects that have narrow, validating APIs.

2.4 Confinement Revisited

This dissertation is concerned with confinement as a constructive, perimeter-

enforcing security policy preventing unauthorized outward information flow. Confine-

ment is a constructive policy, imposed upon freshly minted subsystems. Confinement

straddles both mandatory and discretionary access control, erecting a mandatory pol-

icy from discretionary authority. Confinement ensures all outward information flow

is authorized by the constructing subsystem, and an absence of outward information

flow is expressible.

Confinement is not implemented as part of the system protection mechanism but

is instead assembled from the underlying capability system as a software design pat-

tern. Although the remainder of this chapter will focus on a particular confinement
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mechanism, it is likely that other mechanisms exist. It is possible for any application

to produce a confined subsystem by construction, without direct reliance upon its

trusted computing base. To produce a confined subsystem, it suffices that an appli-

cation’s TCB not interfere with it’s operation while instantiating a subsystem and

the system will continue to enforce confinement without further intervention.

2.5 Coyotos: a Concrete Example

Coyotos is a micro-kernel object-capability operating system. Unlike traditional

kernels, or monolithic kernels, micro-kernels are designed to be minimalist and ex-

tensible. They are designed to permit applications to safely extend the system while

incurring a minimal overhead. Therefore, a substantial portion of system software

is separate from the kernel and is not run in supervisor mode. This includes device

drivers, storage managers, portions of the scheduler, and security policies.

Objects in Coyotos are exclusively accessed by invoking kernel-protected capa-

bilities. This includes memory pages and page tables, processes, endpoints for inter-

process communication, access to interrupts and I/O, and even the scheduler. Coyotos

is an object-based system and, whether implemented by the kernel or application, in-

voking a capability is tantamount to a remote procedure call, potentially handled by

the kernel. Kernel objects and application objects share the same message marshaling

interface. The kernel directly processes capability invocations to primitive objects.
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When a capability naming a software-defined object is invoked, the kernel performs

an inter-process communication rendezvous with the implementer. As capability in-

vocation accounts for virtually all operations, Coyotos has only three system calls:

invoke a capability, copy a capability, and yield the processor. Even memory loads

and stores can be modeled as capability invocations.

Coyotos is also an atomic action kernel; from the perspective of the system, all

kernel-implemented actions occur indivisibly. The kernel does not implement any

long-running operations that would obligate it to return control to an application.

Therefore, in a single-processor implementation, no locking is necessary as all oper-

ations can successfully complete before scheduling a process. In a multi-processor

environment, all necessary locks must be obtained before an observable change to

the system can occur. Should some locks be in use elsewhere, the kernel must avoid

deadlock by ensuring that at least one system call can complete or by releasing the

locks for this call and dispatching another request.

Coyotos implementations preserve atomic actions at the abstraction of capability

invocation, which may not always unify with a single system operation. Each system

operation exposed is permitted to consist of multiple atomic micro-operations and

it is these micro-operations which can be serialized, even when system calls cannot.

For example, memory loads and stores may require a traversal of the process’ root

memory mapping structure. From the perspective of the process, the entire load or

store is a single system operation, but it is not indivisible. During a traversal, the
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Figure 2.1 Physical representations of Coyotos capabilities.
AllocCount(20) restr(5) P type(6)
ProtectedPayload32 or GptMapData(32)

OID(64)

system guarantees only that each step of translation via a capability is indivisible. It

is possible that other computation may modify address space objects along the current

translation path such that no serialization of system calls is possible. However, the

atomic micro-operations of the system may be consistently serialized and it is these

micro-operations under consideration in SDM.

A capability in Coyotos is a system-protected 16-byte structure containing enough

information for the system to perform an appropriate invocation. Each capability

contains a 6-bit field indicating the type of the capability. There are some capability

types that are unique, but types that have more than one object also contain a unique

64-bit object identifier and an allocation count. The object identifier is unique to the

object and does not change over the life of the object, though it may be reclaimed

after the object is destroyed. The allocation count is used by the system reclamation

mechanism to determine if the capability is still valid.

Coyotos uses a virtual memory management mechanism inspired by Liedtke’s

guarded page table proposal. [LE96] The Coyotos kernel must ensure that the guarded

page table, or GPT, structure is the authoritative address translation mechanism on

architectures dictating the memory management structure. There are three basic

types of memory object: pages to hold data, CapPages to hold capabilities, and
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GPTs to construct address spaces. Capabilities naming memory objects contain a

set of access restrictions and a guard. Access to a page or CapPage is restricted by

all access restrictions along traversal path through memory capabilities. As large

address spaces are typically sparsely populated, guards are used as a mechanism for

compactly representing invalid translations without a page table and do not have any

other access control impact.

The primary access restrictions are “read-only,” “no-execute,” and “weak.” A

capability with no restrictions is a “read-write” capability and permits both loads

and stores. The “read-only” and “no-execute” restrictions are familiar, respectively

prohibiting a store or an instruction fetch1. The “weak” restriction ensures that any

capability read through this path will be selectively downgraded to ensure transi-

tive read-only authority. Memory capabilities fetched via this path are downgraded

by introducing the “weak” restriction. The system returns a null capability for all

capabilities where no appropriately downgraded capability exists.

The system provides no rights-amplifying operations. Capabilities are a system

protected structure and cannot be fabricated by applications. This is enforced by

marking virtual memory mappings for CapPages with supervisor-only access. Thus,

being able to view or copy capabilities as data does not confer their authority. The

Coyotos kernel provides the KeyBits capability to permit applications to view the

canonical data of a capability. Transferring capabilities cannot be used to transmit
1The no-execute restriction is ignored on architectures where it cannot be enforced.
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any information not already transmissible via the same channel. Therefore, the Key-

Bits capability is considered sensitive only as it reveals some of the inner workings of

the system and not because it admits communication between applications.

There are a few exceptions where universal system software does not run in super-

visor mode. The atomic kernel design motivates leveraging application software to

perform operations involving memory-allocating bookkeeping or lengthy blocking I/O

requests. The notable subsystems included in the universal trusted computing base

are the storage manager, the Space Bank, and the authenticated subsystem builder,

the Constructor. The kernel provides sensitive capabilities with the expectation that

they are exclusively held by these subsystems. Enforcing this constraint is managed

by these subsystems and not by the kernel.

2.6 The Space Bank

The Space Bank is the part of the universal TCB responsible for managing storage.

It is admitted to perform this task as it uniquely holds the range capability, which

grants access to all storage. Coyotos considers all allocatable structures as storage:

Processes, Endpoints, GPTs, Pages, and CapPages. The primary responsibility of

the Space Bank is to perform allocation requests while maintaining memory safety.

In this context, memory safety obliges the Space Bank to not respond to a request

with a capability naming an object that is already live. This behavior of the Space
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Bank is so fundamental to the behavior of the system that it will be considered part

of the system model for the remainder of this document.

The second responsibility of the Space Bank is to manage quotas. Because the

system has a finite number of resources, the Space Bank itself has a quota. All other

quotas are simply another constraint on the system, and implement the same Space

Bank interface. These sub-banks are implemented as different capabilities to the

Space Bank. Each quota can be deallocated as a single unit, effectively destroying all

allocations within it and returning the storage to their parent.

2.7 The Constructor

In Coyotos, constructors are the applications that instantiate new subsystems.

Constructors contain a subsystem image which they use to produce a subsystem

upon request, called their yield. They may also be queried to determine if their inter-

nal image is confined. An affirmative result indicates that the yield of the constructor

cannot exceed the information flow inherent in capabilities provided by the applica-

tion requesting the yield. The result of a confinement test may be included in an

application’s predicate for determining which subsystems are safe to instantiate.

The first step in a constructor’s life-cycle is as the yield of the meta-constructor.

Once instantiated and initialized, a constructor returns its builder capability and

begins operating in the builder phase. As a builder, the constructor accepts commands
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which populate its internal subsystem image until it receives a seal command. The

constructor responds to a seal command by invalidating its builder capabilities and

returning its constructor capability.

A sealed constructor will no longer perform updates to its subsystem image, but

can be used to yield new subsystems. The constructor requires its client to provide

the storage capabilities for each yield. It then allocates a new process and populates

it according to its internal subsystem image. Finally, the constructor uses the process

capability to fabricate an initial entry capability and invokes the new subsystem. As it

does so, the constructor does not perform the standard call-return procedure. Instead,

it passes the return capability specified by the caller requesting its yield. When the

yield has finished initializing, it should reply directly to the original caller. After

yielding a subsystem, the constructor guarantees that it will not leak any capabilities

regarding the yield, usually by overwriting them upon receiving its next request.

Before a process instantiates a subsystem using a constructor, it can ask the

constructor to check whether that subsystem is confined. The constructor performs

the confinement test, ensuring that all outward information flow of the yield follows

only from authorized capabilities. Specifically, the only capabilities that may produce

outward information flow are those granted to the yield by the requesting process,

and consequently no information flow is authorized when no capabilities are granted.

This test is performed simply by checking that all capabilities within the constructor’s

subsystem image are weak, trivially non-mutating, or name a recursively confined
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constructor.

A parameterized confinement test is provided by the KeyKOS Factory. [Har86]

The KeyKOS Factory operates similarly to the Coyotos Constructor with slight vari-

ations on interfaces and terminology that have been altered for consistency. During

its builder phase, as capabilities are added, the KeyKOS Factory maintains a list of

“holes:” those capabilities for which it cannot statically guarantee confinement. The

only capabilities not added to this list are those which are trivially non-mutating and

those that are weak capabilities. As with Coyotos’ Constructors, an application may

query a Factory regarding the confinement of its yield before requesting the yield to be

instantiated. In KeyKOS, this request also includes an authorized set of capabilities.

To be confined, the Factory requires each of the holes to be within the authorized set

or name a Factory whose yield is confined under the same authorized set.

Many capability-based systems, including EROS and Coyotos, do not include a

parameterized confinement test and the authorized set is empty. In these systems, all

of the present system security structure can be constructed using the simplified con-

finement test, which increases confidence in the result. However, to produce a proof

widely applicable across many capability systems, SDM supports the parameterized

confinement test.

Constructors are equipped with the brand capability which they use to provide

a verification interface. During subsystem construction, they brand their yield with

a value unique to the constructor, for example, an HMAC of the subsystem image.
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Upon request, a constructor will verify whether they created a process by checking

the process’ brand.

The meta-constructor is the constructor that yields constructors. It has read-

only access to its instructions and duplicates this access as part of its subsystem

image. The meta-constructor is initially sealed, causing all constructors to have

identical behavior. Because constructors can verify another process, access to the

meta-constructor allows constructors to be verified. This procedure is used to allow

the constructor to verify the authenticity of other constructors when querying them

for confinement. The ability to fabricate and verify confined subsystems is so critical

to robustness that universal access to the meta-constructor is considered part of the

system-wide TCB.

Regardless of what operations the yield of this constructor performs, the only overt

information flow it may cause follows from the use of capabilities in the authorized set.

If this were not the case, then there must be some capability not in the authorized set

which may be used to produce an outward information flow as capabilities are the only

mechanism to produce overt information flow. But the only capabilities not in this

authorized set are those known to never produce outward information flow, or sealed

constructors whose result is recursively confined under the same set. Confinement

requests cannot form a cycle as the constructor capability is not produced until it

seals its system image. By induction, no such capability can exist, and the yield of

the constructor must be confined.
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The Constructor and Space Bank are designed to work in tandem to provide addi-

tional guarantees. A constructor requires parents to provide a Space Bank capability

from which it will allocate its yield. The common behavior of parents is to allocate a

new sub-bank for the new subsystem. As the allocator of this sub-bank, the parent

has the ability to destroy the entire subsystem. In addition to granting the parent the

ability to confine the subsystem, this ensures that the parent may limit the duration

the subsystem is present. A common pattern of creating “memory-less” services is to

have the parent destroy them after each use.

Space Banks are not initially constructed subsystems, and provide their own verifi-

cation interface. The constructor is able to verify Space Banks as it holds a capability

to the root bank. It passes this ability on to is children by ensuring that the bank

capability used to allocate the new subsystem is verified by the root bank. Because

the constructor relies on the correct behavior of a Space Bank to construct its yield,

this check also protects the constructor from abuse.

2.8 Initial System Construction

The construction of an initial system image is handled by the Coyotos mkImage

utility. mkImage is an imperative scripting interpreter with built-in commands to

describe and generate a system image. Conceptually, mkImage can be thought of as

a link editor that operates over Coyotos objects.
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Because mkImage is run prior to the initial system boot, it incorporates behavior

from both the Space Bank and constructor domains. Accounting data for the Space

Bank is maintained by mkImage when new sub-banks are constructed and objects are

allocated. To construct new domains, new constructors are built from executable im-

ages as though they were the yield of the meta-constructor. They require a capability

to a sub-bank for allocation, include a capability to the meta-constructor in their sys-

tem image, and are appropriately branded for later checking by the meta-constructor.

A similar procedure constructs yields from individual constructors. Therefore, the

Space Bank and all constructor domains must be able to start from a pre-initialized

state.

Security policies in the initial system image that provide no authorized interface

for alteration become immortal. A user in a capability system is simply a program

managing a long-running, authenticated session with an individual. In a system

image without a capability authorizing a policy change, either by program design

or by image construction, there can be no user or super-user who can effect such a

change. This is often more powerful than the traditional mandatory policy as not

even a security administrator can alter such a policy. Metaphorically, this is like

loosing your keys in a universe prohibiting locksmiths.

The mkImage tool does not provide a confinement test, but this does not make

confinement less relevant. The confinement test does not require the constructor to

execute it and may be performed by anyone. Therefore, the system developer should
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ensure that every capability issued as part of the initial system image is intentional.

2.9 Confinement as a Keystone

Confinement gives applications the ability to scope authority to exactly those

subsystems where it is needed and is a foundational tool for building other security

policies. Isolation is a mandatory security policy requiring that all information flow

is authorized between subsystems. To enforce this policy, the description of what

information flow is authorized is encoded by generating authorized capability sets for

each subsystem. Before the system image instantiator builds these subsystems, it

can check each subsystem for confinement against the approved information flow list.

Because we have checked every outbound information flow, all inbound information

flow must be approved as well.

A simple reference monitor mediating confined subsystems can produce the Bell-

LaPadula [BL73] mandatory access control, or Multi-level security. As previously

mentioned, the Bell-LaPadula model labels all domains with a clearance level and

set of categories; access and information flow is only permitted between domains

based on integer and subset ordering, respectively. To construct such a system using

confinement, each domain is confined with respect to a security monitor. The security

monitor manages all requests based on the originating domain and ensures that all

requests are isolated by prohibiting the exchange of capabilities across domains.
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Confinement is not only useful for building and enforcing mandatory policies, but

also constructing dynamic, application-defined policies. The KeyKOS Receptionist

is the domain invoked by a device, usually a terminal, that authenticates a user’s

credentials and connects the device to the user’s compartment. This is performed

simply by passing the device interface along to the user’s compartment, effectively

eliminating the Receptionist from the communication path. While easy to describe in

object-based capability systems, structurally ensuring the same privilege separation

guarantees for SSH running on Unix systems was a substantial undertaking.

The “Open File Dialog” is an example of one of the more powerful dynamic poli-

cies to emerge from object-capability systems. In traditional systems, applications

running on behalf of a user have the ability to access all of that user’s files. When

well-behaved, these applications will prompt the user for which files they intend the

application to access. Unlike the traditional model where this behavior is subject to

the whim of the application, it can be enforced as a security policy in object-based

capability systems. A user may construct an “Open File Dialog” as a subsystem that

holds all of their authority and they trust to identify itself when prompting them

about capabilities. When instantiating a new untrusted process, the user need not

grant them any interesting capabilities other than a new open file dialog with a unique

identifier. Regardless of what behavior the new process performs, the user will be

able to identify when a prompt is originating through some action initiated by the

new process. Using a trustworthy dialog, the user can remain in control of which, if
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any, capabilities are granted.

The “Open File Dialog” example highlights how capabilities can be leveraged by

developers to produce robust patterns of collaboration through modularity and en-

capsulation. The constructor mechanism permits applications to confine authority

directly where it is needed and verify whether applications were constructed faith-

fully. This paradigm permits developers to reliably construct new software objects

with clearly articulated boundaries and interfaces which include fine-grained security

decisions. When deployed pervasively, the system can be structured to provide users

the ability to comprehend the various contexts in which applications operate on their

behalf. By giving the user the ability to scope these contexts using confinement, these

systems provide users trustworthy agents to act on their behalf.
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Proof Sketch

This chapter contains a high-level proof sketch to assist the reader while examining

the comprehensive proof of SDM. It provides simplified versions of key definitions and

theorems that cover a wide range of capability-based systems. The use of mechanically

manipulable specifications is eschewed in favor of familiar, hand-written mathematics.

The proof sketch starts by describing an abstract form of the model structures in

SDM. It then presents the model semantics as state updates along with the potential

for data motion. Possible system states and information flow that can happen within

the system are defined inductively over sequences of these operations.

The first major theorem presented is the safety property from Section 1.1. This is

accomplished using a simplified structure of systems, the access graph, that reduces

complexity to access between objects. Using access graphs, this sketch defines direct

access and potential access as the access that is present in the system and that which
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maximally can be present in the future. Finally, it defines functions that conserva-

tively approximate both direct and potential access over the model operations and

uses these functions to demonstrate that the potential permissions for pre-existing

objects never increases over the life of the system, a property called attenuating per-

missions. Because potential access is attenuating in SDM, it consequently answers

the safety question.

The confinement test does not examine the entire system, but only the capabil-

ities to be placed in constructed subsystem. The safety property provides an upper

bound on permissions, but does not directly yield an upper bound on information

flow. The next major theorem demonstrates that potential access can produce a

conservative approximation of potential information flow. This proof opens with an

inductive definition of what is mutated in the system and defines a simple predicate

for deciding what is mutable using access graphs. It then demonstrates that the actual

mutation of the system is bounded by potential mutability and shows that potential

mutability between existing objects can never increase. Next, this sketch introduces

the confinement problem as a whole-system post-condition. Finally, it introduces a

representation of the confinement property using access graphs and demonstrate that

if the post-condition is satisfied, the subsystem must be confined.
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Figure 3.1 Relevant definitions for system states.

R ≡ {tx,wr, rd,wk}
Cap ≡ Ref×R2

Obj : Idx→ Cap
L ≡ {unborn, alive, dead}
T ≡ {active, passive}
S : Ref→ Obj× L× T

Figure 3.2 Example system state.

e a b d

i f g h

passive active
unborn valid capability

alive invalid capability

dead

{wk}1

{wk, rd}2{wk, rd,wr}1
{rd,wr, tx}

1
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3.1 System State

The permission state of a capability-based system at any instant is modeled by

a system state in SDM. A system state is represented as a finite map of finite maps

defined in Figure 3.1. Each object reference is mapped to an object, object label,

and object type; each object is a map from an index to a capability. An object’s

type indicates whether it is a process or passive storage. An object’s label captures

a section of its life-cycle, which is permitted to transition only from unborn to alive

and alive to dead. Indices label the cells within an object, which contain capabilities.

A capability consists of a target object reference and a set of access rights.

The access rights (or permissions) in the system are rd, wr , wk, and tx . Ac-

cess rights are checked as part of the preconditions for the semantic operations in

Section 3.2. The rd and wr permissions enable the ability to directly read or write

information in the target. The wk permission is a sub-type of the wk permission that

authorizes transitive read-only authority. The tx access right authorizes message

passing containing both capabilities and data along with an optional reply capability.

SDM does not explicitly represent object data or intra-object computation. Be-

cause all possible operation sequences will be analyzed, tracking which data are mov-

ing is unnecessary. The model only tracks which objects could be modified by the

motion of data.

When diagramming a system state, the convention herein uses the shape of the

object to indicate the object’s type and style to represent life-cycle. Active objects
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(processes) are circles and passive storage objects are squares. Objects with solid

borders are alive, objects with dashed borders are unborn, and gray objects are dead.

Capabilities are represented as arrows within the graph, each capability is labeled

with their access right set along the arc center. For clarity, capabilities that are

permitted structurally but which have no semantic interpretation are given a dashed

line to differentiate them from semantically relevant capabilities. The index at which

each capability is stored is denoted along its arc close to the object. An example is

included in Figure 3.2.

3.2 Semantics

The system state evolves by executing a sequence of operations through which data

and capabilities may flow. Each operation is defined in three parts: a precondition, a

transformation of system state, and an upper bound on information flow. Figure 3.4

the preconditions that expresses the sanity requirements for each operation to ensure

safety. In particular, processes can only specify the target of an operation by invoking

a capability at a specific index. These preconditions also check this capability for the

presence of a necessary access right, capturing an access control decision. Therefore,

a system state transition and potential data flow occur only when the precondition

is satisfied.

The operation state transitions are defined in Figure 3.5. The notation S op−→ S ′
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indicates that executing op in system state S results in state S ′. Executing a sequence

of operations is represented by the notation S0 . . .
opm−1−−−→ Sm−1

opm−−→ Sm.

Information flow is modeled using the readFrom and wroteTo functions defined

in Figure 3.6. During a successful operation, data may potentially flow from each of

the objects in the readFrom function to the objects named by wroteTo. While each

operation varies with respect to its target, the model presumes that the acting subject

of an operation is always in the readFrom set.

Operations should be considered traces of system execution and do not represent

system calls. For example, in real systems, the send operation contains a managed

rendezvous between the sender and recipient. The acting subject performing a send

operation specifies which capabilities and data should be transmitted, but the recip-

ient indicates where they should be placed. Also, processes in real systems do not

choose, and cannot observe, which new object is allocated; the system selects it on

their behalf.

Figure 3.3 defines some commonly used functions, though the following have been

omitted for brevity. mkCap constructs a new capability. multiCapCopy inductively

copies capabilities by examination of a list of index pairs where the source is the first

argument and the target is the second. Each operation has an acting subject, labeled

a in the definitions, and is selected by the acting function. The removeCapsByRef

function removes all capabilities naming a specific reference front the system and

is used to sanitize the system before allocating an object. Maps are sets and the
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notation k M7−→ v indicates that k is mapped to v in map M . When examining a map,

an underscore “ ” will indicate that the value is ignored. An asterisk “*” used while

updating a map leaves the previous value unaltered and map erasure is indicated

using epsilon “ε” for the value.

These figures use many common symbols; the relevant ones are listed here. Object

references are often labeled by a single character o, a when it is the reference to the

acting object, or n for a new object reference. The variables src and tgt are also

used to denote object references in appropriate contexts. The objects themselves are

often simply obj, or aObj for the acting object. Generic indices are labeled i. When

they identify the capability being invoked, they are labeled t as they name the target

object. When being accessed by the capability at t, they are also labeled c. Maps

represented as lists of index pairs are often represented by m, though later sections

will use this for mutation. System states are denoted by S, and access graphs denoted

by I and A. P often denotes a potential access graph and D ranges over direct access

graphs.

The read and write operations model data reads and writes to an object and

require the rd and wr access right, respectively. Because non-self data motion is

modeled by readFrom and wroteTo, these operations have no impact on the system

state. readFrom contains the capability target for a read operation along with the

invoking subject. wroteTo contains the capability target for a write operation or the

invoking subject.
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Figure 3.3 Helper functions.
hasRight(o, i, S, r) ≡ ∃obj, o S7−→ (obj, , )∧

∃tgt, arset, i obj7−→ mkCap(tgt, arset)∧
r ∈ arset

isLabel(o, S, l) ≡ o
S7−→ ( , l, )

isUnborn(o, S) ≡ isLabel(o, S, unborn)
isAlive(o, S) ≡ isLabel(o, S, alive)
isAlive(o, S) ≡ isLabel(o, S, dead)

isType(o, S, typ) ≡ o
S7−→ ( , , typ)

isActive(o, S) ≡ isType(o, S, active)
targetIsAlive(o, i, S) ≡ ∃obj, o S7−→ (obj, , )∧

∃tgt, i obj7−→ mkCap(tgt, )∧
isAlive(tgt, S)

preReqActor(a, S) ≡ isAlive(a, S) ∧ isActive(a, S)
preReqCommon(a, t, S) ≡ preReqActor(a, S) ∧ targetIsAlive(a, t, S)
objTarget(o, t, S) = tgt ⇐⇒ o

S7−→ (obj, , ) ∧ t obj7−→ mkCap(tgt, arset)
hasCap(o, cap, S) ≡ o

S7−→ obj ∧ ∃i, i obj7−→ cap
replyCap(obj, i, o) ≡ obj[i 7→ mkCap(o, {tx})]

Figure 3.4 Operation preconditions.

preReq(read(a, t), S) ≡ preReqCommon(a, t, S)∧
(hasRight(a, t, S, rd) ∨ hasRight(a, t, S,wk))

preReq(write(a, t), S) ≡ preReqCommon(a, t, S) ∧ hasRight(a, t, S,wr)
preReq(fetch(a, t, c, i), S) ≡ preReqCommon(a, t, S)∧

(hasRight(a, t, S, rd) ∨ hasRight(a, t, S,wk))
preReq(store(a, t, c, i), S) ≡ preReqCommon(a, t, S) ∧ hasRight(a, t, S,wr)
preReq(revoke(a, t, c), S) ≡ preReqCommon(a, t, S) ∧ hasRight(a, t, S,wr)
preReq(destroy(a, t), S) ≡ preReqCommon(a, t, S) ∧ hasRight(a, t, S,wr)

preReq(allocate(a, n,m, typ), S) ≡ preReqActor(a, S) ∧ isUnborn(n, S)
preReq(send(a, t,m, x), S) ≡ preReqCommon(a, t, S) ∧ hasRight(a, t, S, tx)

weaken(mkCap(tgt, arset)) ≡
{

wk | {wk, rd} ∩ arset 6= ∅
∅ | otherwise
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Figure 3.5 State transitions.

S
read(a,t)−−−−→ S ′ ⇐⇒ S ′ = S

S
write(a,t)−−−−−→ S ′ ⇐⇒ S ′ = S

S
fetch(a,t,c,i)−−−−−−−→ S ′ ⇐⇒ a

S7−→ aObj∧
t

aObj7−−→ tCap∧
tgt = objTarget(a, t, S)∧
tgt S7−→ tObj∧
c

aObj7−−→ cap∧
cap’ = if rd ∈ tCap then cap else weaken(cap)∧
S ′ = S[tgt 7→ (tObj[i 7→ cap’], ∗, ∗]

S
store(a,t,c,i)−−−−−−−→ S ′ ⇐⇒ a

S7−→ aObj∧
tgt = objTarget(a, t, S)∧
tgt S7−→ tObj∧
c

tObj7−−→ cap∧
S ′ = S[a 7→ (aObj[i 7→ cap], ∗, ∗)]

S
revoke(a,t,c)−−−−−−−→ S ′ ⇐⇒ tgt = objTarget(a, t, S)∧

tgt S7−→ tObj∧
S ′ = S[tgt 7→ (tObj[c 7→ ε], ∗, ∗)]

S
destroy(a,t)−−−−−−→ S ′ ⇐⇒ tgt = objTarget(a, t, S)∧

tgt S7−→ tObj∧
S ′ = S[tgt 7→ (∗, dead, ∗)]

S
allocate(a,n,m,typ)−−−−−−−−−−→ S ′ ⇐⇒ Sclean = removeCapsByRef(n, S)∧

a
Sclean7−−−→ aObj∧

newObj = multiCapCopy(aObj, ∅,m)∧
S ′ = Sclean[n 7→ (newObj, alive, typ)]

S
send(a,t,m,x)−−−−−−−→ S ′ ⇐⇒ a

S7−→ aObj∧
tgt = objTarget(a, t, S)∧
tgt S7−→ tObj∧
tObj1 = multiCapCopy(aObj, tObj,m)∧
tObj2 = if x then replyCap(tObj1, x, a) else tObj1∧
S ′ = S[t 7→ (tObj2, ∗, ∗)]

otherwise
S

op−→ S ′ ⇐⇒ S = S ′
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Figure 3.6 Information flow.
readFrom(read(a, t), S) ≡ {a, objTarget(a, t, S)}
readFrom(write(a, t), S) ≡ {a}

readFrom(fetch(a, t, c, i), S) ≡ {a, objTarget(a, t, S)}
readFrom(store(a, t, c, i), S) ≡ {a}
readFrom(revoke(a, t, c), S) ≡ {a}
readFrom(destroy(a, t), S) ≡ {a}

readFrom(allocate(a, n,m, typ), S) ≡ {a}
readFrom(send(a, t,m, x), S) ≡ {a}

wroteTo(read(a, t), S) ≡ {a}
wroteTo(write(a, t), S) ≡ {objTarget(a, t, S)}

wroteTo(fetch(a, t, c, i), S) ≡ {a}
wroteTo(store(a, t, c, i), S) ≡ {objTarget(a, t, S)}
wroteTo(revoke(a, t, c), S) ≡ {objTarget(a, t, S)}
wroteTo(destroy(a, t), S) ≡ {a}

wroteTo(allocate(a, n,m, typ), S) ≡ {a, n}
wroteTo(send(a, t,m, x), S) ≡ {objTarget(a, t, S)}

when preconditions are satisfied, otherwise

readFrom(op, S) ≡ {}
wroteTo(op, S) ≡ {}
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The fetch and store operations model capability motion and have the same predi-

cates and information flow properties as the read and write operations. The difference

is that fetch and store operations read or write capabilities instead of data. These op-

erations update the system model by transferring a capability from or to the specified

index in the target object. The fetch operation has a special case when the capability

contains the wk permission, but not the rd permission. In this case, it is still possible

to fetch a capability from the target, but the resulting capability will be weakened

using the weaken function. A weakened capability has an access right set of {wk}

only when the target capability has either the rd or wk right. This has the effect of

causing the wk access right to enforce transitive read-only access.

The revoke operation erases a mapping within an object. Because this is almost

identical to overwriting an existing capability using store, it requires the wr permis-

sion. The wr access right also authorizes the destroy operation as the acting subject

may already overwrite all data and revoke all capabilities held by the target. Both of

these operations modify the target object adding them to the wroteTo set.

The allocate operation models new object allocation. As allocation is modeled as

part of the universal TCB, whether in the kernel or as an application, the allocate

operation does not require a capability to perform. It requires only that the object

to be allocated is in the unborn state. During allocation, the allocator specifies the

new object’s initial data and capabilities, which is encoded using a pairwise map from

source index to target index. Although the operation encodes which object is to be
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Figure 3.7 Definition of mutated.

mutated(E, S0) ≡ E

mutated(E, S0 . . .
opm−1−−−→ Sm−1

opm−−→ Sm) ≡
let M = mutated(E, S0 . . .

opm−1−−−→ Sm−1) in
M | if operation preconditions are not met
M | if E ∩ readFrom(op, Sm−1) = ∅

M ∪ wroteTo(op, Sm−1) | otherwise

allocated, this is not considered visible to or within the control of the allocator. Once

allocated, the allocator receives a capability with total authority of the fresh object.

The information flow requirements add the allocated object to the wroteTo set.

The send operation models the mechanism of communication and the protection

extension mechanism. A capability with the tx access right permits its holder to

transmit a message containing both capabilities and data to the target, optionally

fabricating a reply capability for use with client-server models. The transfer is en-

coded as with the allocate operation. In real system implementations, the system

is expected to implement a rendezvous mechanism allowing the recipient to speci-

fied where the data and capabilities will be stored. As send transfers both data and

capabilities, the target object is in the wroteTo set.

Operation sequences are simply executed sequentially over the system state. Be-

cause operation preconditions preclude erroneous transitions, they can be composed

automatically. Tracking information flow through operation sequences is computed

by the mutated function in Figure 3.7. mutated considers any subsystem to be self-

mutating as a base case. For each operation successfully performed, mutated increases
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Figure 3.8 Direct access graph.
src ar−→ tgt ∈ dirAcc(S) ⇐⇒

isAlive(src, S) ∧ ∃arset, ar ∈ arset∧
hasCap(src,mkCap(tgt, arset), S)∧
isAlive(tgt, S))

what was mutated by the wroteTo set if the intersection of the readFrom set and the

mutated set are non-empty.

3.3 Access Graphs and Potential Access

SDM uses access graphs to reason about nearly all safety and information flow

properties. Access graphs reduce system states to access relations between objects,

representing multiple system states simultaneously. Structurally, an access graph is

simply a finite set of access edges, each a triple in Ref × Ref × R. The access edge

denoted src ar−→ tgt indicates that object src holds right ar to object tgt. As the access

graph is a set, each edge appears only once, collapsing the amount of redundant

information.

A direct access graph is an access graph representing the permission information

of a specific system state. The direct access graph of a system state does not include

capabilities held by unborn or dead objects as these capabilities may not be transferred

or invoked. The direct access graph function dirAcc is described by Figure 3.8.

The next major goal is to define an upper bound on the worst-case authority

present in an access graph that can be used when verifying properties about access
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Figure 3.9 transfer definition.

transfer(A,B) ⇐⇒



src ar−→ tgt ∈ A ∧ add(src ar’−→ src, A) = B

src ar−→ tgt ∈ A ∧ add(tgt ar’−→ tgt, A) = B

src ar−→ tgt ∈ A ∧ add(tgt ar’−→ tgt, A) = B

src rd−→ tgt ∈ A ∧ tgt ar−→ tgt’ ∈ A∧
add(src ar−→ tgt’, A) = B

src wr−→ tgt ∈ A ∧ src ar−→ tgt’ ∈ A∧
add(tgt ar−→ tgt’, A) = B

src tx−→ tgt ∈ A ∧ src ar−→ tgt’ ∈ A∧
add(tgt ar−→ tgt’, A) = B

src tx−→ tgt ∈ A ∧ add(tgt tx−→ src, A) = B

src wk−→ tgt ∈ A ∧ tgt ar−→ tgt’ ∈ A∧
(ar = wk ∨ ar = rd)∧
add(src wk−→ tgt’, A) = B

Figure 3.10 Potential transfer definition.

potTransfer(A,C) ⇐⇒
{
A = C
∃B, potTransfer(A,B) ∧ transfer(B,C)

Figure 3.11 Maximal and potential access .
maximal(P ) ≡ ∀A, potTransfer(P,A)⇒ P = A
potAcc(I, P ) ≡ potTransfer(I, P ) ∧maximal(P )
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and data motion. The definition of worst-case authority is built on transfer in Fig-

ure 3.9. Transfer is a micro-operation of permission transfer based on access graphs.

Unlike the operational semantics which operates at the granularity of whole capa-

bilities, transfer justifies a single permission transfer. If A and B are access graphs,

transfer(A,B) indicates that a permission transfer is possible from A to B through

the addition of some edge. Two access graphs related by any, potentially empty, se-

quence of transfer steps is defined by the potential transfer relation potTransfer in

Figure 3.10.

Access graphs are related by transfer based entirely on individual access rights.

The rd and wr access right authorize edges to be transferred in opposite directions.

Similar to the rd case, the wk access right is authorized to transfer a wk edge from

a wk or rd edge. The tx access right behaves like the wr permission but includes a

second case for constructing a reply. To make transfer a reflexive relation, two cases

exist to permit self-targeting edges. These cases require some other edge to refer to

the objects to prevent the addition of new object references and keep analysis finite.

It is possible to construct a least upper bound between any two access graphs

which share an initial access graph. Given an initial access graph I and access graphs

A and B such that potTransfer(I, A) and potTransfer(I, B), there must exist an access

graph C such that potTransfer(A,C) and potTransfer(B,C). Transfer captures the

ability to add a single edge using existing edges as justification. Therefore, for any

access graph C, the underlying justification is not altered by adding edges to C.
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Figure 3.12 Potential access always exists.

∀I,∃P, potAcc(I, P )

Transfer may be transposed with set addition: if transfer(C,D) and add(x,D) = E,

then add(x,C) = D′ and transfer(D′, E). Because transfer and potTransfer are non-

decreasing, they are commutative. The least upper bound is easily computed by set

union, and all transfers performed are still valid.

From these definitions, each access graph must have a supremum by potTransfer .

This potential access graph is the worst-case approximation of access in an initial

access graph. Defined by potAcc in Figure 3.11, it is the access graph that is reachable

via potTransfer and is maximal. If I is an initial access graph, then P is a potential

access graph of I if and only if potAcc(I, P ). Because all access graphs have a maximal

access graph and have a least upper bound, any potential access graph must be the

supremum. From set union over finite sets, it follows that all potential access graphs

of I are unique.

Computing the potential access graph can be performed by induction over the

complete access graph, the graph containing all possible edges given the object refer-

ences already present. Because each transfer adds edges between previously existing

objects, it cannot exceed the complete access graph. The complete access graph less

the initial graph can be used as a work list when considering a new potential edge.

Exhaustively scanning this list for candidate edges, testing them with transfer, and
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recursing on the resulting set will eventually produce the potential access graph. As

the set difference between the complete access graph and the accumulator is always

decreasing, this computation is guaranteed to eventually terminate. potential access

it must always exist, as in Figure 3.12, because it is computed by a function on I.

Therefore, the remainder of this sketch will use symbol potAcc as both the computable

function and the judgment.

Analysis in the remaining sections relies on the ability to preserve and reorder

transfers with other approximating functions. Because the family of transfer func-

tions are themselves additive, they can be transposed without loss of generality. This

provides a mechanism for describing different approaches to computing potential ac-

cess with respect to related access graphs.

3.4 Access Approximations

All operations in SDM have the potential to overwrite capabilities and some delete

them outright. Computing precise functions between direct and potential access

graphs describing these system states introduces complexity, so SDM defines the

concept of “conservatively approximating” functions. Conservatively approximating

functions must be composable so that they remain approximating inductively over

multiple operations. They must compose with set addition to permit transfers to be

reordered around them. The graph in Figure 3.13 illustrates this concept.
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Figure 3.13 Direct access approximation FdirAcc.

Sa Ia
dirAcc

I ′a
⊆

Sb Ib
dirAcc

I ′b
⊆

op FdirAcc(Sa)

system state relation
access graph computable relation

Figure 3.14 Potential access approximation FpotAcc.

Sa Ia
dirAcc

I ′a
⊆

Pa
potAcc

P ′a
⊆

I ′b Pb
potAcc

P ′b
⊆

FdirAcc(Sa) FpotAcc(Sa)

Theorems of this sort are difficult to read, but easy to comprehend through il-

lustration. In access relationship graphs, functions are represented as arrows and

relations as lines. System states are represented by squares with shadows and access

graphs with circles with shadows.

The simplest approximation is one over direct access graphs. A direct access ap-

proximation, FdirAcc, is a monotonically non-decreasing function between direct access

graphs indexed by operation and initial system state. A potential access approxima-

tion is defined similarly over a direct access approximation, but with sufficient infor-

mation to recover the initial system state Figure 3.14 details the relationships visually.
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Figure 3.15 Safety induction strategy.

S0 I0
dirAcc

I ′0
⊆

P0
potAcc

P ′0
⊆

S1 I1
dirAcc

I ′1
⊆

P1
potAcc

P ′1
⊆

op1 FdirAcc1 (S0) FpotAcc1 (S0)

. . . . . . . . . . . . . . .

opN−1 FdirAccN−1 (SN−1) FdirAccN−1 (SN−1)

SN IN
dirAcc

I ′N
⊆

PN
potAcc

P ′N
⊆

opN FdirAccN
(SN ) FdirAccN

(SN )
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Figure 3.16 Direct access operation.

dirAccOp(S, read(a, t)) ≡ id
dirAccOp(S,write(a, t)) ≡ id

dirAccOp(S, revoke(a, t, i)) ≡ id
dirAccOp(S, destroy(a, t)) ≡ id

dirAccOp(S, fetch(a, t, c, i)) ≡ edgeCopy(S, objTarget(a, t, S), a, ((c, i)))
dirAccOp(S, store(a, t, c, i)) ≡ edgeCopy(S, a, objTarget(a, t, S), ((c, i)))

dirAccOp(S, send(a, t,m, x)) ≡ edgeCopy(S, a, t,m) ◦ reply(x, a, t)
dirAccOp(S, allocate(a, n,m, typ)) ≡ edgeCopy(S, a, n,m) ◦ insert(a, n)

when preconditions are satisfied, otherwise

dirAccOp(S, op) ≡ id

with
id(A) ≡ A

From these pieces, approximations for a sequence of operations can be assembled as

shown in Figure 3.15.

Figure 3.16 defines dirAccOp, the function approximating direct access graphs

over operations. Approximations of worst-case authority do not need to consider the

elimination of permissions;. Therefore, all operations whose sole effect is to remove

capabilities are approximated by an identity function. The other direct access ap-

proximations correspond directly to the potential additional access rights for each

operation.

The definition has omitted the simple functions edgeCopy, reply, and insert. If

a
S7−→ aObj and t S7−→ tObj, then edgeCopy(S, a, t,m) adds access edges corresponding

to updating tObj as multiCapCopy(aObj, tObj,m). That is, it examines S and adds
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Figure 3.17 Potential access operation.
when preconditions are satisfied:

potAccOp(S, allocate(a, n,m, typ))(P ) ≡ endow(a, n)
potAccOp(S, op)(P ) ≡ P for op 6= allocate

when preconditions are not satisfied:

potAccOp(S, allocate(a, n,m, typ)) ≡ id

with
endow(a, n) ≡ potAcc ◦ insert(a, n)

edges to a corresponding to all capabilities in t at the indices in the first position in

m. reply is analogous to replyCap and adds the edge a tx−→ t when x is True. The

insert(a, n) function adds the new object n to the access graph by adding all possible

edges between a and n.

With the exception of allocate, the other operations are approximated by a func-

tion built from potTransfer . The special case to approximate the allocate operation

cannot be modeled using potTransfer because it adds a new object. The endow func-

tion is defined to approximate allocate and is defined in two parts. First, endow

invokes insert, which adds all possible edges between parent and child. Having ac-

complished this, it then computes potAcc covering the all reflexive edges and any

transfers that could occur. Section 3.5 will discuss the relevance of endow in greater

detail.

As potential access is the least upper bound over potTransfer , each dirAccOp that

is captured by potential transfer, i.e. the non-allocate operations, may be approx-
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Figure 3.18 Access graph projection.
projection(a, n)(P, P ′) ≡

∀(src, tgt, ar), src ar−→ tgt ∈ P ′ ⇐⇒



src ar−→ tgt ∈ P
src ar−→ a ∈ P ∧ tgt = n

a
ar−→ tgt ∈ P ∧ src = n

src = a ∈ P ∧ tgt = a
src = n ∈ P ∧ tgt = a
src = a ∈ P ∧ tgt = n
src = n ∈ P ∧ tgt = n

imated by an identity function over potential access. Because the endow function

recomputes potential access, it must approximate the capability copies during the al-

locate operation. This definition demonstrates that the only access not approximated

by potential access occurs during object allocation.

3.5 Projections and Safety

access graph projections define a mechanism describing how potential access op-

erations evolve with new objects. Endow is the only non-trivial potential access

operation. Consider the result of fully connecting a fresh object to an existing one

as in the case of endow. Any edges held by the original object might come to be be

held by the allocated object through transmission. Additionally, some edges origi-

nally targeting the allocating object might be added such that they target the fresh

object. It is also possible that new self-referential edges may come to exist, along with

some other uninteresting corner cases. Any access graph related by these properties

is called a projection, using the projection relation given in Figure 3.18.
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Figure 3.19 Lemma: projection approximates endow.

∀P,maximal(P )⇒ projection(a, n)(P, P ′)⇒ endow(a, n)(P ) ⊆ P ′

Figure 3.20 Attenuating authority for capability systems.
∀S, P, potAcc(dirAcc(S), P )⇒
∀E, (∀e ∈ E,¬isUnborn(e, S))⇒
∀e ∈ E ⇒
∀o /∈ E ⇒
∀P ′, projection(e, o)(P, P ′)⇒
restrict(P ′, E) ⊆ P

The lemma in Figure 3.19 states than an endow operation performed on a maximal

access graph must form a projection. This proof requires a great degree of case

analysis, but is conceptually very simple. Consider any access edge authorized by a

transfer after a projection. This edge must contain the child object reference, either

as source or target. If this were not the case, there must exist other edges in the

graph prior to projection which would authorize the new edge without the presence

of the child. However, this graph was assumed to be maximal, making this impossible.

Therefore, endow is approximated by a projection to the fresh object when operating

on a maximal access graph.

Finally, the safety property can be described using potential access through pro-

jection. The safety decision is initially determined by potential access. As the system

is not in a position to know the relationships that new objects will have, it cannot

determine what access they may come to hold. However, the existence of all new

objects can be approximated via projection. Projection only adds edges which re-
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Figure 3.21 Definition of mutable.
mutable(E)(A) ≡
{m|∃e ∈ E ∧ (m wk−→ e ∈ A ∨m rd−→ e ∈ A ∨ e wr−→ m ∈ A ∨ e tx−→ m ∈ A)}

late the system to new objects, leaving all existing potential access unchanged. The

restrict(P,E) operation eliminates all edges in P with both elements not in E and

is used to compare pre-existing relationships. The potential access of the system is

preserved for all existing relationships and remains maximal over the life of the sys-

tem. This property, stated formally in Figure 3.19, is called attenuating authority

and represents a decision to the safety problem for capability-based systems.

3.6 Mutability

The definition of the confinement test for object-capability systems relies upon a

decision over permissions, not over information flow. To reason about security policies

expressed using permissions, it must be the case that permissions are representative of

information flow. Surprisingly, this is not true for most systems [HRU76]. However,

this property does hold for object-capability systems satisfying SDM.

The definition mutable in Figure 3.21 determines the objects where information

in a given subsystem might flow. It is computed by induction over the edges of

an access graph. Objects are mutable by a subsystem in three cases. In the base

case, the subsystem is self-mutating and is included in mutable. Second, writing or

transmitting data push information out of the subsystem, so any target of a wr or tx
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Figure 3.22 Theorem: mutable approximates mutated.

potAcc(dirAcc(S0), P )⇒ mutated(E, S0 . . .
opm−−→ Sm) ⊆ mutable(E)(P ) ∩ extant(S0)

where
extant(S) ≡ {o|isAlive(o, S) ∧ isDead(o, S)}

edges held by an element of the subsystem is mutable. Finally, any object holding rd

or wk edges to a member of the subsystem can pull information out of the subsystem.

Because mutable is parameterized over any access graph, it is applied to the direct

access or potential access of a system to produce respective meaning. The terms

direct mutability and potential mutability describe the mutability of direct access or

potential access graphs.

Mutable preserves subset variance with both the subsystem and with the access

graph. Though not formally presented, these variance properties form the basis for

most approximations of mutability in the rest of this sketch.

For mutable to be meaningful, it must satisfy the theorem in Figure 3.22. This the-

orem states that what is mutated1 by a subsystem over any execution, when restricted

to initially extant objects, is conservatively approximated by what is potentially mu-

table from the initial configuration. Naively, this would be directly satisfiable by

induction. All objects require a capability for data motion. These capabilities are

conservatively approximated by direct access, which in turn is conservatively approx-

imated by potential access. The allocate operation is safe because each projection
1Recall Figure 3.7
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Figure 3.23 Definition of mutable induction.

S0 I0 I ′0 P0 P ′0 M0

. . . . . . . . . . . . . . . . . .

SN−1 IN−1 I ′N−1 PN−1 P ′N−1 MN−1

SN IN I ′N PN P ′N MN

dirAcc ⊆ F g ⊆ mutable(E)

op1 dirAccOp1 F
p
1 mutableInd(S0, op1)

dirAcc ⊆ F g ⊆

opN−1 dirAccOpN−1 F
p
N−1

mutable(MN−2)

mutableInd(SN−1, opN−1)

dirAcc ⊆ F g ⊆

opN dirAccOpN F
p
N

mutable(MN−1)

mutableInd(Sn, opn)

only extends the allocator’s mutability into the child.

The naive approach is hiding a subtle induction problem. It relies on the safety

property for its inductive explanation of why mutable was not exceeded by mutated.

However, the inductive definition of computing mutable does not match the inductive

definition of mutated. Figure 3.23 defines an inductive definition of mutable, muta-

bleInd, matching the induction of mutated. This inductive specification of what is

mutable must always conservatively approximate what is mutated. Potential induc-

tive mutability only grows by the newly allocated object exactly when the parent

is in the inductively mutable subsystem. By distributing intersection across union,

all objects that were not initially extant are excluded from this set. Therefore, the

static definition of mutable conservatively approximates mutation over the life of the

system.
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Figure 3.24 Extant subsystems.

extantSub(S,E) ≡ E ⊆ extant(S)

Figure 3.25 Constructive subsystems.

constructiveSub(S,E) ≡ ∀src S7−→ (obj, , ), i obj7−→ mkCap(tgt, ) ∧ tgt ∈ E ⇒ src ∈ E

3.7 Subsystem Refinements

The definition of subsystems heretofore has been a simple set of object references.

This is convenient, as many proofs do not rely upon any information about the form

of a subsystem. However, this general definition is insufficient for the confinement

test as real subsystems are necessarily more constrained. This proof sketch defines

two additional predicates of subsystems in addition to the confinement test.

The semantics do not make any guarantees about the allocation relationships of

unborn objects. Any unborn object might be legally allocated as part of an allocate

operation and subsequently become the child of any other object. The inclusion

of unborn objects in a subsystem can inadvertently link two otherwise independent

subsystems through an allocation, as is the case in the SW model [SW00]. Rather

than make assumptions about where new objects will arise, subsystems are restricted

consisting of only alive or dead objects. These subsystems are called extant subsystems

and are defined in Figure 3.24.

Since the confinement test is always performed before subsystem construction, the
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Figure 3.26 Confinement predicates.

authorizedSet(C,E) ≡ ∀mkCap(tgt, ) ∈ C ⇒ tgt /∈ E
confinementTest(S,E,C) ≡ ∀e ∈ E, e S7−→ eObj, eObj7−−→ mkCap(tgt, arset)⇒

mkCap(tgt, arset) ∈ C∨
arset = ∅∨
tgt ∈ E∨
¬isAlive(tgt, S)∨
tgt /∈ E ∧ arset = {wk}

Figure 3.27 Confinement definition.
confinedSub(S,E,C) ≡ authorizedSet(C,E)∧

extantSub(S,E)∧
constructiveSub(S,E)∧
confinementTest(S,E,C)

subsystem cannot have yet interacted with the system in any way. Additionally, the

constructor is obligated to revoke its authority to the newly fabricated subsystem and

must not have passed it on elsewhere. The definition in Figure 3.25 generalizes this

concept to extend beyond the trusted constructor, requiring that there must not exist

a capability held outside the subsystem that names an element within the subsystem.

These subsystems are called constructive subsystems as they arise naturally from

construction.

3.8 Confinement

A subsystem is confined exactly when all outward information flow is authorized.

That is, regardless of the actual structure of the subsystem, all potential outward
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Figure 3.28 The fully authorized access graph.
fullAuthAG(A,E,C) ≡ completeAG(E)∪

authAG(E,C)∪
restrict(A, agObjRefs(A)− E)

with

authAG(E,C) ≡ {src ar−→ tgt|src ∈ E ∧mkCap(src, arset) ∈ C ∧ ar ∈ arset}
agObjRefs(A) ≡ {a|a −→ ∈ A ∨ −→ a ∈ A}

information flow is derived by capabilities in the authorized set. This sketch embeds

the confinement test as a post-condition on the system, but it should be noted that

this test can be performed by previous conditions and local inspection. In addition

to being extant and constructive, the authorized set of capabilities must not target

elements of E and the confinement test must pass. The confinement test in Figure 3.26

is almost a direct transcription of the constructor’s confinement test from Section 2.7,

without the case admitting recursively confined constructors. The complete definition

of a confined subsystem is given in Figure 3.27.

To describe confinement as a system property, this proof sketch defines how the

authorized set of capabilities comes to authorize information flow. A fully authorized

subsystem is one in which all objects hold: 1) fully permissive capabilities to all objects

in the subsystem and 2) all of the authorized set of capabilities. The confinement

proof proceeds by fixing the subsystem set E before considering subsystems with

varied sets of objects. Rather than choosing a canonical subsystem, confinement is

described using access graphs.

The fully authorized access graph represents all fully authorized subsystems with
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Figure 3.29 Confinement for access graphs.

agSimpConf(E)(Pbase, Pconf) ≡ Pbase ⊆ Pconf∧
(∀src ar−→ tgt ∈ (Pconf − Pbase), src = tgt∨
ar = wk ∧ src ∈ E ∧ tgt /∈ E)

agConf(E)(Pbase, Pconf) ≡ Pbase ⊆ Pconf∧
(∀src ar−→ tgt ∈ (Pconf − Pbase), src = tgt∨
ar = wk ∧ exFlow(P,E, src) ∧ ¬exFlow(P,E, tgt))

with

exFlow(A, o, s) ≡ s ∈ mutable(A)({o})

the same collection of objects constructed from an initial system state. Given an

access graph, fullAuthAG in Figure 3.28 returns an access graph where E is fully

connected, all elements of E contain the authorized set of alive objects, and the

edges in the original access graph are restricted to elements not in E. This last

clause, performed by the restrict function, removes all edges where either the source

or target are not elements of an approved set of object references

The confinement test is lifted to access graphs as agSimpConf in Figure 3.29.

Confinement permits more access than is authorized, but ensures that this access

creates no additional information flow. For access graphs, it is stated as a comparison

between a base access graph and a confined access graph. The base access graph is

a subset of the confined access graph and restricts which additional edges are in

the confined access graph. By inspection, a fully authorized access graph resulting

from the direct access of a system state with a confined subsystem E will satisfy

agSimpConf over the same parameters.
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Unfortunately, computing potential access on a simply confined access graph will

not preserve agSimpConf . The more general predicate agConf solves this problem.

agConf subsumes agSimpConf and is also preserved through potential transfers,

and ultimately potential access. The definition of agConf relies on the definition

of exFlow, which captures the existence of point-wise mutability. When the base

access graph is the potential access graph of a fully authorized access graph, all au-

thorized information flow has been captured by mutable. Therefore, agConf preserves

mutability by restricting which edges may be added to the confined access graph. It

requires that all edges not in the base access graph must be wk edges where there

exists an information flow from the confined subsystem to the edge source and there

are no flows from the confined subsystem to the edge target, or the edge is impotently

self-targeting. By case analysis, the mutability of these two access graphs must be

identical.

Figure 3.30 Visualization of the confinement lemma
Given A = fullAuthAG(I, C,E) and confinedSub(S,C,E),

S D PD MD

I I ′ PI MI

A PA MA

dirAcc potAcc mutable(E)

⊆ ⊆ ⊆

potTransfer potAcc mutable(E)

agSimpConf(E) agConf(E) agConf(E) =

potAcc mutable(E)
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The overall proof of confinement is visually described in Figure 3.30. The top

row illustrates the computation of the potential mutability of a system state with

subsystem E confined to authorized set C. Likewise, the bottom row describes the

computation of the potential mutability of the fully authorized access graph A. These

computations are related by the middle row with values that preserve information flow

satisfying confinement.

The relationships between the bottom and middle rows form the majority of the

confinement verification. The right-most property has already been described in the

description of agConf . Given, agConf(Pbase)(Pconf, , ) the mutability of Pbase and Pconf

are identical. The left-most property can be validated directly from previous theo-

rems. First, as previously mentioned, agSimpConf is subsumed by agConf . Second,

all access edges valid for transfer in the base are also valid in the confined access

graph. Therefore, these edges may be added to I to produce a valid potential trans-

fer to I ′. By inspection, adding any access edge to both the base and confined access

graph preserves agConf . Consequently, agConf must also hold in this specific case.

Once the base access graph is maximal, the middle triangle becomes solvable. The

definition of agConf only permits new wk edges that don’t create new information

flow. Intuitively, wk edges only propagate other wk edges in transfer . When ini-

tially constrained by agConf , the transfer case for wk edges can not violate agConf .

Therefore, agConf with a maximal base access graph must hold while computing the

potential access of the confined access graph.
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Having discharged the bottom row, the relationship between the top row and the

middle row is demonstrated by subset variance. Simply choosing I = D ∪ A will

satisfy both D ⊆ I and agSimpConf(E)(A, I). With this initial condition, potAcc

preserves subset relationships which are then preserved by mutable.

Therefore, any subsystem E passing the confinement test is confined to the fully

authorized access graph. When the confinement test succeeds, all outward informa-

tion flow that is possible from the yield at the moment allocation occurs is the sole

consequence of the capabilities provided in the authorized set.

Though not formally presented in this sketch, the confinement proof can be ex-

tended to cover any set of objects. As E varies, the mutability of two fully authorized

access graphs does not change with respect to E, provided E does not include addi-

tional objects originally extant in the underlying system state. Therefore, the choice

of E is irrelevant and all possible subsystems are confined.
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The Coq Proof Assistant

The SDM verification is formalized using the Coq proof assistant. This chapter

begins by motivating Coq as a good candidate for a verification system. It then

presents a brief overview of the term language of Coq with a focus on some the

features used in SDM.

4.1 Why Coq

This section discusses the reasons Coq was chosen as the mechanized verifier for

SDM. It describes how higher-order logics can simplify first-order problems by per-

mitting developers to generalize proofs. It argues that intuitionistic logics are natural

choices for automated verification, as truth values are represented as programs inhab-

iting a type. It discusses how Coq implements both of these features and articulates
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the useful features of the Coq standard library for the SDM verification.

The high degree of automation available in first-order systems makes them appear

very desirable. However, the ability to generalize theorems in higher-order proof sys-

tems makes them more practical than first-order systems. Any finite problem can be

expressed in a first-order logic. However, without the ability to generalize theorems,

developers quickly become burdened with a multitude of specialized proof obligations.

Many first-order proof systems offer the ability to write functions to generalize these

proofs. However, these functions cannot be verified, increasing the unverified surface

of the proof and consequently undermining confidence. Although the safety problem

and confinement policy for capability-based systems can be expressed as first-order

problems, this verification effort uses Coq because it is a higher-order proof assistant.

Most higher-order logics available fit into two categories: classical higher-order

predicate logic and intuitionistic type theory. For proofs that can be automatically

verified, intuitionistic and classical logics have the same expressive power. They dif-

fer in how they view the concept of truth. Classical logics reason about truth and

falsehood directly, relying upon meta-analysis like term rewriting to prove a theorem.

Intuitionistic logic reasons about construction and refutation directly, requiring a wit-

ness for every truth. These witnesses make statements in intuitionistic logic stronger

than classical logic.

The concept of how truth is constructed directly informs computational verifica-

tion. Proofs as constructions and proofs as meta-inferences necessarily operate in
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different ways. Constructions and theorems have a direct relationship with software

terms and types according to the Curry-Howard isomorphism. In Coq, proofs as

programs can be directly written by the developer and can be directly manipulated by

other programs without resorting to meta-theory, simple type checking may suffice.

This reduces the amount of meta-logic necessary to express properties and forms very

natural proofs.

Verifying a theorem in Coq is the act of constructing a program satisfying a type

representing the theorem. To any developer acquainted with parametric polymor-

phism and (co)inductive data types, reading and manipulating these programs will

be familiar. Base definitions and functions are executable programs that can be

readily understood by developers unfamiliar with proofs, reducing mental overhead.

While specifying a program precisely can give the developer a great deal of power,

Coq also includes a wide array of tools to help construct programs automatically.

Coq includes a tactic meta-language and pattern-matching system to assist the de-

veloper when searching for a program. These are combined into a hint system that

can be combined to produce a high degree of automation for domains that are highly

syntactically driven.

The SDM verification utilizes a number of features of the Coq standard library.

Boolean decidability is used to place most propositions into Boolean logic, making

them computationally decidable. Decidability is a critical problem because undecid-

ability hides the unknowable; a theorem with an unknowable assumption can still
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be verified. By ensuring that all propositional hypotheses are isomorphic to Boolean

functions, SDM ensures that the results are always known.

The Coq standard library also provides meta-theory support for equivalence rela-

tions. The rewrite tactic in Coq can perform automated rewriting of any equivalence

relation, not just built-in equality. It requires only that relevant terms respect the

equivalence relation for relevant types. This permits the model to reasoning about

potentially different, but semantically identical, types and terms.

The last major features of the Coq standard library utilized by SDM are the axiom-

free finite set and map libraries. [FL04] These are very large productions modeled after

the OCaml Set and Map libraries. They include a collection of supplemental libraries

containing useful theorems pertinent to their interface as well as implementations

including a fully concrete definition using lists.

4.2 The Coq Term Language

Chapters 5 to 9 contain a detailed theorem walk-through of the confinement veri-

fication in Coq. As previously stated in Section 1.3, one goal of this dissertation is to

produce confidence in the confinement verfification result. This dissertation presumes

that reviewers have confidence in the proof assistant and it therefore does not discuss

the mechanics of the proof construction. As such, this section focuses exclusively on

the useful portions of the Gallina term language of Coq.
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Gallina is a higher-order functional language and constructive dependent type

system that implements higher-order intuitionistic logic. The syntax and semantics

of Gallina are based on OCaml functions and data-types, but with dependently typed

parametric polymorphism. It contains the usual functions, anonymous functions, and

fixpoints along with cofixpoints (sometimes called lazy fixpoints). (Co)Inductive types

are a generalized notion of (co)data-type with (co)constructor definitions. Gallina also

includes a highly type-generalized pattern matching system for (co)constructors.

All terms in Coq belong to one of three sorts: Set, Prop, and Type. Set is

the sort of “specifications” or programs, and Prop is the sort of “propositions” or

theorems. The difference between the two is how they handle the type * → * . The

type Set → Set is not in the sort Set, but the type Prop → Prop is in the sort

Prop. This makes Prop impredicative, in that its terms may be self-defining, and Set

predicative, in that it is not. The sort Type is stratified and somewhat complex. Type

is used very little in this effort and may be considered parametric for either Prop or

Set.

Unlike general programming languages, all functions in Coq are obliged to ter-

minate. Definitions and anonymous functions do not permit recursion and simply

terminate. Fixpoints permit structural recursion that can be automatically inferred.

General functions permit the developer to specify both the function and the termi-

nation measure, though it may be possible for Coq to infer this as well. Because all

functions must terminate, (co)inductive data types are often used to express general
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propositions as dependent type families.

The connection between programs and proofs can be summarized in relationships

with functions and inductive types. Implication and universal quantification are ex-

pressed by dependent function types, respectively with or without a named parameter.

A→ B is syntactically the same as ∀ ( :A), B where is any free variable. True is the

universally inhabited type and False is the universally uninhabited type. Negation,

written ¬ A is syntactically A → False.

Most other constructions are inductive types or involve pattern matching. Con-

junction, disjunction, and existential quantification are all inductive types. The type

(and A B), written A ∧ B, has one constructor conj requiring terms of types A and

B. The type (or A B), written A ∨ B, has two constructors proj1 and proj2 requiring

only one term of type A or B, respectively. Existential quantification over a predicate

has one introduction constructor, ex intro, that can only be constructed by a witness

satisfying the quantified proposition.

4.3 Model Abstraction

SDM is constructed as an abstract implementation to allow it to be used as

a framework for future system verifications. Operating systems are not the only

capability-based system; capability-based systems also include virtual machines, lan-

guage runtimes, and distributed systems. As an abstract model, SDM focus on the
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heart of the confinement problem, producing a result applicable across all domains.

SDM utilizes the Coq module type system as an abstraction mechanism. This

decision was motivated by the use of module type abstraction in the axiom-free finite

set library. Because abstractions and axioms are the same structure in Coq, SDM also

provides a trivial implementation to produce an axiom-free result. It is often the case

that the abstract module types are verbatim software from implementation modules.

However, it is not possible to produce them by type inference in Coq version 8.3pl2.

As a work-around, the project includes simple tool to syntactically create a module

type based on each trivial implementation through very simple annotations.

This verification includes the very primitive Perl script “typeify.pl” to automati-

cally produce precise module types from module functors. It does not process the full

language of Coq, but processes the commands line-by-line using a very small state

transition routine over a very strict module format. The module must contain only

one internal module functor, declared on a single line, and the functor parameter list

must match the module type parameter list. Theorems are abstracted by replacing

the keyword “Theorem” with “Parameter” and removing all lines between commands

“Proof.” and “Qed.” Although Coq allows theorems to nest and elide the “Proof” com-

mand, we do not handle these cases. Two commands are supported as comments to

provide better abstraction in the generated types. The “(* ABSTRACT *)” command

processes a “Definition” into an appropriate “Parameter” allowing other modules to

override these definitions with other implementations. The “(* TYPE REMOVE *)”
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command eliminates the subsequent line in the generated type altogether and is often

used to eliminate helper theorems and lemmas. Any potential errors introduced by

this transformation will be caught when the original module against the generated

signature.

It is necessary that each module functor and signature be pure, in that all depen-

dencies are completely captured by parametricity. The use of existentially declaring

a module type loses type information in Coq 8.3 in ways that would be available in

Coq 8.2. Therefore, updated versions of the FMap finite map libraries have been

constructed to produce appropriate types. The pattern of constructing pure func-

tors from the trivial implementation is prevalent throughout SDM and produces an

axiom-free proof with a type signature that can be satisfied in future efforts, While

this syntactic type construction is used wherever possible, there are certain portions

of the proof which are encoded manually.

The following conventions regarding module names are used throughout this dis-

sertation. Modules that are also files have the FileModule font face where as inner

modules have the InnerModule font face. The locations of each inner module should

be clear from the surrounding context. File modules containing functor implementa-

tions are suffixed with -Impl, while modules constructing a fully complete implemen-

tation by functor application are suffixed with -Appl. File modules containing type

signatures, or those which have no abstraction, are given no suffix. Convenience file

modules with supplemental libraries are suffixed with - Conv and are further suffixed
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Table 4.1 Declaration and location of common module names.
Instance Declaration and location
ARSet FSet of AccessRight
Ref ReferenceType module of References.v
RefS RefSetType module of RefSets.v
RefSet Reference FSet of RefS
Edges AccessEdgeType module of AccessEdges.v
AccessGraph AccessGraphType module of AccessGraphs.v
AG FSet of AccessGraphType
Seq SeqAccType module of SequentialAccess.v
Cap CapabilityType of Capabilities.v
CC CapabilityConv of Capabilities Conv.v
CapS CapSetType
CapSet Capability FSet of CapS
Ind IndexType of Indicies.v
Obj ObjectType of Objects.v
OC ObjectConv of Objects Conv.v
Sys SystemStateType of SystemState.v
SC SystemStateConv of SystemState Conv.v
SemDefns SemanticsDefinitionsType of SemanticsDefinitions.v
Sem SemanticsType of Semantics.v
SemConv SemanticsConv of Semantics Conv.v
Exe ExecutionType of Execution.v
Mut MutationType of Mutation.v
Sub SubsystemType of Subsystem.v

as above. All abstract module types passed as parameters and convenience modules

share the same naming convention throughout the proof, which is summarized in

table 4.1.
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System Embedding

This chapter discusses how capability-based systems are embedded in SDM. It

begins by presenting how capabilities are modeled and then walks the system state

structure, the snapshot of the security state of the system. It concludes with the

operational semantics of the model including semantics for both the security state

and potential information flow for each operation.

5.1 Names, Access Rights, and

Capabilities

There are two forms of names in SDM: names for objects called object references

and names for storage locations within an object called indices. Both names must

have a total ordering which is both computable and based on equality. This ordering
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Figure 5.1 Object references type and implementation.
References Module
Require Import OrderedType.
Require Import OrderedInclude.
Module Type ReferenceType := UsualOrderedTypeWithHints.
Module ReferenceTypeFacts := OrderedTypeFacts.

ReferencesImpl Module
Require Import References.
Require Import OrderedTypeEx.
Module NatReference >: ReferenceType := Nat as OT.
Module NatReferenceFacts := ReferenceTypeFacts NatReference.

requirement was chosen to facilitate faster proofs by easing the requirements of the

rewrite tactic. These requirements do not obligate any implementation to use such a

strong encoding directly; all names reside behind other abstractions.

The Coq standard library includes modules that directly capture the requirements

for names. The UsualOrderedType module from the OrderedTypeEx standard li-

brary is almost perfect. An OrderedType is a module containing an equivalence, an

ordering relation, and a proof of total ordering while a UsualOrderedType extends the

OrderedType to require term equality for the equivalence relation. Unfortunately, it

does not include the tactic hints from OrderedType module that assist proof automa-

tion. Therefore, names are built from UsualOrderedTypeWithHints module from the

OrderedInclude module, which reintroduces these hints. The trivial implementa-

tion supplied by SDM uses natural numbers via the Nat as OT module, also included

in the OrderedTypeEx library.
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Figure 5.2 AccessRights module.
Inductive accessRight :=
| wk : accessRight
| rd : accessRight
| wr : accessRight
| tx : accessRight.
Module ProjectedAccessRight >: ProjectedToNat.

Definition t := accessRight.
Definition project to nat r :=

match r with
| wk ⇒ 0
| rd ⇒ 1
| wr ⇒ 2
| tx ⇒ 3

end.
Theorem project to nat unique: ∀ x y:t,
(project to nat x) = (project to nat y) ↔ x = y.

End ProjectedAccessRight.
Module AccessRight := POT to OT ProjectedAccessRight.
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The system contains four access rights: rd, wr , wk, and tx , each conferring the

ability to perform various system operations. Section 5.3 discusses how these permis-

sions are used in detail, but their intent is simple. The wr permission enables the

ability to directly write and overwrite information in the target, or destroy the target

altogether. The rd permission allows a subject to read information and capabilities

from the target. The wk permission is a sub-type of the read permission that autho-

rizes transitive read-only authority. Message passing between subjects is authorized

by the tx permission.

The implementations for most enumerated types in SDM are created by the

POT to OT functor found in the ProjectedOrderedType module. This func-

tor produces an OrderedType from a ProjectedToNat module. Modules satisfying

ProjectedToNat must contain some base type, an injection function from that type to

the natural numbers, and a proof of injectivity. This allows different inductive terms

to be quickly defined and used as OrderedTypes.

In capability-based systems, a capability is an unforgable binding of a name and

permissions. This is effectively a product of an object reference and a finite set of ac-

cess rights. However, the capability abstraction hides such an implementation behind

accessor functions and two proofs of equivalence. Capabilities have the constructor

mkCap and accessor functions target and rights with the following properties: 1) in-

jection: two capabilities are equivalent if and only if their accessors have an equivalent

target and right and 2) equivalence: invoking accessors on the constructor produces
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Figure 5.3 Capabilities.
Module Type CapabilityType (Ref :ReferenceType).
Include Type OrderedType.OrderedType.
Parameter target: t → Ref.t.
Parameter rights: t → ARSet.t.
Parameter mkCap: Ref.t → ARSet.t → t.
Parameter weaken: t → t.
Parameter target eq: ∀ (c1 c2 :t), eq c1 c2 → Ref.eq (target c1 ) (target c2 ).
Parameter rights eq: ∀ (c1 c2 :t), eq c1 c2 → ARSet.eq (rights c1 ) (rights c2 ).
Parameter target rights eq: ∀ (c1 c2 :t),
Ref.eq (target c1 ) (target c2 ) →
ARSet.eq (rights c1 ) (rights c2 ) →
eq c1 c2.

Parameter mkCap eq: ∀ tgt rgts c,
Ref.eq tgt (target c) ∧ ARSet.eq rgts (rights c) ↔
eq (mkCap tgt rgts) c.

Parameter weaken eq: ∀ c,
eq (weaken c)
(mkCap (target c)
(if orb (true bool of sumbool (ARSetProps.In dec wk (rights c)))
(true bool of sumbool (ARSetProps.In dec rd (rights c)))
then (ARSet.singleton wk)
else ARSet.empty)).

End CapabilityType.
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equivalent inputs.

The capability type also requires a weaken function to produce a weakened form of

a capability. Weakening a capability produces a capability with the same target, but

eliminates all access rights except wk. Because the rd also entails the wk access right,

a weakened capability produces wk from a rd-only capability. The weaken function

is used by the operational semantics to cause wk to be a system-enforced, transitive,

read-only access right.

5.2 Objects and System State

The system state represents a snapshot of the permission state in the system at a

fixed instant in time. Structurally, the system state is a finite map from a reference

to a quadruple of an object, object label, object type, and object schedule. All of

these types, with the exception of objects, are enumerations defined by injection to

the natural numbers using the ProjectedToNat type. An ObjectLabel indicates what

phase of the object life-cycle the object is in; it may be unborn, alive, or dead. The

distinction between active objects, such as processes or threads, and passive storage

objects is captured by the ObjectType. The ScheduleType is presently a placeholder

and will not be used in the remainder of the proof.

An object represents the permission state of a single object in the system and is

a finite map from indices to capabilities. While SDM captures the potential for data
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Figure 5.4 Objects.
Module Type ObjectType (Ref : ReferenceType) (Cap:CapabilityType Ref )
(Ind:IndexType).

Declare Module MapS : Sfun Ind.
Include (Sord fun Ind MapS Cap).
Parameter eq dec : ∀ x y, { eq x y } + { ¬ eq x y }.

End ObjectType.

Figure 5.5 System state.
Module Type SystemStateType (Ref : ReferenceType) (Cap:CapabilityType Ref )
(Ind:IndexType) (Obj:ObjectType Ref Cap Ind).

Declare Module MapS : Sfun Ref.
Module P3 := PairOrderedType Obj ObjectLabel.
Module P2 := PairOrderedType P3 ObjectType.
Module P := PairOrderedType P2 ObjectSchedule.

Include (Sord fun Ref MapS P).
Parameter eq dec : ∀ x y, { eq x y } + { ¬ eq x y }.

End SystemStateType.

motion in the operational semantics, actual data are not represented. All objects may

contain both capabilities and data. System implementations are free to implement a

partition at object granularity. SDM makes no guarantee about whether capabilities

are an opaque or visible data structure and conservatively approximates them as

visible.1

The object and system state interfaces are a specialization of the Ordered FMap

interface, SOrd. In addition to being an FMap with keys as an OrderedType, an

Ordered FMap is also required to have an ordering on its value or data. This allows

both of these types to be OrderedTypes with decidable equivalences over them and
1See Section 2.1 for more information.
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permitting them to be nested. To allow objects and system states to also be an

OrderedType, they include the missing decidable equivalence theorem. The system

state data type is implemented by composing ProductType to produce a quadruple.

The trivial implementations use the FMapList to construct these types.

As mentioned in Section 4.3, updates to the Coq module system have caused

subtyping issues in the FMap library. It is possible to work around this issue by

using pure functors, rather than the type capturing modules. Unfortunately, while

these types exist for the plain FMap, they do not exist for SOrd. SDM includes the

FMap2* libraries, which are a modification of the FMap libraries, but contain a pure

form of the SOrd fun type and functors.

Many modules have convenience modules to assist in creating legible results and

reusable proofs. The definitions within these modules will not be discussed until

they appear elsewhere and will only be provided if their implementation is not trivial

given their description.. There are four convenience modules, one for each underlying

module: Capabilities, Objects, SystemState, and Semantics.

5.3 Operational Semantics

The operational semantics over the system state is defined as the execution of

an operation sequence. Each operation is defined in three parts: an operation pre-

condition, a system state update function, and an upper bound on information flow
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Figure 5.6 Definition of all operations.
Inductive operation : Type :=
| read: Ref.t → Ind.t → operation
| write: Ref.t → Ind.t → operation
| fetch: Ref.t → Ind.t → Ind.t → Ind.t → operation
| store: Ref.t → Ind.t → Ind.t → Ind.t → operation
| revoke: Ref.t → Ind.t → Ind.t → operation
| send: Ref.t → Ind.t → list (Ind.t × Ind.t) → option Ind.t → operation
| allocate: Ref.t → Ref.t → Ind.t → list (Ind.t × Ind.t) → operation
| destroy: Ref.t → Ind.t → operation.

between objects. The semantic model defines the preconditions for each operation and

how the system state is altered upon success. Additionally, each operation contains

an upper bound on information flow, for both success and failure.

There are eight operations that form the operational semantics of SDM. The

read and write operations model only data flow and do not alter the system state

in any way, while fetch and store operations model capability reads and writes from

various objects. New objects are allocated using the allocate operation, and objects

are destroyed using the destroy operation. Executing a revoke command will erase

an entry in an object map. All message-passing protection mechanisms for capability

systems are encoded using the send operation.

All operations have approximately the same structure. The first parameter of

each operation is always the object reference of the invoking subject. The second

parameter, with the exception of allocate, is the index of the capability being invoked.

In the case of allocate, no such capability exists, so the parameter specifies the unborn

object being allocated. The indices being accessed and updated are either passed
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directly or as a list of index pairs when multiple capabilities may be transferred. The

index option permits a send operation to fabricate a reply.

These operations should not be thought of as a system call performed by the

invoking subject, or specified in parts by all parties. They should be considered a

specification of which actions the system may take when updating the system state

or shuffling data. A well constructed system should not ever perform an invalid

operation. The only reason invalid operations are defined is to permit operations and

operation sequences to be pure data structures; the semantics will skip over nonsense

operations.

Each of these operations, with the exception of allocate, requires a capability

containing an appropriate permission. As operations that inspect an object, the read

and fetch operations require rd or wk access. The wr access right is required by the

fetch, store, revoke, and destroy operations as they modify object state externally.

The send operation is handled with its own permission as it potentially produces a

bi-directional relationship via an optional reply capability. Object allocation through

allocate is considered universally available and does not require a capability. 2

The definitions for SDM operational semantics are distributed across two modules.

The library SemanticsDefinitions contains all of the operation prerequisites and

proofs of their decidability. These proofs are later used in decision procedures in

the Semantics library when defining operation success and failure. This separation
2Most systems configurations presume processes have the ability to allocate and manage storage.

See section 2.6
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Figure 5.7 Operation preconditions. From SemanticsDefinitions.
Definition preReqCommon a s := SC.is alive a s ∧ SC.is active a s.
Definition preReq a t s :Prop := preReqCommon a s ∧ target is alive t a s.
Definition read preReq a t s := preReq a t s ∧

(option hasRight (SC.getCap t a s) rd ∨ option hasRight (SC.getCap t a s) wk).
Definition write preReq a t s := preReq a t s ∧
option hasRight (SC.getCap t a s) wr.

Definition fetch preReq a t s := preReq a t s ∧
(option hasRight (SC.getCap t a s) rd ∨ option hasRight (SC.getCap t a s) wk).

Definition store preReq a t s := preReq a t s ∧
option hasRight (SC.getCap t a s) wr.

Definition revoke preReq a t s := preReq a t s ∧
option hasRight (SC.getCap t a s) wr.

Definition send preReq a t s := preReq a t s ∧
option hasRight (SC.getCap t a s) tx.

Definition allocate preReq a n s := preReqCommon a s ∧ SC.is unborn n s.
Definition destroy preReq a t s := preReq a t s ∧
option hasRight (SC.getCap t a s) wr.

allows these decision procedures to be included as Boolean decisions in the model

signature and implementation.

There are a few omitted definitions from Figure 5.7 . The (target is alive t a s)

function checks that the target of the capability at index t in object a has object

label alive in system state s. Likewise, (target is active t a s) checks that the object

type is active in the same manner. The system state convenience library offers the

SC .(getCap t a s) function to return an Option Cap.t to find a capability at index

t in object a. option hasRight simply shorthand for mapping CC .hasRight over an

Option Cap.t and returning False in the None case.

The SemanticsDefinitions library is dependent on the SystemStateType, and

all prerequisites. It begins by defining a common operation prerequisite (preReq a t
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s), which tests that the agent subject a is alive and active in system state s, and that

the target of the capability at index t is also alive in s. All operations except allocate

share preReq as a condition on their success. Additionally, the target capability must

have the appropriate access right as previously defined. The exception to this is

the (create preReq a n s) which does not test a target capability, but checks that

the object n is unborn. The remainder of the library contains the theorems for the

decidability and equivalence of each of these predicates and their support functions.

Valid state transitions and information flow are defined in the Semantics li-

brary. Each state transition for operations where preconditions are satisfied is given

in Figure 5.8. The theorems describing the trivial case of no state transition when

preconditions are not satisfied have been omitted. The read and write operations do

not cause any state transition in either case and are defined as a single theorem. The

do op function concretely unifies all of these specific cases together and is specified

in Figure 5.9.

For brevity, certain definitions have been omitted from Figure 5.8. optionMap1

and optionMap2 are specialized Option structures that combine both mapping and re-

ducing functionality. Each is applied to a collection of functions of arity zero through

one or two, respectively. Once applied to either one or two Option types, they ap-

ply the number of Some results to the function of matching arity. The system state

convenience library also includes the SC .copyCap and SC .weakCopyCap functions

to perform a standard or weakening capability transfer. The SC .copyCapList func-
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Figure 5.8 State transitions with preconditions satisfied. From Semantics.
Theorem read spec: ∀ a t s, Sys.eq (do read a t s) s.
Theorem write spec: ∀ a t s, Sys.eq (do write a t s) s.
Theorem fetch read: ∀ a t c i s, SemDefns.fetch preReq a t s →
SemDefns.option hasRight (SC.getCap t a s) rd →
Sys.eq (do fetch a t c i s)

(option map1 (fun tgt ⇒ SC.copyCap c tgt i a s) s
(SemDefns.option target (SC.getCap t a s))).

Theorem fetch weak: ∀ a t c i s, SemDefns.fetch preReq a t s →
¬ SemDefns.option hasRight (SC.getCap t a s) rd →
SemDefns.option hasRight (SC.getCap t a s) wk →
Sys.eq (do fetch a t c i s)

(option map1 (fun tgt ⇒ SC.weakCopyCap c tgt i a s) s
(SemDefns.option target (SC.getCap t a s))).

Theorem store valid: ∀ a t c i s, SemDefns.store preReq a t s →
Sys.eq (do store a t c i s)

(option map1 (fun tgt ⇒ SC.copyCap c a i tgt s) s
(SemDefns.option target (SC.getCap t a s))).

Theorem revoke valid : ∀ a t c s, SemDefns.revoke preReq a t s →
Sys.eq (do revoke a t c s)

(option map1 (fun tgt ⇒ SC.rmCap c tgt s) s
(SemDefns.option target (SC.getCap t a s))).

Theorem send valid : ∀ a t cil op i s, SemDefns.send preReq a t s →
Sys.eq (do send a t cil op i s)

(option map1
(fun tgt ⇒ SC.copyCapList a tgt cil

(option map1
(fun i ⇒ SC.addCap i (Cap.mkCap a (ARSet.singleton tx)) tgt s)
s op i))

s (SemDefns.option target (SC.getCap t a s))).
Theorem allocate valid: ∀ a n i cil s, SemDefns.allocate preReq a n s →
Sys.eq (do allocate a n i cil s)

(SC.addCap i (Cap.mkCap n all rights) a
(SC.copyCapList a n cil
(SC.set alive n (SC.updateObj n (Obj.MapS.empty )

(SC.rmCapsByTarget n s))))).
Theorem destroy valid: ∀ a t s, SemDefns.destroy preReq a t s →
Sys.eq (do destroy a t s)

(option map1 (fun tgt ⇒ SC.set dead tgt s)
s (SemDefns.option target (SC.getCap t a s))).
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Figure 5.9 Specification for do op.
Inductive do op spec : operation → (Sys.t → Sys.t) → Prop :=
| do op spec read: ∀ a t,
do op spec (read a t) (do read a t)
| do op spec write: ∀ a t,
do op spec (write a t) (do write a t)
| do op spec fetch: ∀ a t c i,
do op spec (fetch a t c i) (do fetch a t c i)
| do op spec store: ∀ a t c i,
do op spec (store a t c i) (do store a t c i)
| do op spec revoke: ∀ a t c,
do op spec (revoke a t c) (do revoke a t c)
| do op spec send: ∀ a t cil op i,
do op spec (send a t cil op i) (do send a t cil op i)
| do op spec allocate: ∀ a t i cil,
do op spec (allocate a t i cil) (do allocate a t i cil)
| do op spec destroy: ∀ a t,
do op spec (destroy a t) (do destroy a t).

Theorem do op spec do op: ∀ op, do op spec op (do op op).

tion performs many such copies using an index pair list as a map. All capabili-

ties with a specific target are removed from the system using SC .rmCapsByTarget.

SC .updateObj updates only the object at a reference and SC .setAlive or setDead

updated the object label appropriately.

The potential for data motion is captured by the readFrom and wroteTo defini-

tions. During an operation, data may flow from any object in the readFrom set to any

object in the wroteTo set. The specification of these functions is given in Figures 5.11

and 5.12. However, Figure 3.6 summarizes the conditions simply, and it is reproduced

in Figure 5.10. Self-mutation is not modeled by any operations and SDM presumes

all active objects may alter their own state.

Performing an operation sequence is modeled by the execute function applied to an

92



CHAPTER 5. SYSTEM EMBEDDING

Figure 5.10 Reproduction of information flow from Figure 3.6.
readFrom(read(a, t), S) ≡ {a, objTarget(a, t, S)}
readFrom(write(a, t), S) ≡ {a}

readFrom(fetch(a, t, c, i), S) ≡ {a, objTarget(a, t, S)}
readFrom(store(a, t, c, i), S) ≡ {a}
readFrom(revoke(a, t, c), S) ≡ {a}
readFrom(destroy(a, t), S) ≡ {a}

readFrom(allocate(a, n,m, typ), S) ≡ {a}
readFrom(send(a, t,m, x), S) ≡ {a}

wroteTo(read(a, t), S) ≡ {a}
wroteTo(write(a, t), S) ≡ {objTarget(a, t, S)}

wroteTo(fetch(a, t, c, i), S) ≡ {a}
wroteTo(store(a, t, c, i), S) ≡ {objTarget(a, t, S)}
wroteTo(revoke(a, t, c), S) ≡ {objTarget(a, t, S)}
wroteTo(destroy(a, t), S) ≡ {a}

wroteTo(allocate(a, n,m, typ), S) ≡ {a, n}
wroteTo(send(a, t,m, x), S) ≡ {objTarget(a, t, S)}

when preconditions are satisfied, otherwise

readFrom(op, S) ≡ {}
wroteTo(op, S) ≡ {}
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Figure 5.11 Definition of readFrom.
Theorem read from spec : ∀ s op ob list,
read from def s op ob list ↔
RefSet.Equal (read from s op) ob list.

Inductive read from def s: operation → RefSet.t → Prop :=
| read from read valid : ∀ a t x, SemDefns.read preReq a t s →
RefSet.Equal (add option target s a t (RefSet.singleton a)) x →
read from def s (read a t) x
| read from read invalid : ∀ a t x, ¬ SemDefns.read preReq a t s →
RefSet.Empty x → read from def s (read a t) x
| read from write valid: ∀ a t x, SemDefns.write preReq a t s →
RefSet.Equal (RefSet.singleton a) x → read from def s (write a t) x
| read from write invalid: ∀ a t x, ¬ SemDefns.write preReq a t s →
RefSet.Empty x → read from def s (write a t) x
| read from fetch valid : ∀ a t c i x SemDefns.fetch preReq a t s →
RefSet.Equal (add option target s a t (RefSet.singleton a)) x →
read from def s (fetch a t c i) x
| read from fetch invalid : ∀ a t c i x, ¬ SemDefns.fetch preReq a t s →
RefSet.Empty x → read from def s (fetch a t c i) x
| read from store valid: ∀ a t c i x,SemDefns.store preReq a t s →
RefSet.Equal (RefSet.singleton a) x → read from def s (store a t c i) x
| read from store invalid: ∀ a t c i x, ¬ SemDefns.store preReq a t s →
RefSet.Empty x → read from def s (store a t c i) x
| read from revoke valid: ∀ a t c x, SemDefns.revoke preReq a t s →
RefSet.Equal (RefSet.singleton a) x → read from def s (revoke a t c) x
| read from revoke invalid: ∀ a t c x, ¬ SemDefns.revoke preReq a t s →
RefSet.Empty x → read from def s (revoke a t c) x
| read from send valid: ∀ a t cil op i x, SemDefns.send preReq a t s →
RefSet.Equal (RefSet.singleton a) x → read from def s (send a t cil op i) x
| read from send invalid: ∀ a t cil op i x, ¬ SemDefns.send preReq a t s →
RefSet.Empty x → read from def s (send a t cil op i) x
| read from allocate valid: ∀ a n i cil x, SemDefns.allocate preReq a n s →
RefSet.Equal (RefSet.singleton a) x → read from def s (allocate a n i cil) x
| read from allocate invalid: ∀ a n i cil x, ¬ SemDefns.allocate preReq a n s →
RefSet.Empty x → read from def s (allocate a n i cil) x
| read from destroy valid: ∀ a t x, SemDefns.destroy preReq a t s →
RefSet.Equal (RefSet.singleton a) x → read from def s (destroy a t) x
| read from destroy invalid: ∀ a t x, ¬ SemDefns.destroy preReq a t s →
RefSet.Empty x → read from def s (destroy a t) x.

.
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Figure 5.12 Definition of wroteTo.
Theorem wrote to spec : ∀ s op ob list,
wrote to def s op ob list ↔
RefSet.Equal (wrote to s op) ob list.

Inductive wrote to def s: operation → RefSet.t → Prop :=
| wrote to read valid : ∀ a t x, SemDefns.read preReq a t s →
RefSet.Equal (RefSet.singleton a) x → wrote to def s (read a t) x
| wrote to read invalid : ∀ a t x, ¬ SemDefns.read preReq a t s →
RefSet.Empty x → wrote to def s (read a t) x
| wrote to write valid: ∀ a t x, SemDefns.write preReq a t s →
RefSet.Equal (add option target s a t RefSet.empty) x →
wrote to def s (write a t) x
| wrote to write invalid: ∀ a t x, ¬ SemDefns.write preReq a t s →
RefSet.Empty x → wrote to def s (write a t) x
| wrote to fetch valid : ∀ a t c i x, SemDefns.fetch preReq a t s →
RefSet.Equal (RefSet.singleton a) x → wrote to def s (fetch a t c i) x
| wrote to fetch invalid : ∀ a t c i x, ¬ SemDefns.fetch preReq a t s →
RefSet.Empty x → wrote to def s (fetch a t c i) x
| wrote to store valid: ∀ a t c i x, SemDefns.store preReq a t s →
RefSet.Equal (add option target s a t RefSet.empty) x →
wrote to def s (store a t c i) x
| wrote to store invalid: ∀ a t c i x, ¬ SemDefns.store preReq a t s →
RefSet.Empty x → wrote to def s (store a t c i) x
| wrote to revoke valid: ∀ a t c x, SemDefns.revoke preReq a t s →
RefSet.Equal (add option target s a t RefSet.empty) x →
wrote to def s (revoke a t c) x
| wrote to revoke invalid: ∀ a t c x, ¬ SemDefns.revoke preReq a t s →
RefSet.Empty x → wrote to def s (revoke a t c) x
| wrote to send valid: ∀ a t cil op i x, SemDefns.send preReq a t s →
RefSet.Equal (add option target s a t RefSet.empty) x →
wrote to def s (send a t cil op i) x
| wrote to send invalid: ∀ a t cil op i x, ¬ SemDefns.send preReq a t s →
RefSet.Empty x → wrote to def s (send a t cil op i) x
| wrote to allocate valid: ∀ a n i cil x, SemDefns.allocate preReq a n s →
RefSet.Equal (RefSet.add n (RefSet.singleton a)) x →
wrote to def s (allocate a n i cil) x
| wrote to allocate invalid: ∀ a n i cil x, ¬ SemDefns.allocate preReq a n s →
RefSet.Empty x → wrote to def s (allocate a n i cil) x
| wrote to destroy valid: ∀ a t x, SemDefns.destroy preReq a t s →
RefSet.Equal (RefSet.singleton a) x → wrote to def s (destroy a t) x
| wrote to destroy invalid: ∀ a t x, ¬ SemDefns.destroy preReq a t s →
RefSet.Empty x → wrote to def s (destroy a t) x.
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Theorem execute spec : ∀ s s’ op list,
execute def s op list s’ ↔ Sys.eq (execute s op list) s’.

Inductive execute def s: list Sem.operation → Sys.t → Prop :=
| execute nil: ∀ s’, Sys.eq s s’ → execute def s nil s’
| execute cons : ∀ op tail s’,
execute def s tail s’ →
∀ s”, Sys.eq (Sem.do op op s’) s” →
execute def s (op :: tail) s”.

operation list, provided by the Execution module. Because the semantics will ignore

any invalid operation, it is defined as simply performing the operations sequentially.

The only curious property of the execute function is that it performs operations on a

list in reverse. This is done to align list induction with execution induction. An empty

list performs no operations and, given a system state that is the result of executing

an operation list, performing another operation is the result of the cons constructor

and not an append function.
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Chapter 6

Access Graphs and Potential

Access

This chapter presents access graphs as the abstract structure for describing au-

thority about multiple system states There are many different types of access graphs

used by SDM. The direct access relation translates a system state to an access graph

with the same authority. The complete access graph for a set of objects defines an

access graph where each object has total authority to every other object. Potential

access is the judgment defining the worst-case access that a system may ever come

to have.

Potential access is used extensively throughout SDM. It is built from the transfer

relation: the smallest possible access right transfer in an access graph. It defines

a potential transfer as a sequence of transfers. It then presents the definition of a
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maximal access graph along with the proof that for each initial access graph there is

only one access graph that is both maximal and reachable by potential transfer, called

the potential access graph. The potential access of a system state is the potential

access graph of that system’s direct access graph. Finally, this chapter demonstrates

this by verifying that potential transfer forms a complete partial order when rooted

at some initial access graph and computing potential access as a function in Set.

6.1 Access Graph Structure

Access graphs are the structure used by SDM to perform nearly all permission

and information flow reasoning. Access graphs express system states abstractly, rep-

resenting many system states simultaneously. They condense permission information

encoded in system state to precisely the permissions held between objects, rather

than their capabilities. An access graph is a finite set of access edges, each a triple

in ReferenceType ∗ ReferenceType ∗ AccessRight. The edge src ar−→ tgt indicates that

src holds an ar access right to tgt. As a collection of edges, the access graph makes

no assertions about the nature of objects within it. If any additional constraints are

required, they must be carried alongside the access graph.

As a Coq module, the access graph is constructed as an FSetList with an

AccessEdge element type. To satisfy the UsualOrderedType interface, the AccessEdge

module is constructed as two ProductTypes. The entire functor is parameterized over
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Figure 6.1 Access graph interface definition.
Module Type AccessEdgeType (R: ReferenceType) .

Module AccessArrow := !PairOrderedType R AccessRight.
Module AccessEdge := !PairOrderedType R AccessArrow.
Definition mkEdge (src tgt:R.t) (rgt:accessRight): AccessEdge.t :=
(pair src (pair tgt rgt)).

Definition source (edge : AccessEdge.t) := fst edge.
Definition target (edge : AccessEdge.t) := fst (snd edge).
Definition right (edge : AccessEdge.t) := snd (snd edge).
. . .

End AccessEdgeType.
Module Type AccessGraphType (R: ReferenceType) (Edges: AccessEdgeType R) .

Module Edge := Edges.AccessEdge.
Module AG := !FSetList.Make Edge.
. . .

End AccessGraphType.

the ReferenceType module interface. The concrete implementation uses the FSetList

functor as it provides an equivalence relation based on identical data structures.

6.2 Direct Access

The Direct access graph of a system state is the access graph containing edges

for every capability held by alive objects whose target is also alive. This forms a

reduction of the system state, as many capabilities may justify the existence of a

single edge. Capabilities held by dead or unborn objects are ignored as they may

not be invoked and cannot be transferred. Capabilities targeting unborn objects

are elided as they are removed before allocation. Access rights that appear within
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Figure 6.2 Inductive definition of direct access graph.
Definition dirAcc spec s ag : Prop := ∀ edge, AG.In edge ag ↔
∃ s’, Sys.eq s s’ ∧
∃ src ref, ∃ src, ∃ lbl, ∃ srcType, ∃ srcSched,
Sys.MapS.MapsTo src ref (src, lbl, srcType, srcSched) s’ ∧
∃ src’, ∃ lbl’, ∃ srcType’, ∃ srcSched’,
Sys.P.eq (src, lbl, srcType, srcSched) (src’, lbl’, srcType’, srcSched’) ∧
ObjectLabel.eq ObjectLabels.alive lbl’ ∧
∃ ind, ∃ cap, Obj.MapS.MapsTo ind cap src’ ∧
∃ cap obj, ∃ cap lbl, ∃ cap type, ∃ cap sched,
Sys.MapS.MapsTo (Cap.target cap) (cap obj, cap lbl, cap type, cap sched) s’ ∧
∃ cap obj’, ∃ cap lbl’, ∃ cap type’, ∃ cap sched’,
Sys.P.eq (cap obj, cap lbl, cap type, cap sched)

(cap obj’, cap lbl’, cap type’, cap sched’) ∧
ObjectLabel.eq ObjectLabels.alive cap lbl’ ∧
∃ rgt, ARSet.In rgt (Cap.rights cap) ∧
Edge.eq (Edges.mkEdge src ref (Cap.target cap) rgt) edge.

Figure 6.3 Simplified, but not complete definition of direct access graph.
Theorem dirAcc simpl : ∀ s ag, dirAcc spec s ag →
∀ src, SC.is alive src s →
∀ t cap, SC.getCap t src s = Some cap →
∀ tgt, Ref.eq tgt (Cap.target cap) → SC.is alive tgt s →
∀ rgt, CC.hasRight cap rgt →
AG.In (Edges.mkEdge src tgt rgt) ag.
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Figure 6.4 dirAcc function and lemmas.
Definition dirAcc inner src ref src obj s ag :=
Obj.MapS.fold (fun index cap acc ag ⇒
ag add cap valid src ref cap s (fun c⇒c) ag add cap valid std acc ag)

src obj ag.
Definition dirAcc outer s ag :=
Sys.MapS.fold (fun src ref src tuple acc ag ⇒
dirAcc inner src ref (SC.tupleGetObj src tuple) s acc ag)

s ag.
Definition dirAcc s := dirAcc outer s AG.empty.
Theorem dirAcc spec dirAcc: ∀ s, dirAcc spec s (dirAcc s).

multiple capabilities naming the same object are represented by a single edge, further

abstracting the system state. Therefore, any analysis of access graphs necessarily

considers how access rights within a capability could operate were they independent.

The libraries DirectAccess and DirectAccessImpl contain the interface and

implementation of direct access, respectively. The dirAcc spec predicate definition

shown in Figure 6.2 defines direct access using set comprehension. It captures the

equivalences needed to reason about different system states and access graphs. As

such, it is a bit cumbersome, and the verification usually relies upon dirAcc simpl for

most requirements.

The remainder of the DirectAccessImpl module defines the dirAcc function in

Set and demonstrates that it is equivalent to the dirAcc spec proposition. Vari-

ous map fold functions are used to construct the appropriate access graph from an

AG.empty accumulator. The definition of dirAcc in Set and proof of equivalence

together produce both decidability and existence proofs for dirAcc spec.

SDM defines a number of reusable functions and lemmas as part of the dirAcc
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Figure 6.5 Definition of ag add cap and supplemental lemmas.
Definition ag add cap src cap ag:=
ARSet.fold (fun rgt acc ⇒ AG.add (Edges.mkEdge src (Cap.target cap) rgt) acc)

(Cap.rights cap) ag.
Theorem ag add cap equiv: ∀ src src’ cap cap’ ag ag’,
Ref.eq src src’ → Cap.eq cap cap’ → AG.eq ag ag’ →
AG.eq (ag add cap src cap ag) (ag add cap src’ cap’ ag’).

Theorem ag add cap nondecr : ∀ src cap ag ag’,
AG.Subset ag ag’ → AG.Subset ag (ag add cap src cap ag’).

Theorem ag add cap add commute: ∀ src cap,
Seq.ag add commute (ag add cap src cap).

Definition ag add commute F := ∀ ag ag’ x,
AGProps.Add x ag ag’ → AGProps.Add x (F ag) (F ag’).

definition. Each of the functions named ag add cap* adds capabilities to an access

graph using the base ag add cap function. The ag add cap function adds all edges

represented by a single capability into an access graph. The ag add cap function, and

similar functions based thereon, all preserve equivalence, are non-decreasing, and are

commutative with set addition. Figure 6.5 contains the definition of ag add cap and

supplemental lemmas. The other definitions will be presented as needed, but theorem

definitions will not accompany them. For the full implementation, please review the

proof.

6.3 Potential Access

The potential access graph is the access graph representing the greatest potential

permission state of a initial access graph. The definition of a potential access graph

is the closure of the transfer relation, a micro-operation of permission transfer. The
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Figure 6.6 Definition of transfer .
Inductive transfer (a b : AG.t) : Prop :=
| transfer self src : ∀ (rgt rgt’ : accessRight) (src tgt:Ref.t),
AG.In (Edges.mkEdge src tgt rgt) a →
AGProps.Add (Edges.mkEdge src src rgt’) a b →
transfer a b
| transfer self tgt : ∀ (rgt rgt’ : accessRight) (src tgt:Ref.t),
AG.In (Edges.mkEdge src tgt rgt) a →
AGProps.Add (Edges.mkEdge tgt tgt rgt’) a b →
transfer a b
| transfer read : ∀ (rgt: accessRight) (src tgt tgt’ :Ref.t),
AG.In (Edges.mkEdge src tgt rd) a →
AG.In (Edges.mkEdge tgt tgt’ rgt) a →
AGProps.Add (Edges.mkEdge src tgt’ rgt) a b →
transfer a b
| transfer write : ∀ (rgt: accessRight) (src tgt tgt’ :Ref.t),
AG.In (Edges.mkEdge src tgt wr) a →
AG.In (Edges.mkEdge src tgt’ rgt) a →
AGProps.Add (Edges.mkEdge tgt tgt’ rgt) a b →
transfer a b
| transfer send : ∀ (rgt: accessRight) (src tgt tgt’ :Ref.t),
AG.In (Edges.mkEdge src tgt tx) a →
AG.In (Edges.mkEdge src tgt’ rgt) a →
AGProps.Add (Edges.mkEdge tgt tgt’ rgt) a b →
transfer a b
| transfer send reply : ∀ (src tgt:Ref.t),
AG.In (Edges.mkEdge src tgt tx) a →
AGProps.Add (Edges.mkEdge tgt src tx) a b →
transfer a b
| transfer weak : ∀ (rgt: accessRight) (src tgt tgt’ :Ref.t),
AG.In (Edges.mkEdge src tgt wk) a →
AG.In (Edges.mkEdge tgt tgt’ rgt) a →
(eq rgt wk ∨ eq rgt rd) →
AGProps.Add (Edges.mkEdge src tgt’ wk) a b →
transfer a b.
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Figure 6.7 transfer is monotonic and has a least upper bound.
Theorem transfer monotonic: ∀ (i a b c : AG.t) (edge: Edge.t),
AG.Subset i b → AGProps.Add edge i a → transfer i a →
AGProps.Add edge b c → transfer b c.

Theorem transfer lub: ∀ (i a b:AG.t),
transfer i a → transfer i b → ∃ c:AG.t, transfer a c ∧ transfer b c.

constructors for a transfer describe the seven methods by which new edges may appear

in an access graph.

Each transfer constructor relates two access graphs by the inclusion of a single edge

justified by an access right. The transfer read constructor describes how an edges

with the rd permission may add a new edge and is similar to the fetch operation.

A wr permission authorizes any permission to be transferred in the other direction

as performed by the transfer write constructor. The constructor for the wk case,

transfer weak, handles how wk permissions are transferred. transfer send reply and

transfer send cover the tx permission authorizing a reply or authorizing a transfer

through inter-process communication. There are also two constructors admitting self-

targeting edges. To keep the number of edges finite, some other edge in the access

graph is required to identify an object before adding its self-targeting edges. The cases

transfer self src and transfer self tgt admit self-targeting edges for objects named by

the source or target of an existing edge, respectively.

A transfer forms a restriction of the subset partial order which continues to be a

partial order. As transfer always relates two access graphs by a single access edge,

it must be monotonic. Because a transfer performs judgments based solely upon the
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Figure 6.8 Definition of potTransfer .
Inductive potTransfer (a c:AG.t) : Prop :=
| potTransfer base : AG.Equal a c → potTransfer a c
| potTransfer trans : ∀ (b:AG.t), potTransfer a b → transfer b c → potTransfer a c.

Figure 6.9 Theorems about potTransfer .
Theorem potTransfer lub:
∀ (i a b: AG.t), potTransfer i a → potTransfer i b →
∃ c : AG.t, potTransfer b c ∧ potTransfer a c.

existence of edges and not their absence, any edge added by a transfer will continue

to be valid regardless of what new edges exist, including other transfers. Therefore,

there is always a least upper bound for any two transfers on the same initial graph.

The definition of transfer lub captures the specific case for transfer.

A potential transfer is any sequence of transfers, even empty ones, and is defined

by potTransfer . The transfer least upper bound can be extended to potTransfer such

that any two potential transfers rooted sharing the same base have a least upper

bound. Potential transfer forms a partial order over all possible transfers starting

with a base access graph. Potential transfer is reflexive by inspection and transitive

by simple induction. It must also be anti-symmetric since, as a sequence of transfers,

it is non-decreasing. This least upper bound on potential transfer is used heavily in

this verification as it permits transfers sharing an initial access graph to be reordered.

The supremum of potential transfer is potential access as it represents the most

permissive state after a sequence of transfers. It is defined as the access graph that is

both maximal and reachable by potential transfer. The usual definition of maximal

applies: an access graph is maximal precisely when all potential transfers are to

105



CHAPTER 6. ACCESS GRAPHS AND POTENTIAL ACCESS

Figure 6.10 Both definitions of maximal and potAcc.
Definition maxTransfer (i:AG.t) : Prop :=
∀ a:AG.t, transfer i a → AG.Equal i a.

Definition maxPotTransfer (i:AG.t) : Prop :=
∀ a:AG.t, potTransfer i a → AG.Equal i a.

Theorem maxTransfer maxPotTransfer : ∀ (i:AG.t), maxTransfer i ↔ maxPotTrans-
fer i.
Definition potAcc (i max :AG.t) : Prop :=
potTransfer i max ∧ maxPotTransfer max.

Figure 6.11 Definition for ag objs spec and complete ag spec.
Definition ag objs spec (i:AG.t) (objs: RefSet.t) :=
∀ x, RefSet.In x objs ↔
∃ obj, ∃ rgt, AG.In (Edges.mkEdge x obj rgt) i ∨

AG.In (Edges.mkEdge obj x rgt) i.
Definition complete ag spec refs full := ∀ edge,
AG.In edge full ↔
RefSet.In (Edges.source edge) refs ∧ RefSet.In (Edges.target edge) refs.

equivalent graphs. To reduce case analysis, we often use the equivalent definition

of maximal claiming that all transfers are to equivalent graphs. Because potential

transfer always has a least upper bound, every maximal access graph is also a potential

access graph.

6.4 Computing Potential Access

The remainder of SequentialAccess contains proofs that transfer is decidable

and potAcc is computable in its first input. To accomplish this, both properties

are computed as functions in Set. Verifying the transfer judgment is a Boolean is

substantial case analysis, but is obvious by inspection. The definition of potential
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Figure 6.12 Theorem demonstrating constancy of Access Graph Objects through
transfer.
Definition AG all objs (i:AG.t) (objs: RefSet.t) :=
∀ (src tgt:Ref.t) (rgt:accessRight),
AG.In (Edges.mkEdge src tgt rgt) i →
RefSet.In src objs ∧ RefSet.In tgt objs.

Theorem ag objs spec AG all objs: ∀ i n, ag objs spec i n → AG all objs i n.
Theorem ag all objs transfer : ∀ A N B,
AG all objs A N → transfer A B → AG all objs B N.

Figure 6.13 transfer as a Boolean decision.
Theorem transfer dec : ∀ A B:AG.t, {transfer A B} + {¬ transfer A B}.

transfer cannot be used to compute the potential access graph as it is far too general

and does not guarantee progress.

The function potAcc fun computes potential access by finding a single sequence

of transfers that always adds a novel edge at each step. For novelty to produce a

sound measure, there must be a theoretical limit to the number of new edges. By

inspection, transfer does not alter which object references are in an access graph,

it only adds edges between existing object references. The ag objs spec judgment

extracts the object references from an access graph and this value remains unchanged

by the transfer and potential transfer relations. The complete access graph for these

object references, the access graph containing an edge with every access right and pair

of object references available, is used as this upper limit. The measure conjecture

dist from complete computes the cardinality of the set difference of the complete

access graph and the current access graph.

The method used to potential access is not efficient, but demonstrably yields a
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Figure 6.14 Definition of potAcc fun and proof satisfying potAcc.
Function potAcc fun (i:AG.t) {measure dist from complete i}: AG.t :=

match findTransferEdge i with
| None ⇒ i
| Some edge ⇒ potAcc fun (AG.add edge i) end. Theorem

potAcc potAcc fun: ∀ i, potAcc i (potAcc fun i).

correct result by exhaustion. potAcc fun iterates over the complete access graph until

it finds an edge satisfying the transfer relation when added to the initial access graph.

If it finds such an edge, it adds the edge to the initial access graph and recurses. If

no such edge exists in the complete access graph the current access graph must be

maximal. Consequently it must also be the potential access graph.

The majority of SDM is concerned with the relationships surrounding potential

access. Potential access is central to both the safety property and statically bounding

data motion. Although there are other access graphs used by SDM, they will be

defined in Chapter 9 when used.
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Safety

This chapter presents a proof of the safety property for capability-based systems

using SDM. The safety property asks whether, from a given initial configuration, an

object will come to hold an access right to some other object in the future. Because

operations in the model are only authorized by the presence of access rights, the

safety problem can be approximated using an upper bound on access graphs. The

proof begins by defining the concept of functions which “conservatively approximate”

the direct access graphs of system states between operations. It also provides the

concrete approximating function dirAcc op. The second step of the proof follows the

same form as the first, defining how functions “conservatively approximate” potential

access graphs between direct access functions and providing the concrete approximat-

ing function potAcc op. With the exception of the allocate operation, all dirAcc op

functions are potential transfers and are therefore approximated by the identity func-
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Figure 7.1 Definition and visualization of dirAcc approx dep.

S agdirAcc ag’
⊆

S2 ag2dirAcc ag2’
⊆

(Fs S) (Fsa S)

Definition dirAcc approx dep Fs Fsa := ∀ s s’ ag ag’ ag2,
dirAcc spec s ag → dirAcc spec (Fs s) ag2 →
AG.Subset ag ag’ → Sys.eq s s’ →
AG.Subset ag2 (Fsa s’ ag’).

tion between potential access graphs. The remaining allocate case is approximated

by equating the allocator and fresh object. By observing all new access edges must

name the fresh object, the proof verifies that all potential access relationships between

preexisting objects may only decrease.

7.1 Direct Access Approximations

A solution to the safety problem requires the decidability of whether one object

can ever come to hold an access right to another. Many operations in SDM have the

ability to remove or overwrite capabilities, making direct comparison difficult. There-

fore, the SDM verification first defines the structure of functions that “conservatively

approximate” changes to the direct access graph across semantic operations and then

defines functions satisfying this requirement.
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Figure 7.2 Definition of dirAcc approx .
Definition dirAcc approx Fs Fa := ∀ s ag ag’ ag2,
dirAcc spec s ag → dirAcc spec (Fs s) ag2 → AG.Subset ag ag’ →
AG.Subset ag2 (Fa ag’).

Theorem dirAcc approx dirAcc approx dep: ∀ Fs Fa,
dirAcc approx Fs Fa → dirAcc approx dep Fs (fun s ⇒ Fa).

Figure 7.3 Composing sequences of direct access operations.
Theorem dirAcc dep compose : ∀ Fs, Proper (Sys.eq =⇒ Sys.eq) Fs →
∀ Fsa, dirAcc approx dep Fs Fsa → ∀ Fs’ Fsa’, dirAcc approx dep Fs’ Fsa’ →
dirAcc approx dep (compose Fs’ Fs)

(fun s ⇒ (compose (Fsa’ (Fs s)) (Fsa s))).

The definition of conservatively approximating functions for direct access are de-

fined by dirAcc approx dep in Figure 7.1. A visual representation of the relationships

is included to more intuitively illustrate the definition. dirAcc approx dep describes

the relationship between a function on system state, such as an operation, and an

approximating function between direct access graphs. An approximating function

may be dependent on the system state to determine which edges are added. An ap-

proximating function must not only produce a superset of the direct access graph,

but must continue to do so on other supersets.

Earlier work first attempted to use approximating functions that did not include

dependency on a system state. However, determining which approximating function

to select for an operation requires knowledge of the system state, leading to the

dependent form. The definition of dirAcc approx is identical to dirAcc approx dep

with this omission and consequently entails a dirAcc approx dep result.

The definition of dirAcc approx dep permits operations and approximating func-
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Figure 7.4 Trivial approximating functions.
Definition id ag (ag:AG.t) := ag.
Definition read ag := id ag.
Definition write ag := id ag.
Definition revoke ag := id ag.
Definition destroy ag := id ag.
Theorem dirAcc approx read: ∀ a c,

dirAcc approx (Sem.do read a c) read ag.
Theorem dirAcc approx write:∀ a c,

dirAcc approx (Sem.do write a c) write ag.
Theorem dirAcc approx revoke:∀ a t c,

dirAcc approx (Sem.do revoke a t c) revoke ag.
Theorem dirAcc approx destroy:∀ a t,

dirAcc approx (Sem.do destroy a t) destroy ag.

tions to preserve approximation when composed in sequence. Figure 7.3 proves this

property as dirAcc dep compose. The only additional constraint is that functions

over system state must respect system states equivalence, a property valid for all

operations in SDM.

SDM approximates each operation with a direct access approximating function.

These definitions and theorems are provided three modules: DirectAccess contains

useful functions and lemmas, DirectAccessSemantics verifies properites necessary

to approximate each operation, and the functions performing approximations are

located in DirectAccessApprox. Four operations are approximated by the iden-

tity function as demonstrated by the theorems in Figure 7.4. The theorems for

dirAcc read and dirAcc write follow trivially as the read and write operations do not

modify the system state. The proofs of dirAcc revoke and dirAcc destroy demon-

strate that no new access edges could be added by observing that the revoke and de-
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Figure 7.5 Fetch and store approximating functions.
Definition fetch dep ag a t c s :=
ag add cap by indirect index a t c s
(if SemDefns.option hasRight dec (SC.getCap t a s) AccessRights.rd
then (fun c ⇒ c)
else Cap.weaken) ag add cap valid std.

Definition store dep ag a t c s :=
ag push cap by indices a t a c s (fun c⇒c) ag add cap valid std.

Definition ag add cap by indirect index src t i s Fc Fv ag:=
option map1

(fun cap ⇒ ag add cap by obj index src (Cap.target cap) i s Fc Fv ag)
ag (SC.getCap t src s).

Definition ag push cap by indices o i o’ i’ s Fc Fv ag:=
option map1

(fun src ⇒ ag add cap by obj index src o’ i’ s Fc Fv ag)
ag (SemDefns.option target (SC.getCap i o s)).

Theorem dirAcc approx dep fetch: ∀ a t c i,
dirAcc approx dep (Sem.do fetch a t c i) (fetch dep ag a t c).

Theorem dirAcc approx dep store: ∀ a t c i,
dirAcc approx dep (Sem.do store a t c i) (store dep ag a t c).

stroy operations add no new capabilities. Selectively removing edges is not generally

a safe operation as it does not generally satisfy the requirements for an approximating

function.

The fetch and store operations add edges for a single capability and are there-

fore approximated by slightly different surface functions. Store is approximated by

ag push cap by indices while ag add cap by indirect index approximates the fetch

operation. Both functions invoke ag add cap by obj index which runs ag add cap

to add a capability to the access graph only when it finds a capability at the correct

index and the supplied validity test holds. The standard validity test used by most

operations is defined by ag add cap valid std. It requires both the source and target
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of the new access edge to be alive in the system state. If all tests pass, the capability

added to the access graph by ag add cap is first modified by the supplied capabil-

ity transformation function. The distinction between ag add cap by indirect index

and ag push cap by indices is how the source of the new access edge is named.

ag add cap by indirect index names the source indirectly via another capability and

ag push cap by indices names the source of the new edge directly. Additionally, a

fetch operation using only a wk access right must use the modifying function weaken,

which returns a wk-only capability when wk or rd are present and an empty access

right set otherwise.

The ag add caps send and ag add caps create functions approxiamte the send

and allocate operations. Both functions call ag add caps by index pair list to add

multiple capabilities via ag add cap by obj index . The ag add caps send function

includes a reply capability when specified and uses the standard validity check, while

ag add caps create always includes a capability with all access rights to the new

object and only requires that the source be alive. The case where an object performs

a send operation to itself is handled as a simplified special case adding only a reply

capability.

All of the presented proofs and definitions are case of a much larger single function

approximating an entire operation. The proof unifying all pieces is contained in the

Attenuation module. Both definitions are presented in Figure 7.7.
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Figure 7.6 Direct access approximations for send and allocate.
Definition allocate dep ag a n ixi list s ag:=

if SemDefns.allocate preReq dec a n s
then ag add caps allocate a n ixi list s ag
else ag.

Definition send dep ag a t ixi list s:=
if (option map1 eq tgt dec t a s)
then (ag add caps reply a t s)
else (ag add caps send a t ixi list s).

Definition ag add caps send a t ixi list s ag:=
let ag’ := ag add caps reply a t s ag in
option map1
(fun cap ⇒ ag add caps by index pair list

(Cap.target cap) a ixi list s (fun c⇒c) ag add cap valid std ag’)
ag’ (SC.getCap t a s).

Definition ag add caps allocate a n ixi list s ag :=
(ag add cap a (Cap.mkCap n all rights)
(ag add caps by index pair list n a ixi list s (fun c⇒c)
ag add cap valid allocate ag)).

Definition ag add caps by index pair list src o (ixi list:
list (Ind.t × Ind.t)) s Fc Fv ag :=
fold right (fun ixi ag’ ⇒ ag add cap by obj index src o (fst ixi) s Fc Fv ag’)
ag ixi list.

Theorem dirAcc approx dep allocate: ∀ a n i ixi list,
dirAcc approx dep (Sem.do allocate a n i ixi list) (allocate dep ag a n ixi list).

Theorem dirAcc approx dep send: ∀ a t ixi list opt i,
dirAcc approx dep (Sem.do send a t ixi list opt i) (send dep ag a t ixi list).
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Figure 7.7 Approximation of all operations as dirAcc op.
Definition dirAcc op op s :=

match op with
| Sem.read a t ⇒ read ag
| Sem.write a t ⇒ write ag
| Sem.fetch a t c i ⇒

if SemDefns.fetch preReq dec a t s
then fetch dep ag a t c s
else id ag
| Sem.store a t c i ⇒

if SemDefns.store preReq dec a t s
then store dep ag a t c s
else id ag
| Sem.revoke a t c ⇒ revoke ag
| Sem.send a t ixi list opt i ⇒

if SemDefns.send preReq dec a t s
then send dep ag a t ixi list s
else id ag
| Sem.allocate a n i ixi list ⇒

if SemDefns.allocate preReq dec a n s
then allocate dep ag a n ixi list s
else id ag
| Sem.destroy a t ⇒ destroy ag
end.

Theorem dirAcc approx dep op : ∀ op,
dirAcc approx dep (Sem.do op op) (dirAcc op op).
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Figure 7.8 Definition and Visualization of potAcc approx dirAcc dep.

S I
dirAcc

I’
⊆

P
potAcc fun

P’
⊆

I2’ P2
potAcc fun

P2’
⊆

(FsaS) (FpS)

Definition potAcc approx dirAcc dep Fsa Fp := ∀ i i’ p p’ p2 s s’ s”,
Sys.eq s s’ → Sys.eq s’ s” →
dirAcc spec s i → AG.Subset i i’ →
Seq.potAcc i’ p → Seq.potAcc (Fsa s’ i’) p2 →
AG.Subset p p’ → AG.Subset p2 (Fp s” p’).

Figure 7.9 Composing sequences of potential access operations.
Theorem potAcc approx dirAcc dep compose:
∀ Fs, Proper (Sys.eq =⇒ Sys.eq) Fs →
∀ Fsa, dirAcc approx dep Fs Fsa →
Proper (Sys.eq =⇒ AG.eq =⇒ AG.eq) Fsa →
∀ Fp, potAcc approx dirAcc dep Fsa Fp →
∀ (Fs’ :Sys.t→Sys.t) Fsa’, Proper (Sys.eq =⇒ AG.eq =⇒ AG.eq) Fsa’ →
∀ Fp’, potAcc approx dirAcc dep Fsa’ Fp’ →
potAcc approx dirAcc dep (fun s ⇒ (compose (Fsa’ (Fs s)) (Fsa s)))

(fun s ⇒ (compose (Fp’ (Fs s)) (Fp s))).

7.2 Potential Access Approximations

The structure of conservatively approximating functions between potential ac-

cess graphs is defined in Figure 7.8. The structure of potAcc approx dirAcc dep

is still dependent upon the system state, and must therefore retain its relation-

ship through direct access. However, it is only approximating the direct access-

approximating function, and does not ensure Fsa Sa is approximating direct ac-

cess. The complete approximation occurs by joining the two definitions. The proof
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Figure 7.10 Recomputing potential access preserves potAcc approx dirAcc dep.
Definition potAcc approx Fi Fp := ∀ i p p’ p2,
Seq.potAcc i p → Seq.potAcc (Fi i) p2 → AG.Subset p p’ →
AG.Subset p2 (Fp p’).

Theorem potAcc approx potAcc fun : ∀ Fa, Seq.ag potTransfer fn req Fa →
potAcc approx Fa (fun ag ⇒ Seq.potAcc fun (Fa ag)).

Theorem potAcc approx potAcc approx dirAcc dep: ∀ Fa Fp ,
potAcc approx Fa Fp → potAcc approx dirAcc dep (fun s ⇒ Fa) (fun s ⇒ Fp).

that potAcc approx dirAcc dep composes in Figure 7.9 follows the same form as

dirAcc approx dep.

Composing potAcc fun with another function is often potential access approximat-

ing, as demonstrated in Figure 7.10. The ag potTransfer fn req judgment requires

that the function in question be commutative with set addition and equivalence pre-

serving. This also guarantees that the function is non-decreasing, though not all

non-decreasing functions necessarily have these properties1. Given these fairly simple

requirements of most non-decreasing functions, recomputing potential access after

their application always approximates potential access.

With the exception of allocate, each direct access-approximating function describes

a potTransfer between access graphs. Each of these functions is commutative with set

addition and equivalence preserving and may be approximated by composing them

with potAcc fun. Because these functions form potential transfers on the original

potential access graph, this composition is equivalent to the identity function. This

cannot hold for allocate, as new objects must be granted new access rights. The only
1The definition of ag potTransfer fn req contains all three requirements as the non-decreasing

proof was constructed later in the work.
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Figure 7.11 Direct access functions produce potential transfers.
Theorem potTransfer send dep ag: ∀ a t ixi list s ag ag’,
dirAcc spec s ag →
SemDefns.send preReq a t s →
Seq.potTransfer ag ag’ →
Seq.potTransfer ag (send dep ag a t ixi list s ag’).

Theorem potTransfer store dep ag: ∀ a t c s ag ag’,
dirAcc spec s ag →
SemDefns.store preReq a t s →
Seq.potTransfer ag ag’ →
Seq.potTransfer ag (store dep ag a t c s ag’).

Theorem potTransfer fetch dep ag: ∀ a t ixi list s ag ag’,
dirAcc spec s ag →
SemDefns.fetch preReq a t s →
Seq.potTransfer ag ag’ →
Seq.potTransfer ag (fetch dep ag a t ixi list s ag’).

Figure 7.12 Approximating create dep ag with endow dep.
Definition insert a n ag :=
(ag add cap n (Cap.mkCap a all rights)

(ag add cap a (Cap.mkCap n all rights) ag)).
Definition endow a n ag := (Seq.potAcc fun (insert a n ag)).
Definition endow dep a n s :=

if SemDefns.allocate preReq dec a n s
then endow a n
else fun ag ⇒ ag.

Theorem potAcc approx allocate : ∀ a n ixi list,
potAcc approx dirAcc dep (allocate dep ag a n ixi list) (endow dep a n).

remaining question for the safety property is whether these new capabilities increase

the permissions between existing objects.

The allocate operation is approximated by endow dep as demonstrated by Fig-

ure 7.12. The endow dep function first checks if the allocate operation is performed

before executing the endow function. The endow function approximates allocate by

fully connecting the allocator and fresh objects using the insert function and then
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Figure 7.13 Potential access approximation of dirAcc op by potAcc op.
Definition potAcc op op s :=
match op with
| Sem.read a t ⇒ id ag
| Sem.write a t ⇒ id ag
| Sem.fetch a t c i ⇒ id ag
| Sem.store a t c i ⇒ id ag
| Sem.revoke a t c ⇒ id ag
| Sem.send a t ixi list opt i ⇒ id ag
| Sem.allocate a n i ixi list ⇒ endow dep a n s
| Sem.destroy a t ⇒ id ag
end.
Theorem potAcc approx dirAcc dep op :
∀ op, potAcc approx dirAcc dep (dirAcc op op) (potAcc op op).

recomputing potential access. Because all capability transfers during allocate are

captured as potential transfers after the initial capability is created, endow dep must

approximate the allocate operation. Either capability added by the insert function

entails the other in potential access. However, the insert function adds both capabil-

ities to facilitate simpler inference in future proofs.

Each of these approximations has been a special case of a larger approximating

function: potAcc op. Like dirAcc op, potAcc op approximates the potential access

of every operation. Potential access is approximated by the identity function for all

operations except allocate, where it is approximated by endow dep. This proof is

constructed by case analysis given the previous approximations.
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Figure 7.14 Definition of AG attenuating.
Definition AG attenuating N p p’ :=
∀ src tgt, RefSet.In src N → RefSet.In tgt N →
∀ rgt, ¬ AG.In (Edges.mkEdge src tgt rgt) p →
Ref.eq src tgt ∨ ¬ AG.In (Edges.mkEdge src tgt rgt) p’.

Figure 7.15 Properties of AG attenuating.
Theorem AG attenuating trans subset: ∀ N p p’ N’ p”,
AG attenuating N p p’ → AG attenuating N’ p’ p” →
RefSet.Subset N N’ → AG attenuating N p p”.

Theorem AG attenuating trans : ∀ N p p’ p”,
AG attenuating N p p’ → AG attenuating N p’ p” → AG attenuating N p p”.

Theorem AG attenuating subset ag: ∀ N p p’,
AG.Subset p’ p → AG attenuating N p p’.

7.3 Attenuating Permissions

The next goal of this chapter is to demonstrate how potential access is attenu-

ating for each operation. The definition of attenuating is given by AG attenuating

of Figure 7.14. The access graph p’ is attenuating from p with respect to a set of

objects N when all relationships in p′ between elements in N can be no worse than

the relationships in p.

Because new self-targeting access edges may arise via allocation, a simple subset

relation will not suffice to capture attenuation. This occurs because all objects are

assumed to have total self-authority, but potential transfer must remain finite. An

isolated object will not appear in the direct access graph if it has no capabilities, but

the allocate operation adds new access edges via capabilities that justify its inclusion.

This case is largely uninteresting, but must be handled for precision.

The fact that attenuations are transitive will be used extensively to verify the
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Figure 7.16 insert and endow are attenuating.
Theorem AG attenuating insert: ∀ ag p a n ag’ p’ objs N,
Seq.potAcc ag p →
Seq.ag objs spec p N →
¬ RefSet.In n N →
¬ RefSet.In n objs →
AG.Equal (insert a n p) ag’ →
Seq.potAcc ag’ p’ →
AG attenuating objs p p’.

Theorem AG attenuating endow : ∀ ag p a n objs Np,
Seq.ag objs spec p Np →
¬ RefSet.In n objs → ¬ RefSet.In n Np →Seq.potAcc ag p →
AG attenuating objs p (endow a n p).

safety property. Additionally, any subset is trivially attenuating, causing almost all

cases of potAcc op to be attenuating. Discussing an attenuation between objects that

are unborn is generally nonsensical. Moreover, the set of objects examined for safety

will be all those alive or dead in the system state. Therefore, during the allocate

operation, the set of objects under consideration should not name the fresh object.

To show that authority is attenuating over endow, it is sufficient to demonstrate that

all new edges have the fresh object as a source or target.

The insert function is attenuating by simple case analysis. All edges between

the allocator and fresh object have the fresh object as a source or target. Because

attenuations are transitive, adding them in any order produces an attenuation for the

whole function.

The proof that the endow function is attenuating requires substantial case analysis.

The following is a simple sketch by contradiction. If endow is applied to a maximal

access graph, then all edges added by transfer must have the fresh object as a source
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Figure 7.17 AG project and endow.
Definition AG project a n p p’ := ∀ src tgt rgt,

AG.In (Edges.mkEdge src tgt rgt) p’ ↔
(AG.In (Edges.mkEdge src tgt rgt) p ∨
AG.In (Edges.mkEdge src a rgt) p ∧ Ref.eq tgt n ∨
AG.In (Edges.mkEdge a tgt rgt) p ∧ Ref.eq src n ∨
Ref.eq src n ∧ Ref.eq tgt a ∨
Ref.eq src a ∧ Ref.eq tgt n ∨
Ref.eq src n ∧ Ref.eq tgt n ∨
Ref.eq src a ∧ Ref.eq tgt a).

Theorem AG project endow : ∀ ag p, Seq.potAcc ag p →
∀ N, Seq.ag objs spec p N → ∀ n, ¬ RefSet.In n N →
∀ a ag’, AG.Equal (insert a n p) ag’ → ∀ p’, Seq.potAcc ag’ p’ →
AG project a n p p’.

Figure 7.18 potAcc op is attenuating.
Theorem AG attenuating potAcc op: ∀ s op ag p,
dirAcc spec s ag → Seq.potAcc ag p →
∀ Np, Seq.ag objs spec p Np → ∀ objs, objs not unborn objs s →
AG attenuating objs p (potAcc op op s p).

or target. This property is called a projection and is captured by the AG project

judgment in Figure 7.17. Recall that any transfer on a maximal access graph produces

an identical access graph. Were this not the case, the edges required to perform such a

transfer must also not identify the fresh object, by inspection. However, if these edges

did not identify the fresh object, the transfer must have been valid in the maximal

graph, so such an edge cannot exist. As all cases of potAcc op must be attenuating,

potAcc op is also attenuating.
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Figure 7.19 Approximating sequences of direct access operations.
Fixpoint dirAcc execute op list s : (AG.t → AG.t) :=
match op list with
| nil ⇒ id ag
| cons op tail ⇒
compose (dirAcc op op (Exe.execute s tail)) (dirAcc execute tail s)

end.
Inductive dirAcc execute spec :
list Sem.operation → (Sys.t → AG.t → AG.t) → Prop :=
| dirAcc execute spec nil : dirAcc execute spec nil (fun (s:Sys.t) (a:AG.t) ⇒ a)
| dirAcc execute spec cons : ∀ op op list Fp, dirAcc execute spec op list Fp →
dirAcc execute spec (cons op op list)

(fun s ⇒ compose (dirAcc op op (Exe.execute s op list)) (Fp s)).
Theorem dirAcc execute spec eq iff : ∀ opList Fsa,
dirAcc execute spec opList Fsa ↔ Fsa = (dirAcc execute opList).

Theorem dirAcc execute spec dirAcc execute: ∀ op list,
dirAcc execute spec op list (dirAcc execute op list).

Figure 7.20 Approximating sequences of potential access operations.
Fixpoint potAcc execute op list s : (AG.t → AG.t) :=

match op list with
| nil ⇒ id ag
| cons op tail ⇒
compose (potAcc op op (Exe.execute s tail)) (potAcc execute tail s)

end.
Inductive potAcc execute spec :
list Sem.operation → (Sys.t → AG.t → AG.t) → Prop :=
| potAcc execute spec nil : potAcc execute spec nil (fun (s:Sys.t) (a:AG.t) ⇒ a)
| potAcc execute spec cons : ∀ op op list Fp, potAcc execute spec op list Fp →
potAcc execute spec (cons op op list)
(fun s ⇒ compose (potAcc op op (Exe.execute s op list)) (Fp s)).

Theorem potAcc execute spec eq iff : ∀ opList Fsa,
potAcc execute spec opList Fsa ↔ Fsa = (potAcc execute opList).

Theorem potAcc execute spec potAcc execute: ∀ op list,
potAcc execute spec op list (potAcc execute op list).
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Figure 7.21 Visualization of approximating execution.
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7.4 Safety

Having demonstrated how the potential access of each operation can be conserva-

tively approximated by attenuating functions, the remainder of this chapter illustrates

how these functions are composed to produce safety. Each fully instantiated attenu-

ating function can be composed to produce attenuation transitively. However, each is

dependent on a system state which must be computed after each operation. The func-

tions dirAcc execute and potAcc execute approximate a sequence of operations given

an initial system state. Both functional and inductive specifications are included.

The approximating functions correctly approximate the access graphs of each
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Figure 7.22 Folding approximating operations for executions.
Theorem dirAcc execute approx :
∀ op list Fsa, dirAcc execute spec op list Fsa →
dirAcc approx dep (fun s ⇒ (Exe.execute s op list)) Fsa.

Theorem potAcc execute approx :
∀ op list Fsa, dirAcc execute spec op list Fsa →
∀ Fp, potAcc execute spec op list Fp →
potAcc approx dirAcc dep Fsa Fp.

Figure 7.23 Nodes that are not unborn remain not unborn.
Definition objs not unborn objs s :=
∀ x : RefSet.elt, RefSet.In x objs → ¬ SC.is unborn x s.

Theorem objs not unborn oplist : ∀ n s, objs not unborn n s →
∀ opL s’, Exe.execute def s opL s’ → objs not unborn n s’.

operation sequence. Composing direct access operations approximates the direct

access of an operation sequence. Having performed that approximation, the potential

access of an operation sequence is approximated by folding over potAcc op. These

properties are defined in Figure 7.22 and visualized in Figure 7.21.

As previously stated, it is nonsensical to discuss unborn objects in the attenuating

judgment. The predicate objs not unborn determines that all object references of a

set do not name unborn objects in the given system state. As access graphs do not

track this information, it will be added as a precondition to the safety problem.

Verifying that no access edges added during endowment identify any existing

objects is not sufficient to verify the safety property. The change in objects present in

Figure 7.24 How the objects in an access graph change through endowment.
Theorem ag objs spec endow: ∀ p p objs, Seq.ag objs spec p p objs →
∀ a n p’ objs, Seq.ag objs spec (endow a n p) p’ objs →
RefSet.eq p’ objs (RefSet.add a (RefSet.add n p objs)).
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Figure 7.25 Attenuations are composable
Theorem AG attenuating compose: ∀ objs p Fp1, AG attenuating objs p (Fp1 p) →
∀ Fp2, AG attenuating objs (Fp1 p) (compose Fp2 Fp1 p) →
AG attenuating objs p (compose Fp2 Fp1 p).

Figure 7.26 Executing a sequence of potential access operations produces a maximal
access graph.
Theorem potAcc execute spec potAcc: ∀ p, Seq.maxTransfer p →
∀ op list Fp’, potAcc execute spec op list Fp’ →
∀ s, Seq.maxTransfer (Fp’ s p).

an access graph must be known precisely. The only new objects which may arise from

the endow function are the newly allocated object and the parent, if it was absent.

This is verified by ag objs spec endow in Figure 7.24.

There are two helper functions to assist the proof that access graphs are atten-

uating over a sequence of operations. The first uses the proof that attenuations are

transitive to demonstrate how functions producing attenuations can be composed.

The other helper theorem proves that potAcc execute is maximal, provided its initial

access graph is maximal. This ensures that potAcc execute is a potential access graph

producing function, in addition to being potential access approximating.

The proof that potAcc execute is attenuating over any objects that are not unborn

in the initial system state is given in Figure 7.27. Each operation is approximated by

Figure 7.27 Executing a potential access operation is attenuating.
Theorem execute potAcc attenuating:

∀ op list Fsa, dirAcc execute spec op list Fsa →
∀ Fp, potAcc execute spec op list Fp →
∀ s i, dirAcc spec s i → ∀ p, Seq.potAcc i p →
∀ objs, objs not unborn objs s →
AG attenuating objs p (Fp s p).
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Figure 7.28 Execution is attenuating: Safety for Capability systems.
Theorem execute attenuating : ∀ s i, dirAcc spec s i → ∀ p, Seq.potAcc i p →
∀ op list s’, Exe.execute def s op list s’ → ∀ i’, dirAcc spec s’ i’ →
∀ p’, Seq.potAcc i’ p’ → ∀ objs, objs not unborn objs s →
AG attenuating objs p p’.

an attenuating function for both direct access and potential access. The attenuating

potAcc execute function produces a maximal access graph from one already maximal,

requiring no additional analysis when applied to an approximating potential access

graph. By induction, that each step in potAcc execute composes to produce another

attenuating function. Therefore potAcc execute must be attenuating.

The final theorem of this chapter is the verification of the safety property for

capability-based systems. As the various approximating functions can be constructed

as needed, the proof that the potential access is attenuating simply forgets them.

Because any attenuations are preserved by subset, the potential access of any future

system state must be an attenuation because each approximation is a attenuation.

Since the permissions between any objects that are not unborn must be attenuating

with each operation, the potential access initially produced must be preserved through

the life of the system, satisfying the safety property.
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Information Flow

This chapter focuses on analyzing how the flow of data in SDM is related to poten-

tial access. As previously mentioned, the model does not directly capture application

data; the transfer of application data is abstracted using the readFrom and wroteTo

definitions. From these definitions, SDM defines what is mutated through a sequence

of operations. It also supplies the mutable judgment: a simple, permission-based

definition of mutability by directly examining an access graph. The remainder of the

chapter examines how what is mutated through a sequence of operations is a subset

of what is considered potentially mutable. Naively, this is demonstrated by observ-

ing that all information flow occurs by the existence of a capability and that, for

each operation, what is mutated is a subset of what is mutable in the direct access.

By capturing all potential capabilities, the computation of potential access has also

captured all potential information flow.
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8.1 Mutation

The semantics of SDM do not incorporate data values directly. Instead, they de-

fine how data may flow during each operation through the use of the readFrom spec

and wroteTo spec relations. As their names imply, the readFrom spec judgment in-

dicates the potential information flow sources during an operation, and wroteTo spec

indicates the potential destinations. A complete system implementation must demon-

strate that its operations do not violate these judgments, providing implementations

of readFrom and wroteTo satisfying those specifications.

For review, the definition of readFrom spec and wroteTo spec capture potential

flows of both data and capabilities. The simple read and write operations that have no

impact on the system state indicate data-only data motion. Because it is possible to

encode data using capabilities, their potential transfers are considered as information

flow. While necessary for correctness, this is not the case for all models and many

incorrectly label such flow as covert. Thus, the fetch and store operations admit the

same mutability as read and write. Sending a message may contain both data and

capabilities, and has the same mutation as write. Like the send operation, allocate

is able to pass multiple capabilities and arbitrary data along for object instantiation.

The revoke operation has the same flow potential as write. In many systems the revoke

command is performed by a write of a trivially non-mutating capability. Though it

alters the state of an object, the destroy operation is not modeled as effecting mutation

upon that object. When an object is destroyed, subsequent operations on that object
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Figure 8.1 Definition of mutated.
Inductive mutated op def n s op : RefSet.t → Prop :=
| mutated op not in : ∀ rf n’, RefSet.eq n n’ → Sem.read from def s op rf →
¬ RefSet.Exists (fun x ⇒ RefSet.In x rf ) n → mutated op def n s op n’
| mutated op valid in : ∀ rf n’, RefSet.eq n n’ → Sem.read from def s op rf →
RefSet.Exists (fun x ⇒ RefSet.In x rf ) n →
∀ wt, Sem.wrote to def s op wt →
∀ n2, RefSet.eq (RefSet.union n’ wt) n2 →
mutated op def n s op n2.

Inductive mutated def n (s:Sys.t) : (list Sem.operation) → RefSet.t → Prop :=
| mutated nil : ∀ n’, RefSet.eq n n’ → mutated def n s nil n’
| mutated cons : ∀ opList n2, mutated def n s opList n2 →
∀ s’, Exe.execute def s opList s’ →
∀ op n3, mutated op def n2 s’ op n3 →
mutated def n s (cons op opList) n3.

do not admit any outward information flow, not even the state of the object.1

The mutated def inductive models where information might flow during a se-

quence of operations. Specifically, mutated def considers the objects reachable by an

initial subsystem in an initial system state. As a precondition, the initial subsystem

must contain objects that are alive or dead. The algorithm is initialized with the

initial subsystem being the reachable subsystem, as all objects are considered self-

mutating. Each time an operation is performed the reachable subsystem is expanded

to include the wroteTo set if an element of the subsystem is present in the readFrom

set. After all operations have been executed, the resulting reachable subsystem con-

tains all locations information in the initial subsystem could have reached as a result

of that operation sequence.
1This is hiding a subtle issue and is addressed in Chapter 11.
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Figure 8.2 Definition of mutable.
Definition mutable spec p objs mut := ∀ x, RefSet.In x mut ↔
RefSet.In x objs ∨
(∃ e, RefSet.In e objs ∧
(AG.In (Edges.mkEdge e x tx) p ∨
AG.In (Edges.mkEdge e x wr) p ∨
AG.In (Edges.mkEdge x e wk) p ∨
AG.In (Edges.mkEdge x e rd) p)).

Figure 8.3 Properties of mutable.
Theorem mutable spec subset:
∀ n n’, RefSet.Subset n’ n → ∀ p p’, AG.Subset p’ p →
∀ m, mutable spec p n m → ∀ m’, mutable spec p’ n’ m’ →
RefSet.Subset m’ m.

Theorem Proper mutable spec:
Proper (AG.eq =⇒ RefSet.eq =⇒ RefSet.eq =⇒ impl) mutable spec.

8.2 Mutability

In contrast to the flows that occur over operations, the abstract concept of pos-

sible mutation as authorized by access rights is captured by the mutable judgment.

Intuitively, most developers expect the potential for information transfer to be ex-

pressed using system permissions. A definition of mutable that relies on mutated

would defeat such intuitions as they have been captured by potential access and the

safety property. Therefore, mutable is defined simply by inspecting the permissions of

an access graph, without considering possible operations. If any object in the initial

subsystem is the source of a wr or tx access edge, the target is mutable by the subsys-

tem. Additionally, if the target of a rd or wk access edge is in the initial subsystem,

then source is mutable by the subsystem.

This definition of mutable capturing the instantaneous information flow of each
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access right within any access graph. Mutable is monotonic over the access graph,

following from the intuition that increasing access rights increases mutability. This

allows all proofs describing approximations over access graphs to be lifted to approx-

imate mutability. The fact that a subsystem can self-mutate is captured directly.

Mutable is also monotonic over the initial subsystem, causing it to be non-decreasing.

Applying mutable to a direct access graph is called direct mutability while applying

it to potential access graph is called potential mutability. Because direct access is a

subset of potential access, direct mutability is a subset of potential mutability.

8.3 Operational Mutability

The hypothesis that all direct mutation is captured by direct mutability and all

potential mutation by potential mutability does not match the definition of muta-

ble because it does not capture any transitivity of information flow. For access graph

approximations to successfully capture mutation, the opportunity to capture the tran-

sitivity of flow must occur when approximating potential access. Naively applying

mutable after each potential access approximating operation produces an induction

strategy based on potential transfer. However, the induction strategy of potential

transfer is insufficient to describe how mutability grows from the initial subsystem.

Because mutable is a static definition and does not describe how mutability changes

over operations, it cannot approximate mutated. A definition of mutability that fol-
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Figure 8.4 Figure and definition for general approx dirAcc dep.
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Definition general approx dirAcc dep
(Fg: AG.t → AG.t) (Fsa Fsa’ : Sys.t → AG.t → AG.t) :=
∀ s s’, Sys.eq s s’ →
∀ s”, Sys.eq s’ s” →
∀ i, dirAcc spec s i →
∀ i’, AG.Subset i i’ →
∀ p’, AG.Subset (Fg i’) p’ →
AG.Subset (Fg (Fsa s’ i’)) (Fsa’ s” p’).

Definition approx dirAcc dep Fg Fsa Fsa’ :=
general approx dirAcc dep Fg Fsa Fsa’ ∧
ag nondecr Fg ∧
Seq.ag equiv Fg ∧
Proper (Sys.eq =⇒ AG.eq =⇒ AG.eq) Fsa ∧
Proper (Sys.eq =⇒ AG.eq =⇒ AG.eq) Fsa’.

lows the induction strategy of mutated is needed.

Operational mutability is the concept of folding mutable over an operation se-

quence in the same manner as mutated. However, because operational mutability

must be general enough to extend to all partial potential transfers approximating

dirAcc execute, it has a slightly complicated structure. general approx dirAcc dep

is constructed as a generalized form of potAcc approx dirAcc dep that relates two

access graph transformations by the function Fg. potAcc approx dirAcc dep be-

comes the special case where Fg is potAcc fun and the related transformations are

dirAcc execute and potAcc execute. approx dirAcc dep places additional constraints
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Figure 8.5 Operational mutability.
Definition indexed {A B:Type} (R: relation A) (R’ : relation B)
(ind: A → B → Prop) :=
∀ (a a’ :A), (R a a’) → ∀ (b:B), ind a b → ∀ b’, ind a’ b’ → (R’ b b’).

Inductive mutable execute Fg
(exe spec: list Sem.operation → (Sys.t → AG.t → AG.t) → Prop) :
list Sem.operation → Sys.t → RefSet.t → RefSet.t → Prop :=

| mutable execute nil: ∀ Fdx, dirAcc execute spec nil Fdx →
indexed eq eq exe spec →
∀ Ftx, exe spec nil Ftx → approx dirAcc dep Fg Fdx Ftx →
∀ s i, dirAcc spec s i →
∀ E M, mutable spec (Ftx s (Fg i)) E M →
mutable execute Fg exe spec nil s E M

| mutable execute cons: ∀ opList Fdx, dirAcc execute spec opList Fdx →
indexed eq eq exe spec →
∀ Ftx, exe spec opList Ftx → approx dirAcc dep Fg Fdx Ftx →
∀ s i, dirAcc spec s i →
∀ E M, mutable execute Fg exe spec opList s E M →
∀ op Fdx’, dirAcc execute spec (cons op opList) Fdx’ →
∀ Ftx’, exe spec (cons op opList) Ftx’ → approx dirAcc dep Fg Fdx’ Ftx’ →
∀ M’, mutable spec (Ftx’ s (Fg i)) M M’ →
mutable execute Fg exe spec (cons op opList) s E M’.

on general approx dirAcc dep. It requires all functions to be equivalence preserv-

ing and restricts Fg to also be non-decreasing; these conditions are satisfied by all

potential transfers and approximating functions.

Operational mutability, defined by mutable execute in Figure 8.5, folds mutable

over each operation to aligns with the induction strategy of mutated. Unlike the

static definition of mutable, operational mutability is defined inductively over a list

of operations. Like mutated, it starts with an initial system state and subsystem, and

grows these based on what is statically mutable after each step. However, rather than

determining what was mutated, it is parameterized over a specification for approx-
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Figure 8.6 Properties of operational mutability.
Theorem Proper mutable execute :
Proper (eq =⇒ eq =⇒ eq =⇒ Sys.eq =⇒ RefSet.eq =⇒ RefSet.eq =⇒ iff )
mutable execute.

Theorem mutable execute subset:
∀ Fg Fg’ exe spec exe spec’,
∀ opList s E m, mutable execute Fg exe spec opList s E m →
∀ E’, RefSet.Subset E E’ →
∀ m’, mutable execute Fg’ exe spec’ opList s E’ m’ →
(∀ opl FXa, exe spec opl FXa → ∀ FXb, exe spec’ opl FXb →
∀ s s’, Sys.eq s s’ → ∀ i, dirAcc spec s i →
∀ a, AG.Subset i a → ∀ a’, AG.Subset a a’ →
AG.Subset (FXa s (Fg a)) (FXb s’ (Fg’ a’))) →

RefSet.Subset m m’.

imating dirAcc execute and a function relating this specification to dirAcc execute,

using approx dirAcc dep. Because the executable specification is a relation between

operation lists and functions, the indexed constraint ensures that all equivalent lists

are related to equivalent functions. As will all other general properties, this is a fairly

trivial property for all relevant functions.

Operational Mutability has two very useful properties: it preserves access graph

equivalence and subset relationships. This generalization applies to any execution

sequence in a step-wise approximating relationship with dirAcc execute, including

all potential transfer approximations including potAcc execute. The proof that the

operational mutability of direct access approximations must be bounded by the op-

erational mutability of potential access approximations involves specializing these

theorems correctly. This result forms the foundation of information flow analysis for

the remainder of this chapter.

136



CHAPTER 8. INFORMATION FLOW

Figure 8.7 Specialized forms of mutable execute.
Definition mutable dirAcc execute :=
mutable execute (fun a ⇒ a) dirAcc execute spec.

Definition mutable potAcc execute :=
mutable execute Seq.potAcc fun potAcc execute spec.

Theorem exists mutable dirAcc execute:
∀ opList s E, ∃ m, mutable dirAcc execute opList s E m.

Theorem exists mutable potAcc execute:
∀ opList s E, ∃ m, mutable potAcc execute opList s E m.

Theorem mutable execute dirAcc subset potAcc:
∀ s s’, Sys.eq s s’ →
∀ E E’, RefSet.Subset E E’ →
∀ opList m, mutable dirAcc execute opList s E m →
∀ m’, mutable potAcc execute opList s’ E’ m’ →
RefSet.Subset m m’.

Operational mutability is specialized for direct access approximations using the

identity function and for potential access approximations using potAcc fun. Special-

ized forms are constructed by simple instantiation and checking completeness. For

completeness, the proof that the mutability of potAcc execute approximates the mu-

tability of dirAcc execute is also instantiated.
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Figure 8.8 Relationships between mutated and operational mutability.
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8.4 Mutation is always Mutable

Figure 8.8 illustrates the relationship between mutated and operational mutability

as one induction strategy. This diagram introduces some additional notation. Sets

of object references are depicted with drop-shadow diamonds for both mutated and

mutable sets. Also, the figure contains dashed lines to indicate portions of operational

mutability that are not part of its definition, but are intended to connect to the

definition. The diagram has been flattened to appear sequential when this is not
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Figure 8.9 Approximations of Mutated
Theorem mutable dirAcc execute approx mutated :
∀ s s’, Sys.eq s s’ →
∀ E E’, RefSet.eq E E’ →
∀ opList m, mutated def E s opList m →
∀ m’, mutable dirAcc execute opList s’ E’ m’ →
RefSet.Subset m m’.

Theorem mutable potAcc execute approx mutated:
∀ s s’, Sys.eq s s’ →
∀ E E’, RefSet.Subset E E’ →
∀ opList m, mutated def E s opList m →
∀ m’, mutable potAcc execute opList s’ E’ m’ →
RefSet.Subset m m’.

actually the case. All functions are actually parameterized over the initial system

state and direct access graph and capture all possible functions approximating the

whole operation sequence. Though slightly overspecialized, the resulting diagram is

more intuitive and more closely aligns with other diagrams in this document.

Direct operational mutability approximates potential operational mutability. To

show that direct operational mutability approximates what is mutated, it is sufficient

to show that potential operational mutability approximates what is mutated.

It must be the case that potential operational mutability approximates mutated by

induction on operations. Presume the subsystem analyzed for potential operational

mutability is a superset of that analyzed for mutation. The prerequisite capability for

each operation is represented as a collection of access edges in the direct access graph.

By case analysis, the mutability of these access edges directly capture the information

flow possible for this operation. However, potential operational mutability grows its

subsystem by all possible mutations, producing a superset of what was mutated. In
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the base case, nothing is mutated and the potential operational mutability is simply

direct mutability, which is a superset of the initial subsystem. Therefore, potential

operational mutability approximates mutated, and this result must extend to direct

operational mutability using previous results.

The remainder of this section describes how initial potential mutability and direct

operational mutability are related. Specifically, the goal is to demonstrate that initial

potential mutability for existing objects will never change and subsumes all direct op-

erational mutability. This analysis begins by examining the relationships of potential

access approximations, as shown in Figure 8.10. First, mutable is a maximal result

when applied to a maximal access graph, as shown in mutable maximal. That is, each

potential access graph has captured all potential information flow for existing objects

and operational mutability does not grow for operations that do not alter potential

access. Since mutable preserves subset, it also can’t be any smaller and must there-

fore be equal. Second, operational mutability grows precisely with each projection,

which occurs with each allocation. After a projection, operational mutability grows

only by the allocated object exactly when the allocator is in the previous mutable

set, otherwise it is unchanged. That is, in the case of allocate, operational mutability

must only grow by precisely the allocated object when the allocator is mutable.

These definitions rely upon the obj existed judgment that identifies those objects

either alive or dead in a system state. Objects that existed must be kept disjoint from

objects that are valid in a projection, as projecting to a previously existing object
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Figure 8.10 Relationships of mutable in potential access approximations.
Theorem AG project maximal:
∀ p, Seq.maxTransfer p →
∀ objs, Seq.ag objs spec p objs →
∀ N, RefSet.Subset objs N →
∀ o, ¬ RefSet.In o N →
∀ a p’, AG project a o p p’ →
Seq.maxTransfer p’.

Theorem mutable maximal:
∀ p, Seq.maxTransfer p →
∀ E m, mutable spec p E m →
∀ m’, mutable spec p m m’ →
RefSet.Subset m’ m.

Theorem mutable project not in eq:
∀ p, Seq.maxTransfer p →
∀ objs, Seq.ag objs spec p objs →
∀ N, RefSet.Subset objs N →
∀ E, RefSet.Subset E N →
∀ a, RefSet.In a N →
∀ o, ¬ RefSet.In o N →
∀ p’, AG project a o p p’ →
∀ m, mutable spec p E m → ¬ RefSet.In a m →
∀ m’, mutable spec p’ m m’ →
RefSet.eq m’ m.

Theorem mutable project in eq:
∀ p, Seq.maxTransfer p →
∀ objs, Seq.ag objs spec p objs →
∀ N, RefSet.Subset objs N →
∀ E, RefSet.Subset E N →
∀ a, RefSet.In a N →
∀ o, ¬ RefSet.In o N →
∀ p’, AG project a o p p’ →
∀ m, mutable spec p E m → RefSet.In a m →
∀ m’, mutable spec p’ m m’ →
∀ E’, RefSetProps.Add o m E’ →
RefSet.eq m’ E’.
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Figure 8.11 Initial potential mutability and Initial mutability are upper bounds on
mutation for existing objects.
Theorem mutable potAcc execute approx :
∀ opList S E Mx, mutable potAcc execute opList S E Mx →
∀ D, dirAcc spec S D →
∀ P, Seq.potAcc D P →
∀ Ex, obj existed Ex S →
RefSet.Subset E Ex →
∀ M, mutable spec P E M →

(RefSet.Subset (RefSet.inter Mx Ex) M ).
Theorem mutable approx mutated:
∀ opList S E m, mutated def E S opList m →
∀ D, dirAcc spec S D →
∀ P, Seq.potAcc D P →
∀ Ex, obj existed Ex S →
RefSet.Subset E Ex →
∀ M, mutable spec P E M →

(RefSet.Subset (RefSet.inter m Ex) M ).

violates existing information flows. In theorems not involving a system state, the set

of objects that existed is a free variable and projections are stated targeting references

outside this set. Although this pattern obliges the reader to remember hypotheses

not present in the theorem definition, the theorems are more general and easier to

apply.

Both potential mutability, and direct operational mutability only place an upper

bound on the information flow between existing objects, and cannot describe what

information flows will come to exist to new objects. Direct operational mutability

can only grow by the allocated object, such with the case of all potential access

approximating operations. Therefore, the direct operational mutability between new

objects cannot escalate the existing direct operational mutability, when restricted to
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existing objects, because these sets are disjoint. At each step, the direct operational

mutability restricted to the existing objects must remain constant. In the base case,

the direct operational mutability is identical to the potential mutability. Finally, by

transitivity, what is initially potentially mutable is an upper bound on all mutation

between existing objects.

This result enables analysis of a system state to statically determine an upper

bound on the future mutability of all subsystems present by simply examining the

initial potential mutability. Not only is potential access relevant to solving the safety

problem, but it also directly approximates potential mutation through the mutable

judgment. Both definitions are computable and decidable leading to a fully com-

putable and decidable result that can be applied to reason about security policies.

The ability to successfully implement a security policy is dependent on the ability

to model how changes in behavior impact the potential for information flow within

a system. The definition of mutable is simple and follows directly from permission-

based reasoning, yet its results form a persistent upper-bound on mutation through

the life of the system. By examining how restricting capabilities can restrict potential

mutability, it is possible to model the behavior of application-based security policies

such as confinement.
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Confinement

This chapter presents the confinement proof in SDM. It begins with a review of

the confinement test in capability-based systems and then translates these concepts

for an embedding into SDM as a post-condition. Next, it introduces a concept of fully

authorized access graph to define what is authorized by a set of capabilities in relation

to the confinement post-condition. It presents the proof that any subsystem satisfying

the confinement post-condition of SDM must be initially confined. It concludes by

arguing that, from previous results, confinement must persist through the life of the

system and can be used to verify constructor implementations in the future.
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9.1 Review

The purpose of the confinement test is to allow applications to restrict the po-

tential information flow of subsystems they construct or are constructed on their

behalf. The test is usually performed by a constructor on behalf of an application,

most likely before requesting the constructor to yield one or more new subsystems.

An application trusts the constructor to execute the test faithfully and to produce

a subsystem according to specification. Relying on a mutually trusted constructor

permits mutually suspicious applications to interact without being required to engage

in further trust.

As a constructive test, the confinement test may be performed by any application

in the system via the mechanism they use to initialize new subsystems. The con-

finement test is parameterized over a set of capabilities that authorize all outward

information flow. When the confinement test is successful, all outward information

flow is authorized by a capability in the authorized set, and no information flow may

occur if this set is empty. Viewed from the perspective of a constructor with a subsys-

tem image definition, the confinement test requires all capabilities in the subsystem

image to be 1) in the authorized set, 2) trivially non-mutating, 3) weak-only capabil-

ities, or 4) name a constructor confined under the same authorized set. If this is the

case, then the resulting subsystem is confined.
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Figure 9.1 Definition of confinement.
Definition authorized confined subsystem C E S :=
novel capabilities C E ∧
extant capabilities C S ∧
Sub.confined subsystem C E S.

Definition confined subsystem C E S :=
RefSet.For all (fun e ⇒ extant test S e ∧

constructive test E S e ∧
confinement test C S E e) E.

9.2 Embedding Confinement

Confinement as embedded into SDM contains a few alterations to the motivating

use case. SDM does not contain any notion of a constructor. Capabilities naming con-

structors appear as very permissive send capabilities. Without a trusted constructor

implementation, SDM assumes they could misbehave as any other entity. Modeling

and verifying the programs implementing a constructor is outside the scope of this

proof. Rather than model confinement as a pre-condition and subsequent guarantee,

SDM embeds the confinement test as a post-condition on the yield of the constructor

within the system. This confinement test may be applied to any system state, sub-

system, and authorized set, making it a more widely applicable result. However, this

definition requires greater care when describing the nature of the confinement test

and meaning of the confinement lemma, as there are many system states unreachable

by the constructor pattern which had been implicitly pruned.

The definition of confinement is given by authorized confined subsystem and be-

gins by restricting the authorized set of capabilities as part of analysis. During the
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Figure 9.2 Extant test.
Definition extant test S e := SC.is alive e S ∨ SC.is dead e S.

constructor pattern, an application asks for a confinement test before requesting the

yield of a constructor. In any system, all capabilities must name alive or dead or

objects according to extant capabilities. As the subsystem has not yet been allo-

cated, it is impossible for any capabilities to meaningfully name any element of the

new subsystem. Therefore, the capabilities forming the authorized set are not per-

mitted to target elements of the subsystem being confined and this is captured by

the novel capabilities judgment. When comparing subsystems composed of different

objects, the meaning of the authorized set must be constant over all fresh subsystems.

While this could be accomplished by reasoning about object state transitions, it does

not translate well to access graph reasoning. Requiring all authorized capabilities

to be external ensures that their meaning is preserved across access graph instances,

provided the rest of the system remains identical.

An extant subsystem is one which consists entirely of alive or dead objects. It

is impossible for any application to produce a subsystem containing unborn objects.

Further, admitting a query about a subsystem containing any unborn objects is al-

most entirely nonsensical as their parent, and relationship in the system, is currently

undefined. The confinement test requires an extant subsystem.

In addition to building a confined subsystem upon request, the constructor also

has obligations to its yield. The constructor guarantees that no external capabilities
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Figure 9.3 Constructive test.
Definition constructive test E S e :=
∀ o, ¬ RefSet.In o E → SC.is alive o S →
∀ i, option map1 (fun cap ⇒ ¬ Ref.eq e (Cap.target cap))
True (SC.getCap i o S).

Figure 9.4 Confinement test.
Definition confinement pred C S E (cap:Cap.t) :=
CapSet.In cap C ∨
RefSet.In (Cap.target cap) E ∨
ARSet.Empty (Cap.rights cap) ∨
¬ SC.is alive (Cap.target cap) S ∨
(ARSet.eq (Cap.rights cap) (ARSet.singleton wk)
∧ ¬ RefSet.In (Cap.target cap) E).

Definition confinement test C S E e:=
∀ i, option map1 (confinement pred C S E) True (SC.getCap i e S).

naming the yield exist when the yield starts executing, implemented by the careful

deletion of capabilities. The parent cannot even know if its request was successful until

the yield invokes the return capability1. At this point, no external influence can alter

the nature of the yield without its prior consent. We call such subsystems constructive,

and while the proof of these concepts is beyond the scope of this document, the

structural property is an essential part of confinement. Were any such capability

permitted to exist, it would fully undermine the result of the confinement test, as the

holder of such a capability could wield it to modify the information flow of the new

subsystem.

The confinement test is defined by confinement test in Figure 9.4. Each element of

a confined subsystem may only contain one of the following capabilities: 1) authorized
1Constructors do not abide by the standard call-return pattern. See Section 2.7
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capabilities 2) trivially non-mutating capabilities 3) weak capabilities naming external

objects 4) capabilities naming an internal object. This test differs from the canonical

confinement test in two fundamental ways. First, it permits any internal structure

to exist with any internal access. Intuitively, the confinement test only examines

the constructed subsystem at its perimeter, and therefore is not concerned with how

the subsystem is constructed internally. Further, ignoring these capabilities would

require the subsystem to consist of fully disjoint objects, a property that will not be

preserved through analysis of the confinement property. It is therefore critical that

these capabilities are included as part of the confinement post-condition.

The case admitting a recursive constructor capability is missing from the SDM

confinement test. As previously mentioned, SDM does not have an internal notion

of constructors nor does it trust them to behave correctly. Therefore, the goal is

to describe the pattern of confinement while seeking to have as few assumptions as

possible. The recursively confined constructor is a structural guarantee that subse-

quently constructed subsystems are also confined. When verifying implementations

are faithful in future efforts, the fixpoint of the constructor operation over the present

confinement lemma should satisfy the inductive requirement to verify the constructor

behavior.
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Figure 9.5 Fully authorized subsystems
Definition exists cap edge tgt rgt C :=

(CapSet.Exists (cap edge tgt rgt) C ).
Definition ag remainder I E :=
AG.filter (fun edge ⇒ true bool of sumbool (excluded edge dec E edge)) I.

Definition ag authorized src C src acc := CapSet.fold (ag add cap src) C acc.
Definition ag authorized E C := RefSet.fold (ag authorized src C ) E AG.empty.
Definition ag fully authorized I E C :=
AG.union
(AG.union (Seq.complete ag E) (ag authorized E C ))
(ag remainder I E).

9.3 Fully Authorized Subsystems

To verify that no subsystem satisfying the confinement test can ever exceed the

mutability provided by the authorized set, SDM must first provide a specification for

precisely what is authorized by a set of capabilities. Such a judgment must consider

all possible subsystem configurations authorized by this set of capabilities. Rather

than quantifying over all fully authorized subsystems directly, the definition uses the

system’s direct access graph to generalize the problem. The fully authorized access

graph is composed by the union of three disjoint access graphs. It contains the

complete access graph of the confined subsystem to encompass any possible internal

structure. Additionally, each object in the subsystem is given all edges defined by the

capabilities in the authorized set. Finally, all edges not mentioning elements in the

confined subsystem are preserved, also called the access graph remainder.

Note that the definition of ag authorized does not inspect any system state for

object liveness. This should not be taken to mean that discussing access graphs of non-
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living objects is pertinent. Capabilities within a subsystem passing the confinement

test that name dead objects will be pruned in the direct access graph and are not

analyzed here. However, because the fully authorized access graph is an upper bound

on authority, their inclusion does not impact the confinement result. This is covered

in greater detail as future work in Section 11.2.3.

9.4 The Confinement Proof

To validate the confinement test, SDM demonstrates that a subsystem passing the

confinement test will remain confined for the life of the system. Chapter 8 verified that

permissions and mutation are attenuating over the life of the system; all that remains

is to demonstrate that the confinement test produces an initially confined subsystem.

This proof proceeds in two phases. The first proof phase demonstrates that mutability

of any subsystem passing the confinement test has a subset of the mutability of the

fully authorized subsystem of the same shape. The shape of a subsystem is the set of

object references of which it is composed. The second stage of this proof generalizes

this specific result to include all subsystem shapes composed of free references.

Figure 9.6 illustrates the relationships used to describe how the first phase of this

proof is verified. S is the System State in which the subsystem named by set E

passes the confinement test over authorized set C . The top row contains the familiar

direct access and potential access relationships. D is the direct access graph of S ,
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Figure 9.6 Visualization of the confinement lemma
Given (ag fully authorized spec I C E A) and (confined subsystem S C E),

S D Pd Md

I I’ Pi Mi

A Pa Ma

dirAcc potAcc (mutable E)

⊆ ⊆ ⊆

potTransfer potAcc (mutable E)

(ag simply confined E) (ag confined E) (ag confined E) =

potAcc (mutable E)

Pd the Potential Access of D, and Md is what is mutable by E in Pd. The bottom

row contains the same relationships without an initial system state. A is the fully

authorized access graph, Pa is its potential access, and Ma is the similarly computed

mutable set.

The fully authorized access graph is defined in terms of the direct access graph of

the system state of subsystem E . This preserves all relationships defined in the system

state which are external to subsystem E . Therefore, no access edges mentioning

subsystem E are used in the construction of the fully authorized access graph, as

they are discarded by the remainder function. This will be crucial in second phase of

the confinement proof where subsystem E can vary.

The middle row relates these sets of access graphs and their mutability. All of the

relations in this row of the diagram have the same structure defined by subset eq pred.

For access graphs A and B and proposition P, (subset eq pred P A B) requires A

to be a subset of B and B to be a subset of A for all elements satisfying (P B A).
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Figure 9.7 Simple confinement for access graphs.
Definition subset eq ag simply confined E A B :=
subset eq pred (fun ⇒ ag simply confined E) A B.

Definition ag simply confined E x :=
¬ (Ref.eq (Edges.source x) (Edges.target x)) ∧
¬ (RefSet.In (Edges.source x) E ∧
¬ RefSet.In (Edges.target x) E ∧
AccessRight.eq (Edges.right x) wk).

Definition subset eq pred P A B :=
AG.Subset A B ∧ subset pred (fun B A ⇒ P A B) B A.

Definition subset pred P A B := ∀ x, P A B x → AG.In x A → AG.In x B.

Figure 9.8 Confinement for access graphs.
Definition subset eq ag confined E A B:= subset eq pred (fun P ⇒ (ag confined
E P)) A B.
Definition ag confined E P x :=
¬ (Ref.eq (Edges.source x) (Edges.target x)) ∧
¬ (AccessRight.eq (Edges.right x) wk ∧

( ag ex flow E P (Edges.source x) ∨ ¬ ag ex flow E P (Edges.target x))).
Definition ag ex flow E A o := RefSet.Exists ((fun e ⇒ ag flow A e o)) E.
Inductive ag flow P a b : Prop :=
| ag flow refl : Ref.eq a b → ag flow P a b
| ag flow tx : AG.In (Edges.mkEdge a b tx) P → ag flow P a b
| ag flow wr : AG.In (Edges.mkEdge a b wr) P → ag flow P a b
| ag flow wk : AG.In (Edges.mkEdge b a wk) P → ag flow P a b
| ag flow rd : AG.In (Edges.mkEdge b a rd) P → ag flow P a b.

Theorem subset eq ag simply confined ag confined : ∀ E A B,
subset eq ag simply confined E A B → subset eq ag confined E A B.
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Figure 9.9 Confined access graphs have the same mutability.
Theorem subset eq ag confined mutable:
∀ P P’ E, subset eq ag confined E P’ P →
∀ M, mutable spec P E M →
∀ M’, mutable spec P’ E M’ →
RefSet.Equal M M’.

This latter relationship is defined by subset pred. The two predicates used are simple

confinement for access graphs and confinement for access graphs. Simple confinement

for access graphs, defined by ag simply confined, admits the additional edges in the

confinement test that are not in the authorized set of capabilities. It selects all edges

that do not have identical source and target and are not external weak edges, allowing

these edges to exist in the middle row of Figure 9.6. The predicate ag confined

defines confinement for access graphs. This relation is similar to ag simply confined

but examines an access graph, presumed to be maximal, that will be used to query

potential information flow. It relies on ag ex flow to provide a point-wise existence

test on the mutability of subsystem E in access graph P, and then extend simple

confinement for access graphs for full confinement by altering the external weak case

to be weak flows into the subsystem. Simple confinement for access graphs is used

as the initial relation when no potential access graph is available to query while

confinement for access graphs is used to compare the remaining intermediate access

graphs.

Given these properties, it is easiest to work from right to left. Figure 9.9 demon-

strates that when subsystem E is confined to Pa in Pi, E has the same mutability in
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Figure 9.10 Confinement is preserved from a maximal access graph.
Theorem subset eq ag confined potTransfer max :
∀ B D, Seq.potTransfer B D →
∀ P, Seq.maxPotTransfer P →
∀ E, subset eq ag confined E P B →
subset eq ag confined E P D.

Pi and Pa. This is proved by induction on the set difference of Pi and Pa. Consider

the nature of any edge x in Pi that is not in Pa. Either the source and target of x

are equivalent and cannot possibly alter the mutability predicate, or x admits a new

weak edge. To satisfy confinement for access graphs, the source of x is mutable by E

in Pa but the target is not; information in E is only authorized to flow to the source

of x and not its target. Since a weak edge only allows allows information to flow in

the other direction, from the target of x to its source, it must be the case that the

target is also not mutable by E in Pi.

The proof that a subsystem remains confined over any maximal access graph for all

access graphs reachable via potential transfer is shown in Figure 9.10. It is verified by

induction over the potential transfer relation. Confinement for access graphs admits

cyclic edges, or weak edges with a mutable source and a non-mutable target. When all

of these conditions hold for all edges except the one under examination by induction,

it becomes impossible to add any other type of edge. Weak flows can only beget other

weak flows. Having restricted them to appropriate targets, they are only allowed to

expand flows into E , but never outward. Cyclic edges require a pre-existing edge to

cause an external flow. But the only pre-existing edges are either impotently cyclic
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Figure 9.11 Initial simple confinement produces potential confinement.
Theorem dirAcc confined :
∀ E D D’, subset eq ag simply confined E D D’ →
∀ P, Seq.potAcc D P →
∀ P’, Seq.potAcc D’ P’ →
∀ M, mutable spec P E M →
∀ M’, mutable spec P’ E M’ →
RefSet.eq M M’.

Figure 9.12 Confinement for subsystems of the same shape.
Theorem confined subsystem mutable:
∀ C E S, Sub.confined subsystem C E S →
∀ D, dirAcc spec S D →
∀ A, ag fully authorized spec D E C A →
∀ P, Seq.potAcc D P →
∀ P’, Seq.potAcc A P’ →
∀ M, mutable spec P E M →
∀ M’, mutable spec P’ E M’ →
RefSet.Subset M M’.

or are weak flows into E . All other edges must have been pre-existing.

Figure 9.11 verifies that given Pa and Pi as the potential access of A and I ,

respectively, if E is simply confined to A in I , then E is confined to Pa in Pi. By

definition A is a subset of I , so the least upper bound of potential transfers will find

the smallest access graph I’ that is a superset of Pa and is reachable by potential

transfers from I . Adding any the same access edges to both I and A preserves

simple confinement for access graphs, and consequently preserves simple confinement

for access graphs between Pa and I’ . Because simple confinement for access graphs

always satisfies confinement for access graphs, it must also be the case that E is

confined to Pa in I’ . All that remains is to choose an I .

The simple value used for I is D ∪ A, where A is the fully authorized access graph.

156



CHAPTER 9. CONFINEMENT

Figure 9.13 Final confinement proof.
Theorem confined subsystem mutability subset any fully authroized mutability:
∀ E, ¬ RefSet.Empty E →
∀ C S, authorized confined subsystem C E S →
∀ D, dirAcc spec S D →
∀ Ex, obj existed Ex S →
∀ E’, ¬ RefSet.Empty E’ →
novel capabilities C E’ →
RefSet.Empty (RefSet.inter E’ (RefSet.diff Ex E)) →
∀ R, ag remainder spec D E R →
∀ A’, ag fully authorized spec R E’ C A’ →
∀ P, Seq.potAcc D P →
∀ P’, Seq.potAcc A’ P’ →
∀ M, mutable spec P E M →
∀ M’, mutable spec P’ E’ M’ →
RefSet.Subset (RefSet.diff M E) (RefSet.diff M’ E’).

This trivially fulfills the subset requirement and also satisfies simple confinement

for access graphs as well. Any access edge that could pass the confinement test is

either in the fully authorized access graph or is excluded from comparison by simple

confinement for access graphs.

Placing these components together in Figure 9.12 demonstrates that a subsystem

passing the confinement test has less mutability than is expressed by the fully autho-

rized access graph for subsystems of the same shape. The mutability of a subsystem

in a fully authorized access graph does not vary with the elements of that subsys-

tem, provided the new subsystem consists only of non-extant objects or elements of

the previous subsystem. Any two disjoint subsystems with novel elements have the

same mutability in their fully authorized access graph, with respect to the rest of

the system. Extending a subsystem with fresh object references preserves mutability
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between fully authorized access graph, also with respect to the rest of the system.

By case analysis and transitivity, these results are combined for the final confinement

proof in Figure 9.13 demonstrating that all confined subsystems of fresh elements

have the same mutability.

This result validates the confinement test of the constructor pattern. When a

subsystem is confined in SDM, the initial potential mutability of the yield must be

confined by the authorized set. Because initial potential mutability is an upper bound

on future mutability, the subsystem must be confined for the life of the system. To

verify the correctness of a constructor implementation, it suffices to demonstrate that

when the constructor declares a subsystem image confined, each yield will pass the

confinement test in SDM. If no constructor capabilities are present in the subsystem

image, this should be case analysis on the constructor precondition producing a con-

fined yield. If constructor capabilities are present and recursively pass the constructor

precondition, then the yield of this constructor produces a confined yield by induction.

Therefore, a correctly implemented constructor produces confined subsystems
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Applications of SDM

This chapter discusses various applications of SDM. It begins by outlining some

specific systems that satisfy SDM including KeyKOS, EROS, Coyotos, and seL4.

Next, it approaches the general domains applicable to SDM and then how to evaluate

them. Evaluation is broken into four parts: correspondence with the operational

semantics, correspondence for constructors, issues arising from deletion, and working

in other logics.

10.1 Systems Satisfying SDM

SDM models the behavior of many different capability-based systems. While

specifically targeting the behavior of Coyotos, SDM is also applicable to its predeces-

sors, KeyKOS and EROS, and the seL4 microkernel. This section discusses some of
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the specific systems to which SDM applies. It also discusses the potential for formally

connecting the model to Coyotos and seL4.

10.1.1 KeyKOS and EROS

As previously mentioned, SDM can be applied to KeyKOS and EROS. The system

states and atomic actions of KeyKOS and EROS can be modeled by the system

state and operational semantics of SDM with little alteration. Some aspects of these

systems can be modeled using slightly more permissive embeddings in SDM, but these

will not impact the confinement proof.

Both KeyKOS and EROS maintain the separation of capabilities and data using a

Harvard-style partition. Main memory is divided into Nodes to hold capabilities and

Pages to hold regular data. Instead of using access rights, the permissions of both

KeyKOS and EROS use access restrictions. Using the set difference from a maximally

permissive set of access rights in SDM will capture these permissions.

KeyKOS and EROS are atomic-action microkernels and this facilitates correspon-

dence with SDM. In an atomic-action kernel, a thread that has entered the kernel

does not wait with resources held. Instead, every kernel operation either acquires

resources necessary for completion or unwinds its transaction completely to permit

other operations to succeed. SDM only models observable system state and permits

internal state to be hidden by equivalence relations. Consequently, transactions that

are rolled back do not alter the observable state of the system and do not need to be
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modeled. At the moment an operation succeeds, it is possible to examine the state of

the system and determine a corresponding sequence of SDM operations, many with

only a single operation. System actions involving multiple SDM operations include

the address space traversal and MMU updates.

Address spaces in KeyKOS and EROS are constructed hierarchically using Nodes

for page directories. When processing an address fault, both systems walk these

structures to update the hardware mapping structures. A traversal operation can

not be modeled by a single operation in SDM, but can be modeled by a sequence

of operations. The subject accessing memory can be modeled by simply performing

the address walk of its own accord. This embedding considers a process to have

sufficient access to its address space to perform the traversal, which may cause its

access to appear escalated in SDM. However, this escalation occurs when mapping

these permissions to SDM access rights and preserves safety and confinement.

Atomic actions in KeyKOS and EROS have the property that they are non-

interfering. That is, two atomic actions executing simultaneously result in a state

reachable by some serialization of actions. This serializability simplifies reasoning

about these operations in SDM, as SDM does not contain support for concurrent

execution.
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10.1.2 Coyotos

Coyotos shares many similarities to its predecessors and applying SDM to Coyotos

follows the same paradigm as with KeyKOS and EROS. One notable exception is how

Coyotos partitions capabilities and data. The development of Coyotos includes con-

siderations for embedding a high-level specification, and transcribing its executable

software, into a proof assistant. As such, the potential to formally apply SDM to

Coyotos also exists.

Unlike KeyKOS and EROS, Coyotos employs type-based separation of capabil-

ities and data. Data-only Pages and Capability-only CapPages are mapped into a

single process address space. This facilitates better software design and has a posi-

tive influence on cache locality. Some system objects contain both capabilities and

data. Objects containing any capabilities are never mapped in such a way that an

application may access or modify them without supervisor mediation. By mediating

requests to these objects, Coyotos preserves a partition between data and capabilities.

One of the design goals of Coyotos was the possibility of transcription into a

safe systems programming language. Once transcribed, this implementation could

be embedded into a proof assistant and verified against a high-level specification of

the Coyotos interface. Satisfying the operational semantics of SDM could then be

achieved from such a high-level specification.

BitC is a functional, type and memory safe language with precise operational

semantics for managing systems problems. [SDS08] The precision offered by BitC
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is intended to permit the language to be embedded for mechanical verification and

to allow BitC compilers to assist software verification engines to discharge proofs

about BitC programs. From early in its development, Coyotos has been developed

to be transcribed into BitC to enable the construction and verification of a high-level

specification. Such a high-level specification should correspond to the operational

semantics of SDM.

Verifying the Coyotos Constructor should follow a similar approach to that used

with EROS. The Coyotos constructor follows the same model as the EROS construc-

tor in that it admits recursively confined constructors but does not parameterize

confinement with an authorized set. The major issue impacting the recursive con-

finement case is to ensure constructors are authentic. Verifying this property may be

difficult if cryptographic identifiers are used, as is the case in Coyotos, as it is not

possible to totally prohibit collision. Provided attestation is established, the existing

post-condition should serve as the foundation of an inductive step to verify a recursive

constructor implementation.

10.1.3 seL4

The goal of the L4.verified [Kle10] project is to produce a trustworthy, mechan-

ically verified L4 microkernel [Lie96]. The seL4 microkernel [EKK06] is the imple-

mentation modeled and inspected by L4.verified.

The underlying seL4 microkernel is a capability-based system. Capabilities in

163



CHAPTER 10. APPLICATIONS OF SDM

seL4 follow a strict partitioning similar to EROS and KeyKOS from Chapter 2. Not

only are capabilities stored in protected structures, but they are named by a separate

address space. The thread control block for each thread in seL4 contains separate

capabilities naming a virtual data address space and a capability address space. In

contrast, Coyotos Pages contain only data and CapPages contain only capabilities,

though the two are intermingled in a single address space. Attempts to access Cap-

Pages as data or Pages as capabilities will result in a fault. SDM does not distinguish

these semantics and can be used to describe either structure.

The mechanics of memory management via capabilities in seL4 distinguishes it

from the capability-based systems discussed in Chapter 2. All memory management

interfaces are implemented by the seL4 kernel. [TST14] When seL4 starts, all unal-

located memory is represented by a collection of Untyped Memory objects. Invoking

a capability to an Untyped Memory object permits it to be be retyped into smaller

Untyped Memory objects or into other kernel objects. Both the original untyped

memory object and the new objects are valid after a retype operation along with their

capabilities.

The kernel maintains a capability derivation tree, or CDT, to track the parent-

child relationships. Reclaiming memory involves invoking a revoke operation on the

original untyped memory object, invalidating all child capabilities. This structure

is similar to hierarchical bank structure provided by the Space Bank domain. As

a practical matter, the CDT is implemented as a linked-list structure represented
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Figure 10.1 Embedding the CDT into SDM.
If the capability held by B is the child of the capability held by A:

A B A B

O O cdt1 cdt2

{Read, W rite}

1
{Read}

1
{tx,wr}

1

{rd,wr}1

{tx,wr}

1

{rd} 1

within the capabilities themselves. This places an implementation-specific limit on

the depth of the CDT, which is presently 128.

The seL4 kernel extends the CDT past the memory-management interface. When-

ever a capability is copied, it can be placed in either a sibling relationship or in a

child relationship with the original. The copy operation (sometimes called imitate)

creates a sibling capability while the mint operation (sometimes called grant) creates

a child capability. Whenever a capability is copied, it is possible to restrict the set

of permissions on it. Child capabilities created in this way are recursively revoked in

the same manner as untyped memory.

Modeling seL4 in SDM can be accomplished by modeling the nodes of the CDT

as subjects with known behavior. In the present model, CDT nodes would appear as

very permissive subjects connected by tx capabilities. To actually model seL4, SDM

will need some refinement.

Refining SDM to faithfully model seL4 requires embedding a CDT node as a type

of object. As discussed in Chapter 11, this can be performed by adding additional
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labels and permissions to the system state or by directly modeling send behavior.

Because SDM embeds the memory manager into the model, the only portions of the

CDT which must be modeled do not involve allocation or deletion. A CDT node is a

proxy object and will respond to 3 different messages each requiring the tx permission:

move, mint, and invoke. The invoke message requests that the CDT node invoke its

internal capability in some manner. The move message requests that the CDT node

return a capability to a new CDT node with its present internal state. The mint

message requests that the CDT node create a new CDT node whose target is this

CDT node, with possible restrictions.

These alterations to SDM capture the basic capability operations of seL4. All

seL4 capabilities are represented by a capability to a CDT node. When a new object

is allocated in seL4, it is allocated alongside a CDT node that directly points to it.

The move and mint operations are performed as previously described. Note that the

wr permission is used to describe the authority to delete the CDT node, but does not

permit a store operation on a CDT object.

The constructor model remains largely unchanged. This test is slightly more

involved as the constructor does not need to consider local CDT nodes as part of

the confinement test, only the authority they confer. The ability to delete CDT

nodes presently in the constructor will not be passed to the yield and their deletion

only causes data to move into the yield excluding them from the constraints for

confinement. With this more complex test, verifying a correct implementation will
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prove more difficult, but should be manageable.

10.2 Generally Applying SDM

This section presents the general domains where SDM is applicable and how to

evaluate them. The evaluation discussion begins examining how to find correspon-

dence between a system and the SDM operational semantics. Evaluating the con-

finement test of a constructor is presented next with an emphasis on the recursive

confinement case. The third portion presents information flow issues arising from

deletion and how to reason about them in SDM. This section concludes with how to

evaluate SDM in other logics.

10.2.1 Applicable Domains

SDM can be applied to most protected capability-based operating systems. There

are three critical requirements for satisfying SDM. Every system operation must be

authorized by capability or modeled as though it were. No system operation may

provide ambient authority; all authority must be capability-protected. There must

not be any rights-amplifying operations that can not be simulated as a sequence of

non-amplifying operations.

SDM incorporates specific features for reasoning about operating systems and

their security-enforcing applications. The system model consists of small-step seman-
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tic operations intended to closely correspond with system-calls. They are presented

simply in three parts: a pre-condition, a state transition, and an upper-bound on in-

formation flow. The use of high-order abstract syntax and monadic transformations

has been purposely avoided in favor of clarity. The system model does not rely on

a definition of confinement for correctness. Instead, confinement is a non-primitive

property constructed from the semantics of the system. Finally, SDM provides in-

dices to facilitate future proofs to accurately correspond model operations with the

behavior of security-enforcing applications.

SDM can also model capability-based systems where part or all of the system

protection mechanism is implemented in hardware. IBM’s System/38 and AS/400

architectures were commercially available systems that supported capability-based

addressing. [IBM81] The i432 processor implemented access descriptors (ADs) which

simultaneously named a memory segment and contained permissions to control ac-

cess. [Int83] Because no segment could be accessed without an access descriptor, ADs

were hardware-implemented capabilities. The BiiN CPU architecture refined access

descriptors as tagged pointers with permissions to system objects. [Bii88] The access

control behavior of BiiN system objects could be defined via a hardware descriptor

allowing the architecture to provide intra-application capabilities with fast function

calls. The CHERI processor provides capability-based protection via fine-grain seg-

ment descriptors compatible with C language pointers. [WWN+15] When coupled

with a capability-aware compiler, CHERI minimizes the changes to application code
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that are necessary to implement a capability-aware application.

Architectures containing explicit support for capabilities have been used to pro-

duce operating systems that are not capability-based. The OS/400 operating system

ran on the System/38 and AS/400, but does not provide capability-based protection

to applications. [Sol96] Unix variants have also been ported and run on many of these

processors and offer capability-based protection to varying degrees. The BiiN archi-

tecture supported its own Unix variant and CHERI includes a hybrid FreeBSD im-

plementation that can compose traditional MMU-protected and capability-protected

software libraries. Hardware support for capability-based systems is not sufficient

to satisfy SDM. All actions performed by the operating system must correspond to

the operational semantics of SDM. Therefore, SDM is only applicable when these

architectures are supporting a pure capability-based operating system.

Applying SDM to language run-times with type and memory safety is also possible.

In this arena, function closures and threads correspond to active objects in SDM while

records and cells correspond to the passive objects. Capability representations vary

in these systems and range from those similar to Coyotos, presented in Chapter 2, to

memory references with safe type information. When using typed memory references,

these capabilities correspond either to rd, wr capabilities for cells, or tx capabilities

for closures.

A problem facing many type and memory safe language run-times is that they

often encode ambient authority. Access to globally shared state remains typical in
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many otherwise safe languages. Reflection APIs are also detrimental because they

can be used to escalate authority by accessing resources without a safe function

pointer. These operations are difficult or impossible to model in SDM and eliminate

confinement. Type and memory safe language run-times that do correspond to SDM

include E [Mil06], Caja [caj], and W7 Scheme [Ree96].

10.2.2 Satisfying the Semantics

Correspondence with the operational semantics is the primary challenge when

applying SDM to any system. For most systems, correspondence proofs with SDM

will largely occur by demonstrating that the permissions of the examined system

are subsumed by the access rights in SDM. Access rights in SDM are intended to

assist with such subsumption proofs. The rd and wr access rights confer authority

to read or write both data or capabilities. Taken together, these permissions confer

universal authority over an object as wk access rights are a sub-type of rd and the

mechanics of tx can be simulated. Systems with separate permissions or object types

distinguishing capabilities and data operations can be fit to SDM by using the more

powerful permissions, and consequently operations. The tx access right subsumes

most known IPC and RPC mechanisms by optionally fabricating a reply capability

and authorizing message transfers containing both capabilities and data.

When simple correspondence with access rights is insufficient to capture all sys-

tem operations, the next strategy employed should be to find correspondence between
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system operations and a sequence of SDM operations. Developers are not obliged to

demonstrate that all SDM operations can be produced by the examined system, but

only that those sequences produced are subsumed by SDM operations. Because SDM

assures any sequence of model operations preserves safety and confinement, corre-

spondence with examined systems may interleave model operation sequences corre-

sponding to system operations. This permits SDM to model long-running, concurrent

operations composed of atomic actions that each correspond to a SDM operation. All

such correspondence can be performed by predicating valid operation sequences for

the examined system.

The safety and confinement theorems verify upper-bounds on permissions and

information flow and remain so for systems satisfying SDM. Because potAcc analyzes

a system using access rights instead of operations, the interpretation of potential

access and safety change with how an examined system corresponds with SDM. For

potential access to remain an upper-bound on future permissions, the permissions

present in an examined system must confer less authority than the access rights of

SDM. This is sufficient even when refinements subsumed by access rights are not

recoverable.

10.2.3 Constructors and Recursive Confinement

Evaluating constructors for direct correspondence with SDM requires checking a

modest set of properties. To preserve the integrity of all subsystem image tests before
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instantiating its yield, a constructor should not permit alterations to its subsystem

image. Given this constraint, the constructor should implement the confinement test

as a pre-condition that produces a yield satisfying the confinement test of SDM when

affirmative. Ideally, verifying that the constructor correctly embeds the confinement

test is simple iteration and case analysis over capabilities as described by the con-

finement test in SDM. The last constraint of a constructor is that it should delete

the capabilities naming its yield after initialization. Whether these capabilities are

deleted immediately after invoking its yield or lazily during the next yield request is

irrelevant. A constructor with these properties successfully implements confinement

as modeled by SDM.

The confinement test described in Chapter 2 admits recursively confined construc-

tors as part of a confined subsystem image. The usefulness of this case is motivated

by a few examples. A confined subsystem equipped with confined constructors can

allocate and free different internal subsystems as needed and with further constrained

authorized sets. Because the constructor also provides a trusted attestation mech-

anism, a confined subsystem may be required to provide its constructors to other

subsystems. Without the recursive case, all confined subsystems would be required

to reinstantiate internal subsystems without the assistance of constructors and attes-

tation.

For a constructor to meaningfully query the confinement of a capability to another

constructor, it must first establish that the capability does name another construc-
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tor. The constructor is also responsible for attesting its yield and all constructors are

equipped with the system meta-constructor which yields and verifies constructors. A

constructor performing the confinement test may safely rely on the result of a confine-

ment test performed by an authentic constructor. Because constructor capabilities

can not be placed into a subsystem image before it is sealed, these invocations are

therefore free of cycles and the recursive confinement test is terminating. Verifying the

recursive case requires verifying the attestation mechanism and checking the missing

condition of the confinement test. As mentioned in Chapter 2, the KeyKOS Factory

implements the confinement test with recursive constructors and an authorized set

while EROS and Coyotos Constructors implement variant with recursive constructors

and an empty authorized set.

The recursive constructor case is not directly implemented by SDM for a few rea-

sons. One of the goals of SDM is to avoid embedding any notion of trusted subsystems

in the model. However, embedding the recursive constructor case requires embedding

which subsystems are trusted constructors. Establishing both the confinement and

attestation interfaces for constructors and tracking their behavior sufficiently burdens

an already complex model. Therefore, SDM eschews identifying constructors or man-

aging subsystem behavior in favor of generalizing confinement as a post-condition on

the yield. In future efforts, the confinement post-condition can be inductively invoked

to describe how recursively confined subsystems evolve thereby handling the recursive

case.
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10.2.4 Destruction and Information Flow

Access-control meta-data is frequently not subject to a security policy and, con-

sequently, may be used as a method for unconstrained information transfer. While

many access-control mechanisms prevent unintentional data flow encoded in meta-

data between existing domains, the creation (or allocation) and destruction of new

domains is often overlooked. Applications with the authority to allocate or destroy a

system resource effectively have the ability to transmit information to all applications

capable of determining whether that resource exists. This section describes some of

the problems and solutions to this issue and how they apply to SDM.

Section 2.2 discussed the problem of ambient authority in systems. The example

therein illustrated how systems using access control lists provide ambient authority

via the “owner” permission. A domain with the “owner” permission to an owned

domain can create relationships between the owned domain and any other domain,

even when the other domain has no pre-existing relationship to the owner. What the

example does not describe is that many of these systems presume that the allocator

of a new domain or system resource should have the “owner” permission by default.

Coupled with the previous example, this behavior effectively grants total, system-wide

authority to any domain with the ability to allocate a system resource.

A simple solution to prevent unforeseen information flow via allocation and de-

struction is to prohibit them entirely. Safety and information flow analysis become

tractable in a static system with a fixed number of resources, especially when the
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“owner” permission is removed. While this strategy may work for fixed systems,

it often fails when applied to general-purpose computing. All use-cases of a general-

purpose system are not known in advance and these systems are therefore obligated to

repurpose their resources for different tasks in different security contexts. Therefore,

applying this strategy to SDM is not an interesting problem.

The solution presently supported by SDM is to prevent all applications from ob-

serving the state of other resources’ existence. By requiring all operation precon-

ditions to name alive objects, SDM provides no mechanism for witnessing the de-

struction of an object. The system must not generate any error messages and must

produce valid responses for each system call. While this solution produces a reason-

able theoretical approach, it is not practical for most systems.

Capability-based systems can safely generate error responses without violating the

intended information flow constraints for their permissions. They accomplish this by

ensuring that the information flow that may arise from observing the existence of an

object is intentionally authorized by a capability. A simpler way to state this is that,

absent specific permissions for creation, destruction, and observation, all information

flow occurring from these acts could have occurred via some other operation that does

not alter object existence. If this is the case, then leveraging a system error response

is simply an inefficient encoding mechanism for approved transmissions.

For example, in systems where object existence is observable, consider the follow-

ing three constraints. 1) No capabilities may name objects which have never existed,
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preventing their observation. 2) The ability to destroy an object is considered at

least an outward information flow, or a “write,” to the destroyed object, though it

may also authorize inward information flow, or “reading.” 3) Invoking capabilities

authorizing only outward information flow, or “write-only” permission, must not be

able to observe an error. Given these constraints, the system may safely generate

error messages when a capability authorizing any inward information flow, or any

“read” permission, is invoked. The only way for data to flow through destruction is

to “write” a half-bit by destroying the object and then “read” it via error message

later. Because the capabilities for doing so already authorize information flow in these

directions, the destruction and error receipt are authorized.

This structure is more difficult to satisfy than it seems. The seL4 take-grant

models [Elk10] [Boy09] do not require capabilities with any access rights to remove

capabilities from other objects or destroy other objects. Consequently, these mod-

els only constrain information flow occurring via SysRead and SysWrite operations,

analogous to the read and write operations in SDM. However, they do not constrain

information flow using invokable capabilities as a transmission mechanism. Because

object deletion was axiomatized very generally, the model places no upper bound on

which objects are touched when an object is destroyed. While seL4 is not itself this

unconstrained, the model admits the possibility that a deletion writes information to

every object in the system. Section 13.4.1 covers this problem in more detail.

Chapter 11 proposes an update to SDM to align more closely with systems which
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fit the aforementioned pattern. The SDM operational semantics already capture the

three constraints; SDM is only missing the ability for subjects to observe object state.

The proposal adds an operation to explicitly observe object existence, isAlive, which

requires the rd access right to perform. Exceptions can then be handled by electing to

perform the isAlive operation, and all information flow is already authorized by the

rd access right. Because SDM satisfies the necessary constraints and the information

flow present in the isAlive operation is already present in the system, adding this

operation to SDM will not impact the confinement result.

Systems like Coyotos do not have “write-only” capabilities; a capability autho-

rizing “writing” it must also authorize some form of “reading.” Because object de-

struction is a half-bit of information that occurs only once, error messages for invalid

capabilities convey no additional information. Therefore, Coyotos may safely deliver

error messages for all capability invocations. Simpler capability-based systems and

language run-times do not distinguish between read-write and read-only capabilities,

trivially satisfying this pattern.

10.2.5 Alternative Logics

SDM is constructed in Coq, a higher-order intuitionistic logic, to be as strong and

widely applicable as possible. Intuitionistic logics are founded upon fewer axioms

and consequently have stronger proofs than classical logics. Therefore, statements in

higher-order intuitionistic logic are also statements in higher-order classical predicate
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logic. For example, re-stating and satisfying SDM in Isabelle/HOL [NWP02] should

be sufficient to justify safety and confinement. However, to the author’s knowledge, no

automated tool exists to translate theorems or proofs between systems. Unlike Coq,

some intuitionistic logics do not support impredicative propositions, making general

translation difficult. Fortunately, SDM includes equivalence relations between all

predicative boolean decision procedures and their impredicative definitions providing

proofs that equivalent predicative theorems exist. Whether this constitutes sufficient

information to automatically construct these proofs in an impredicative logic is a

separate problem.

SDM is applicable to more systems than are presented here. Although this chapter

gives specific consideration to KeyKOS, EROS, Coyotos, and seL4, it is intended to

cover diverse capability-based systems and language run-times with type and mem-

ory safety. Applying SDM to these systems involves finding a correspondence for

their operational semantics and their constructors while avoiding pitfalls regarding

information flow via deletion. SDM is also built generally in an intuitive logic to be

applicable in other proof assistants.
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Future Work

This chapter presents some opportunities for improvements and extensions to

SDM. Performance has been a relevant issue throughout this effort and, although it

is not relevant to confidence and therefore is not presently addressed, there are some

enhancements that must be performed before SDM may be realistically extended.

Like any software project, there are also some areas where the proof is poorly struc-

tured in ways which may undermine confidence. Although they do not impact the

general result, they should be refactored to make theorems more readily understood.

The last section discusses some of the extensions SDM is eventually intended to sup-

port.
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11.1 Improve Performance

The SDM proof presently takes over a week to compile on a single-threaded pro-

cessor and uses over 12 GB of RAM. The Make environment permits up to three jobs

to run simultaneously, each requiring a core and 12 GB of RAM, allowing a machine

with over 42 GB of RAM to compile much faster. As discussed in Section 4.3, SDM

depends on the FSet libraries and therefore uses module functors and signatures as

an abstraction mechanism. Unfortunately, as these module signatures grow in com-

plexity, the obligations of the type checker grow exponentially. Any future effort will

need to address this issue before extending the model. This section focuses on two

improvements that will help with this problem.

11.1.1 From Modules to Typeclasses

The use of the Coq module system has the greatest impact on compilation per-

formance in SDM. Modules in Coq are generative and use subtyping for abstraction.

In generative module systems, two identical applications of a module functor to a

module produce two distinct modules. This means that every module or signature

must be unique and it appears that every module parameter must be checked in-

dependently of all other parameters. Using the pure functor paradigm causes an

exponential overhead on early modules. While checking type signatures should be

a terminating procedure for Coq modules, various single module instances of SDM
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were terminated after a week of run-time with a working-set over 80 GB of memory.

Type-checking modules is a non-interactive process, which compounds the problem

as the developer is unable to assist the verifier in constructing a solution.

Typeclasses offer many of the abstraction features provided by the module sys-

tem, but do so by leveraging the core term language and automation features. Con-

sequently, much of the Coq standard library is migrating away from modules in favor

of typeclasses. A typeclass is conceptually a record type used as a signature, and

instances of a typeclass are records satisfying that signature precisely. The remain-

der of naming conventions and type search proceed through a specialized typeclass

“binder” look-up table and the automated hint database.

The primary benefit of typeclasses is that they put the developer back in control

of how proof requirements are discharged. All proof obligations for a class or instance

that are not solved by the automation system are presented to the developer. If a

typeclass is not in scope, or multiple typeclass binders of the same name are in scope,

the developer may manually specify which should be used in any context. Because the

Gallina is applicative and does not admit subtyping, typeclasses avoid the exponential

overhead in the module system. A typeclass instance provides precisely the proof

satisfying an abstraction boundary, but does not lose the underlying structure as is

the case with module subtypes. Therefore, the first step to any future effort using

SDM is to migrate modules to type classes.

Unfortunately, migrating SDM to typeclasses will require refactoring the FSet
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and FMap libraries, along with other dependencies. These modules are among the

largest productions in the COQ standard library and it is unclear how much effort

this task will be. Although the MSet libraries are a somewhat modern update to the

FSet libraries, the FMap structures have are not included and neither suite has been

updated to use typeclasses.

11.1.2 Proof Enhancements

Due to the high cost of recompiling SDM, many general theorems about FSets

or system states appear in later modules where they are first used. Many of these

theorems can replace previous theorems in the SDM definition and support libraries,

and this could improve efficiency by reducing the total number of theorems to compile.

Some of these are over-specialized for access graphs or other structures and could also

improve efficiency and readability if refactored. While all of this effort would improve

efficiency and increase confidence, it should not be attempted until after SDM has

been converted to use typeclasses.

There are two specific alterations in this regard that would have a major impact

on efficiency and confidence. First, the ag potTransfer fn req definition should be

altered by eliminating the ag nondecr requirement, as it can be derived from the

definition of ag add commute and ag equiv. Second, the theorems describing endow

should use AG project for uniformity and mutable should be rephrased in terms of

ag flow and ag ex flow. This will eliminate a substantial amount of what is now
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duplicated verification effort by unifying a number of concepts that were not simul-

taneously envisioned.

11.2 Improve Confidence

SDM contains a number of issues that obfuscate the problem statement. While

not exactly flaws in the model, adjusting these definitions to align with developer

intuitions would improve confidence in the final result. These alterations are therefore

highly recommended as future work.

11.2.1 Minor Complexities

The definition of copyCapList currently folds copyCap over the list of index pairs.

This design decision was made because it is an easy induction to describe and follows

the pattern of non-allocating systems. However, this pattern undermines confidence

in the interpretation of an index map when an object updates itself. When an in-

dex appears as a destination in the list and later appears as a source, the intended

meaning of such a map may not have been what was intended. In this case, the first

invocation of copyCap will overwrite the destination location, causing this capability

to be copied in subsequent invocations. While such lists can always be refactored

into logically equivalent ones using temporary storage in the same object, requiring

systems which provide intermediate allocations to frame their operations in this way
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is counter-productive. The copyCapList operation should preserve the map intuition

by allocating temporary storage for all capabilities, transferring them to temporary

storage, and then copying them to the destination. The copyCap function should

then invoke copyCapListwith a single element.

SDM does not contain a no-op operation, implicitly assuming that all active ob-

jects are self-mutating. The model captures this in the definitions of mutated and

mutable. However, in the semantics, the definitions of readFrom and wroteTo do not

capture this intuition. The readFrom judgment declares that all operations read from

the invoking object in addition to other sources, but this is not the case for wroteTo.

This undermines confidence as it does not appear to capture all flow during an op-

eration, and therefore should be included as part of the wroteTo specification. All

new information flows will evaporate during when examining mutated, leaving the

remainder of the proof largely untouched.

In retrospect, the reflexive cases of transfer introduced more problems than they

solved. Object references and access edges can spring into being justified by the

underlying system state rather than by examining an access graph. This required

additional predicates to be carried along with an access graph during every stage of

the proof. One possible solution is to alter the direct access graph to add all reflexive

edges for objects that are alive. This would cause the definition of ag objs spec to

be identical to the live objects and eliminate many corner-cases during their analysis.

This alteration may make potTransfer more amenable to analysis in future efforts
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that specialize the access graph structure to distinguish active and passive objects as

not all objects should be considered to have total self-authority.

11.2.2 Flow for System Error Handling

When the invocation of a capability cannot be performed by the system, most

capability-based systems offer some degree of error reporting. For example, attempt-

ing to invoke a capability identifying a destroyed object could result in an error mes-

sage reply fabricated by the system. These errors are different from those returned

by the recipient as they potentially reveal information about the recipient without its

consent. Great care is needed when handling system error-reporting as it is possible

to unintentionally introduce ambient authority. Therefore, SDM does not presently

take a stance on the issue and does not permit any information flow due to error

reporting.

Fitting existing capability-based systems with system-initiated error reporting

into SDM can be done without modification. In systems where all invocations are

synchronous, like EROS, the destruction of an object can be modeled as though the

object remains alive but behaves according to the specification of the void object.

As the behavior of the void object is specified by the system, the underlying object

storage may be safely freed. In systems permitting asynchronous invocations, there

must be a distinction between invoking a capability and invoking an object. This can

be conceptually handled by modeling each system object with two objects in SDM: a
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subject which may potentially respond with an error and the object with the intended

behavior.

Both of these strategies are cumbersome to envision when the capabilities present

already capture the information flow that occurs during an error response. Altering

the state of an object requires the wr access right, which permits information to flow

from the invoking subject to the target. Any information that could be encoded by

destroying the object could have been written directly. Similarly, a capability with rd

authority permits information to flow from the target object to the invoking subject,

allowing the object state to be read along with anything else. SDM can be extended

to directly incorporate error reporting for capability invocations by permitting the

object label to encode data.

Updating the object label to be accessible data can be accomplished with two

changes. The first alteration modifies wroteTo for the destroy operation to include

the destroyed object. This alteration adds no new authority because the destroy

operation requires the wr permission, so the half-bit of data could just as easily have

been written using the write operation. The second update to the model adds a new

operation: isAlive. The isAlive operation prerequisite requires a wk or rd capability,

but examines only preReqCommon removing the need for the target to be alive. The

readFrom and wroteTo values for this operation are identical to read, and therefore

the half-bit result is also authorized. Any error handling that might occur can be

modeled as the system performing this operation instead of the error-free operations.
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This extension to SDM has significant impact on the interpretation of access rights

in systems that support error-reporting for asynchronous invocations. The only access

right permitted to notice an error is rd; the wr permission does not authorize error

reporting by itself. In systems where operations requiring wr may receive errors, it

is necessary that the wr always entails rd to permit this operation. When this is the

case, all errors can be modeled using the isAlive operation.

11.2.3 Improve Fully Authorized Access Graphs

The present definition of the fully authorized access graph does not eliminate

nonsensical capabilities identifying dead objects. This is not a great concern because

the confinement test may be posed without these capabilities producing a conceptually

equivalent test. However, their inclusion erodes confidence in the proof as the theorem

does not directly pattern-match with the constructor pattern.

Filtering the authorized set of capabilities before determining the fully authorized

access graph will produce an identical access graph to the one formed by filtering

these capabilities before the confinement test. Constructing this proof follows from

case analysis. Each access edge is in one of three sets: the access graph remainder,

the complete access graph of the subsystem, or the authorized access edges. Filtering

these capabilities cannot impact the complete access graph of the subsystem, and no

capability targeting a dead object can impact the direct access graph as it ignores

them. Computing the filtered set of capabilities is the same whether it is specified
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before or after testing confinement, producing identical access graphs. Therefore, the

mutability of an authorized set containing capabilities naming dead objects must be

bounded by the fully authorized access graph that does not contain them.

11.3 Model Extensions

There are a number of extensions to SDM that would increase confidence in the re-

sult or facilitate future verification endeavors. Extending the model to permit object

reclamation will permit the model to more closely resemble a real system imple-

mentation. While support for application verification exists, it can be enhanced by

restructuring the system state. Finally, verifying the constructor mechanism directly

as an implementation archetype would further increase confidence in the result.

11.3.1 Object Reclamation

The confinement proof does not rely on a finite number of unborn objects, which

indicates that the finite system requirement could be relaxed to only include extant

objects. However, as facilitating dead object reclamation is intended as future work,

this change is not currently present. Recall that all unborn objects must have all

capabilities naming them removed from the system state before they may be marked

alive. Therefore, the only reason a dead object may not be safely marked unborn is

because the name of the object no longer holds consistent meaning over the life of the
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system. Consequentially, enriching the structure of object references or capabilities to

admit structural reclamation without logical reclamation will alleviate this constraint

and admit object reclamation. Therefore, with a sufficiently rich naming structure,

an unbounded number of objects can be managed from a finite system state in future

endeavors.

11.3.2 Application Verification

Presently, SDM provides support for verifying future application behavior through

the index structure. When embedding the behavior of applications, theorems may

use indices to identify precisely which capabilities are invoked. In many capability-

based systems, the ability to inspect the physical representation of a capability is

not universally available to applications. As such, applications cannot inspect their

capabilities to determine behavior and can only distinguish capabilities by index. By

identifying which objects have known behavior, the ability to quantify the impact of

invoking capabilities as part of an application configuration becomes possible.

Restructuring the system state will assist future verification of application behav-

ior. Presently, the system state is a map onto an ordered tuple containing all object

information. This arrangement is sub-optimal as object meta-data is not easily car-

ried alongside an access graph. Splitting the system state into two maps, the object

map and the meta-data map, would simplify constraint management across access

graph.
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This creates other avenues for application verification. The definition of transfer

could be refined to distinguish between active and passive objects. While not relevant

for confinement, the subject/object distinction can have significant impact on secu-

rity policies that only rely on the inability of passive objects to invoke capabilities.

The schedule structure is a placeholder originally intended to permit suspending and

resuming processes to facilitate scheduler policies. Objects could be further refined

to distingusih those that only hold data, from those that also may hold capabilities.

Other behaviors in the system or for applications may be carried between both system

states and access graphs with a partitioned map.

11.3.3 Recursive Constructor

The most obvious application verification to perform in the future is to model

the constructor application in SDM. As a post-condition, the present confinement

verification describes the obligation of any constructor in how it instantiates future

subsystems. These constraints can be phrased inductively to describe how confined

subsystems might instantiate other subsystems under the same obligations. Folding

these obligations to build an inductive definition of confinement is the first step to

verifying a constructor archetype.

The second part of verifying a constructor application model is to verify the con-

finement test as a precondition. There are two interesting parts of this verification

that are readily identifiable. First, the constructive test will require the use of index
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management to ensure that the constructor destroys all capabilities naming its yield

after calling into it. Second, the system will need to name those components of the

system that comprise constructors so as to simulate their invocation via tx capabili-

ties. Using the inductive definition of confinement, it should be possible to verify the

recursive constructor case.
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Chapter 12

The SW Model

SDM was initially conceived as a mechanical verification of the SW confinement

proof [SW00] with some additional features. During the verification process, SDM

diverged from SW in response to extensions, verification pressures, and discovered

flaws. As SW informs much of SDM, this chapter presents a comparison of the two

models and proposing corrections to SW based on the SDM proof.

This chapter begins by discussing some of the differences between SW and SDM

and proposes some minor changes that are not crucial to the heart of the proof, but

necessary for completeness. It then presents the two major flaws of SW identified

by SDM: the base case of the main theorem and Lemma 4. It concludes with a

proposal that fits the verified solution of SDM into SW to form a result that does not

significantly alter the main theorem of SW.
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Figure 12.1 SW Model : create operation.

If Sn
create(p,a)−−−−−−→ Sn+1 and a ⊆ Sn

caps(p), then
leto′ ∈ Object− Snexist − Sndead in

Sn+1
exist = Sn

exist ∪ {o′}
Sn+1

caps = Sn
exist[o′ → a][p→ Sn

caps(p) ∪ObCap(o′,R)]

12.1 Differences Between Models

Although SDM and SW are very similar, they differ in a few critical ways. Their

system states differ as SW represents the state of objects in disjoint sets instead of

tagging each object with meta-data in the map. The sets are Sexist and Sdead with

all remaining objects in S as being available, and correspond to alive and unborn

object labels. The set of objects Object in SW is permitted to be infinite where it

is presently finite in SDM, though this is addressed in Section 11.3.1. Additionally,

SDM contains more object meta-data and uses an index structure in objects to refer

to capabilities.

This chapter uses different font faces to represent concepts in each proof. Defini-

tions from SW are written in boldface, while definitions from SDM are written in

regularface. Unless otherwise specified, most definitions herein are referring to SW

definitions or updated definitions from this chapter.

Most of the operations in SDM are identical to those in SW with the exception

that they are described using indices instead of capabilities. The create operation has

been renamed to allocate, the invoke operation has been renamed send, and the exec
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Figure 12.2 SW Model : R⊥definition.
Let R⊥be the CPO where ⊥ = ∅,> = R,R⊥ = 2R and ≤ is defined by

x ⊆ y ⇒ x ≤ y ∀x, y , ∈ R

Figure 12.3 SW Model : DirAcc definition.
If S ∈ S, then we define DirAccS : Object×Object→ R⊥ by

DirAccS(x, y) = lub({a|(x, y, a) ∈ DASet})

where

DASet =
{(o, target(c), rights(c)) |o ∈ Object, c ∈ Scaps(o)}

∪ {(target(c), o,>) |o ∈ Object, c ∈ Scaps(o), exec ∈ rights(c)}

access right has been renamed to tx to avoid confusion in terminology. Additionally,

the send operation includes an optional reply capability. The SW create operation

will receive special attention in this chapter.

SDM does not define a complete partial order over access rights, but instead lifts

this CPO to access graphs by subset inclusion and transfer . All of the relationships

between access rights are captured in the transfer relation, similar to transAccess

in SW The definition of R⊥ from SW is included in Figure 12.2 for reference.

The definition of dirAcc in SDM closely follows the definition of DirAcc in SW.

The primary difference is that the exec case does not produce > authority in dirAcc.

In SDM this is also managed as emergent behavior in the transfer .

Most of the differences between SDM and SW appear in how they structure po-

tential access. In SW, PotAcc is defined directly in terms of DirAcc as the closure
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Figure 12.4 SW Model : PotAcc definition.
If S ∈ S, then the potential access relation, PotAccS is the limit of the series
T0, T1, T2, . . . where

T0 = DirAccS
∀x, y , Ti+1(x, y) = lub{Ti(x, y), combine(Ti)(x, y)})

where

combine(A)(x, z) = lub({a|∃y ∈ Object such that a = transAccess(x, y, z)})

and

transAccess(x, y, z) =



⊥ if A(x, y) = ⊥
A(y, z) if {rd, exec} ∩ A(x, y) 6= ∅}
{wk} if {wk, rd, exec} ∩ A(x, y) = {wk}∧

{wk, rd} ∩ A(y, z) 6= ∅
⊥ otherwise

of combine: a very large combinator of the least upper bound of transAccess.

SDM breaks these relations apart using access graphs as an intermediate structure.

Therefore, the definition of potAcc is meaningful over many different access graphs,

not only the direct access graph. This allows SDM to restructure transAccess into

transfer as a micro-operation of access right transfer. This eases mechanical reason-

ing about potential access from any reachable access graph by allowing justifications

in the closure to be simply reordered. Therefore, transfer subsumes the previously

mentioned properties from DirAcc and R⊥.

Reflexivity in potential access is another major difference between SW and SDM.

SW does not define DirAcc or PotAcc as reflexive closures, only transitive ones.

SDM ensures that potAcc contains all reflexive access edges through transfer causing
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Figure 12.5 SW Model : mutable.
If S ∈ S, then

mutableS(E) = {y|∃x ∈ E, {wr, exec} ∩PotAccS(x, y) 6= ∅}

Figure 12.6 Correction to mutable.
If S ∈ S, then

mutableS(E) = {y|∃x ∈ E, {wr, exec} ∩PotAccS(x, y) 6= ∅∨
{rd,wk} ∩PotAccS(y, x) 6= ∅}

direct access to remain a simple translation. Reflexivity of access will become very

important in the discussion below.

12.2 Minor Errata

There are a few minor errata in SW that, while their meaning may be inferred

given context, must be corrected before addressing large changes. The four alterations

are to mutable (resp. readable), R, transAccess, and information flow via the

create operation. Figure 12.5 presents mutable from SW, which is intended to

capture all potential information flow. However, the rd and wk rights are omitted

and readable is simply the inverse of mutable. Because transAccess in PotAcc

propagates existing permissions, rd and wk access rights will never be considered.

This is fixed by adding the missing condition to mutable using the definition in

Figure 12.6. It is not necessary to alter readable, as the change to mutable corrects

196



CHAPTER 12. THE SW MODEL

Figure 12.7 Correction to SW Model : R⊥.
Let R⊥ be the CPO where ⊥ = ∅,> = R,R⊥ = 2R and ≤ is defined by

∀x, y ∈ R , x ≤ y =
{
x− {wk, rd} ⊆ y − {wk, rd} if wk ∈ x ∧ rd ∈ y
x ⊆ y otherwise

Figure 12.8 Correction to transAccess.

transAccess(x, y, z) =



A(y, z) if {rd, exec} ∩ A(x, y) 6= ∅}
A(y, z) if {wr, exec} ∩ A(y, x) 6= ∅}
{wk} if {wk, rd, exec} ∩ A(x, y) = {wk}∧

{wk, rd} ∩ A(y, z) 6= ∅
⊥ otherwise

both definitions.

The wk permission is interpreted inconsistently in SW and is not always consid-

ered a positive permission. The rd permission conveys all of the authority that the

wk permission does. Therefore, rd should be considered a proper subtype of wk. In

practice, these two permissions do not appear together, however, the model does not

exclude this possibility. By implementing this change in R⊥, it will trickle down to

all other aspects of the proof including lub and PotAcc definitions.

In SW, the underlying transitive operation capturing potential permission trans-

fers is defined by transAccess. Unfortunately, transAccess neglects a discussion

of wr permissions being capable of transferring other permissions. The missing case

should invert the transitivity rule handling the rd and exec case. The updated

definition also omits first ⊥ case, as it is fully subsumed by the last case.

The last minor correction involves the definition of information flow for the create
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operation. The readfrom and wroteto relations are used to define potential infor-

mation flow for a given operation. It is important to note that the create operation

may send capabilities from the parent to the child. Capability flow is information

flow and it must be captured to avoid incorrect analysis. The only correction to the

SW model is to alter the definition of wroteto(create(p, a)) to be {p, n}, where n is

the newly created object.

12.3 Major Concerns

This section addresses two of the major issues in the SW verification. The first

demonstrates that the main theorem’s induction hypothesis is invalid in the base case

and proposes a simple solution. The second illustrates a flaw in Lemma 4, required

for the main theorem.

It is worth noting that the discovery of both flaws occurred as the direct outcome

of interacting with the proof assistant. Attempts to verify similar theorems in SDM

arrived at obviously erroneous goals which, with some careful examination, lead to

the counterexamples presented below. Ultimately, these counterexamples informed

changes in the structure of the proof execution leading to a nearly identical conclusion.
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Figure 12.9 SW Model : Main Theorem.

mutatedE(S0
α1−→ S1 . . .

αn−→ Sn) ∩ S0
existed ⊆mutableS0(E)

Figure 12.10 SW Model : Induction Hypothesis.
Assume that for all sets F ,

mutatedF (S0
α1−→ S1 . . .

αn−1−−−→ Sn−1) ∩ S0
existed ⊆mutableS0(F )

12.3.1 Invalid Induction Hypothesis

The main theorem SW attempts to prove the theorem in Figure 12.9 by induction

on n. This relies on the induction hypothesis for n-1 as shown in Figure 12.10. SW

claims that the base case is trivial, yet it is straightforward to violate. mutated is

always growing the initial subsystem E, while mutable only considers what E can

mutate via PotAcc. When no operations are performed, the base case reduces to the

property of Figure 12.11: mutable is non-decreasing. However, Lemma 5 of the SW

excludes the initial subsystem E from what is considered mutable, indicating that

the base case does not hold.

To help visualize counterexamples, concrete instances are described visually. Sys-

tem states are represented as graphs in the same manner as SDM. As SW considers

all objects active, objects are circles and capabilities are edges in the system state

Figure 12.11 Property: mutable is non-decreasing.

∀E , E ⊆mutableS0(E)
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Figure 12.12 Contradiction: System State S0 and PotAccS0 which violates the
induction hypothesis.

A B A BR >

mutated{A}(S0) ∩ {A,B} = {A} * {B} = mutableS0({A})

Figure 12.13 Correction to DASet.

DASet =
{(o, target(c), rights(c)) |o ∈ Object, c ∈ Scaps(o)}

∪ {(target(c), o,>) |o ∈ Object, c ∈ Scaps(o), exec ∈ rights(c)}
∪ {(o, o,>) |o ∈ Object}

diagram. As with SDM diagrams, capabilities are labeled with their access right set

and the border and fill of objects indicate their label. Dead objects are gray, an

object that exists has a solid border, and an available object has a dashed border.

Access relations are also visually represented, but they consist only of relationships

in R⊥ between objects which have no border.

The counterexample in Figure 12.12 illustrates that the present definition of

mutable is not non-decreasing. When no operations are performed, mutableE = E.

However, DASet does not capture this access, and therefore it must not be present in

DirAccS0 or PotAccS0 . Therefore, mutableS0({A}) = {B} which is not a superset

of {A}.

This problem can be avoided by altering the definition of mutable to conform

to the property in Figure 12.11. There are two potential solutions: alter mutable
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Figure 12.14 SW Model : Lemma 4
If S0

α−→ S1, then for all E,

mutableS1(E) ∩ S0
existed ⊆mutableS0(E ∩ S0

existed)

to have this property directly, or alter the definition of DASet to cause PotAcc to

be a transitive reflexive closure. In SDM, mutable was altered to be non-decreasing

in addition to altering PotAcc to be a transitive reflexive closure without altering

DASet. In hindsight, it is better to alter DirAcc to be reflexive, as in Figure 12.13,

as this simplifies relations between access relations. For more information on this

future work in SDM, see Section 11.2.1.

12.3.2 Violating Lemma 4

The main theorem also relies on Lemma 4, which also contains flaws that must

be corrected to present a solution. Lemma 4 in the SW Model misquantifies the

initial subsystem E and is consequentially too general to be correct. The subsystem

E admits any subset of Object, including any unborn objects. This permits unborn

objects that will be descended from subsystems outside of E ∩ Sexisted. Because E

is unrestricted in this way, it is possible to construct an example where elements of

some initial E become children of an external subsystem, connecting E to a previously

unconnected subsystem.

201



CHAPTER 12. THE SW MODEL

Figure 12.15 System State S0 and PotAccS0 to violate Lemma 4.

A1 B1 A1 B1

A2 Au B2 A2 Au B2

RR RR > > >>

R R

>

> >

>

Figure 12.16 System State S1 and PotAccS1 to violate Lemma 4.

A1 B1 A1 B1

A2 Au B2 A2 Au B2

R

R

RR RR > > >>

>

>

>

>

R R

>

> >

>>

Consider the result of a create operation on S0 as in Figure 12.15. If the operation

is:

S0
create(p,{ObCap(B2,R)})−−−−−−−−−−−−−−−→ S1

then assuming that there exists an object Au ∈ Object, the result of this create

operation will be S1, shown in Figure 12.16. This example is constructed such that

the error occurs using either the original SW definitions or the modifications to this

point. With Au as the unborn object to be created by B2, examine Lemma 4 with

E = {A1, A2, Au}. It is now possible for {A1, A2, Au} to modify B∗ where before it

was not.

As this example uses > relationships, no alterations thus far could not prevent this

problem. The reflexivity alteration for DASet is subsumed by including sufficient

202



CHAPTER 12. THE SW MODEL

Figure 12.17 Value of mutable for S0 and S1.

mutableS0({A1, A2, Au} ∩ S0
existed) = mutableS0({A1, A2, Au}) ∩ {A1, A2, B1, B2}

= {A1, A2, Au} ∩ {A1, A2, B1, B2}
= {A1, A2}

mutableS1({A1, A2, Au}) ∩ S0
existed = mutableS1({A1, A2, Au}) ∩ {A1, A2, B1, B2}

= {A1, A2, Au, B1, B2} ∩ {A1, A2, B1, B2}
= {A1, A2, B1, B2}

Figure 12.18 Contradiction of Lemma 4.
Lemma 4 states that If S0

α−→ S1, then for all E,

mutableS1(E) ∩ S0
existed ⊆mutableS0(E ∩ S0

existed)

But for the example defined above, when E = {A1, A2, Au} :

mutableS1(E)∩S0
existed = {A1, A2, B1, B2} * {A1, A2} = mutableS0(E∩S0

existed)
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Figure 12.19 Definition of ProjPotAcc.
If A : Object×Object→ R⊥ is a resource relationship,
then ProjPotAcc(A) : Object×Object→ A is defined to be:

ProjPotAcc(A)(p, u)(x, y) =



> if x = p ∧ y = u
> if x = u ∧ y = p
> if x = p ∧ y = p
> if x = u ∧ y = u
A(p, y) if x = u
A(x, p) if y = u
A(x, y) otherwise

self-authority to cause reflexivity. Corrections in R⊥ and mutable are uninteresting

as all capabilities are fully permissive. The contradiction does not examine the defi-

nition of mutated and therefore does not involve the modification of wroteto from

Section 12.3.1.

12.4 Solution

The absurdity of Lemma 4 arises from the ability to ask questions about unborn

objects without knowing their lineage. The main theorem never quantifies Lemma 4

with such an absurd E, but the analysis skips this detail. The solution is similar to

operational mutability from SDM.
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Figure 12.20 Theorem: ProjPotAcc approximates all operations.

If S0
create(p,a)−−−−−−→ S1 then if u is selected as a newly created object,

PotAccS1 ≤ ProjPotAcc(PotAccS0)(p, u)

and in all other cases
PotAccS1 ≤ PotAccS0

where the definition of ≤ is overloaded on access relations to have the meaning

A ≤ B ⇔ ∀x, y A(x, y) ≤ B(x, y)

12.4.1 Relating Access Relations

Integrating solutions from SDM begins by describing the relationships between

access relations over each operation. From the updated definitions, PotAcc is a

transitive reflexive closure and should approximate all operations except create. It

is impossible for PotAcc to approximate create, as there is no advance knowledge

about the lineage of new objects. However, in the worst case, a newly created object

is just as permissive as its creator. This relationship between access relations is given

by ProjPotAcc in Figure 12.19. Given ProjPotAcc, it is possible to demonstrate

that PotAcc approximates all operations, as shown in Figure 12.20.

This proof is solved by very exhaustive case analysis similar to the SDM the-

orem AG project endow in Figure 7.17. It should also be apparent that under a

transitive reflexive closure, if A has converged over combine, then ProjPotAcc(A)

has also converged. This proof is less obvious, but is similar to the SDM theorem

AG project maximal in Figure 8.10. Such converged resource relationships will be
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Figure 12.21 Definition of potential access relation sequences.
If S0

α1−→ S1 . . .
αn−→ Sn is an execution, then P0

α1−→ P1 . . .
αn−→ Pn is defined such that

∀i Pi = PotAccSi

Figure 12.22 Definition of one maximal access relation sequence approximating
another.
If P0

α1−→ P1 . . .
αn−→ Pn

and Q0
α1−→ Q1 . . .

αn−→ Qn are maximal access relation sequences,
then ≤is overloaded as

P0 → P1 · · · → Pn ≤ Q0 → Q1 · · · → Qn ⇔ ∀i Pi ≤ Qi

called maximal throughout the remainder of this chapter.

It is now possible to define notation relating sequences of access relations that

are sourced from executions, as shown in Figures 12.21 and 12.22. For clarity, the ≤

operator is further overloaded for maximal relation sequences.

12.4.2 Mutable Lineage

With the introduction of transformations between access relationships, the defini-

tion of mutability is too specific to incorporate new relationships as it is still dependent

on PotAcc. Therefore, mutable must be parameterized over any access relationship

Figure 12.23 Parameterized definition of mutable.

mutableA(E) = {y|∃x ∈ E, {wr, exec} ∩ A(x, y) 6= ∅ ∨
{rd,wk} ∩ A(y, x) 6= ∅}
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Figure 12.24 Theorem: mutable respects ordering.
If A and B are access relations and E and F are object sets, then

A ≤ B ∧ E ⊆ F ⇒mutableA(E) ⊆mutableB(F )

Figure 12.25 Definition of mutableLin.
If S0

α1−→ S1 . . .
αn−→ Sn is an execution,

and P0
α1−→ P1 . . .

αn−→ Pn ≤ Q0 → Q1 · · · → Qn,
and E ⊆ S0

existed, and qi = Q0 → Q1 · · · → Qi are sub-sequences

mutableLinE(Q0) = mutableQ0(E)
mutableLinE(Qi−1 → Qi) = mutableQi

(E)
mutableLinE(qn) = mutableLinmutableLinE(qn−1)(Qn−1 → Qn)

A as in Figure 12.23. Although this chapter has striven to preserve notation from

SW, it is necessary to deviate slightly to accomplish this change.

This form of mutable respects the various ordering relations for all parame-

ters. Therefore, as the ProjPotAcc relationship preserves these orderings, mutable

must respect ProjPotAcc as well. The theorem in Figure 12.24 corresponds to the

Proper mutable spec theorem from SDM show in Figure 8.3.

The definition of mutableLin in Figure 12.25 sets up a sequence of mutables

Figure 12.26 Theorem: mutated is captured by of a mutableLin.
If S0

α1−→ S1 . . .
αn−→ Sn is an execution,

and P0
α1−→ P1 . . .

αn−→ Pn ≤ Q0 → Q1 · · · → Qn,
and E ⊆ S0

existed,
and ei = S0

α1−→ S1 . . .
αi−→ Si are sub-executions,

and qi = Q0 → Q1 · · · → Qi are sub-sequences

mutatedE(en) ⊆mutableLinE(qn)
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Figure 12.27 Theorem: mutableLin respects ordering.
If E and F are object sets,
and P0 → P1 · · · → Pn ≤ Q0 → Q1 · · · → Qn,
and pi = P0 → P1 · · · → Pi are sub-sequences,
and qi = Q0 → Q1 · · · → Qi are sub-sequences,

E ⊆ F ⇒mutableLinE(pi) ⊆mutableLinF (qi)

to capture object lineage while approximating mutated, similar to mutable execute

in SDM shown in Figure 8.5. The induction strategy for mutableLin is identical to

mutated except that it starts with what is mutable and cycles mutable at each

step. However, as it will become important to abstract over approximations, the def-

inition does not directly perform reasoning on PotAccSn . Therefore, the definition

of mutableLin is quite abstract. If all PotAcc operations are approximated reflex-

ively, the theorem begins look a bit more like mutable and it should become clear

that mutableLin also approximates mutated as shown in Figure 12.26. In SDM,

this theorem corresponds to mutated approx dirAcc execute mutable in Figure 8.9.

Since mutableLin is defined inductively over mutable – which respects approx-

imations and subset as shown in Figure 12.24 – it too must respect approximations

and subset. This is presented in Figure 12.27 and is similar to the SDM theorem

Proper mutable execute in Figure 8.6.
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Figure 12.28 Definition : LinR.
If C is an access relation,
let LinC be the inductively defined set rooted at a maximal C:

C ∈ LinC
ProjPotAcc(A)(p, u) ∈ LinC if A ∈ LinC ∧ p ∈ A ∧ u /∈ A

where definition of ∈ is overloaded as ∀o,A , o ∈ A ⇔ A(o, o) 6= ⊥
And let 4 be the CPO defined by:

A 4 A
A 4 ProjPotAcc(A)(p, u) if p ∈ A ∧ u /∈ A

Note, ⊥ = C and 4 is anti-symmetric by the definition of subset and ProjPotAcc.

12.4.3 Lineage

The partial order LinR using ProjPotAcc as in Figure 12.28 is defined to assist

reasoning about mutableLin. The purpose of LinR is to fully abstract all possible

lineage hierarchies rooted at access relation R. Primarily, this abstracts all series of

create operations, as the preconditions of LinR are always satisfied by any sequence

of operations due to state transitions. Additionally, LinR parameterizes theorems

without needing to instantiate them through laborious notation. The notion of LinR

as a partial order is not directly present in SDM as it would require restructuring

many previous theorems.

For any sequence of executions, PotAccSn can be approximated by member of

LinPotAccS0
using the theorem from Figure 12.20. This is justified for two reasons.

First, all non-create operations are self-approximating. Second, because PotAccS0 is

maximal and ProjPotAcc is maximal given a maximal input, this sequence must
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Figure 12.29 Theorem: Lin approximates PotAcc.
If S0

α1−→ S1 . . .
αn−→ Sn is an execution, E ⊆ S0

existed, then

∃L ∈ LinPotAccS0
, PotAccSn ≤ L

or

∃L0 → L1 · · · → Ln ∈ LinPotAccS0
, P0

α1−→ P1 . . .
αn−→ Pn ≤ L0 → L1 · · · → Ln

Figure 12.30 Theorem : mutableLin always existed.
If S0

α1−→ S1 . . .
αn−→ Sn is an execution, and L0 → L1 · · · → Ln ∈ LinPotAccS0

and
E ⊆ S0

existed, and li = L0 → L1 · · · → Li are sub-sequences

mutableLinE(li) ⊆ Si
existed

be maximal by induction. This notion is presented in Figure 12.29 and loosely cor-

responds to the SDM theorem mutable execute dirAcc subset potAcc in Figure 8.7.

mutableLinE cannot exceed Snexisted in every step for sequences in LinPotAccS0
,

as it relies on PotAcc and ProjPotAcc, both of which do not consider non-existent

objects. Theorem 12.30 captures this invariant formally in Figure 7.24 and corre-

sponds to ag objs spec endow theorem in SDM. Presently, it is a useful diagnostic

for determining if the erroneous cases of SW Lemma 4 have been fixed. It will be

specialized for precision in the theorem in Figure 12.31.
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Figure 12.31 Theorem: mutableLin grows only by new objects at each step.
If S0

α1−→ S1 . . .
αn−→ Sn is an execution,

and P0
α1−→ P1 . . .

αn−→ Pn ≤ L0 → L1 · · · → Ln ∈ LinPotAccS0
,

and E ⊆ Si−1
existed,

mutableLinE(Li−1 → Li) ⊆
E ∪ {u} if Li = ProjPotAcc(Li−1)(p, u) ∧ p ∈ E

E if Li = ProjPotAcc(Li−1)(p, u) ∧ p /∈ E
E if Li = Li−1

Figure 12.32 Theorem: mutableLin is mutable.
If S0

α1−→ S1 . . .
αn−→ Sn is an execution,

and P0
α1−→ P1 . . .

αn−→ Pn ≤ L0 → L1 · · · → Ln ∈ LinPotAccS0
,

and E ⊆ Si
existed,

and li = L0 → L1 · · · → Li are sub-sequences

mutableLinE(ln) ∩ S0
existed ⊆mutablePotAccS0

(E)

12.4.4 Main Theorem

There are two other theorems required to successfully prove the main theorem.

Consider how mutableLin changes over sequences in LinR. Each stepin LinR is given

by some ProjPotAcc(A)(p, u). If p ∈ E, then mutableLin can only grown by u,

otherwise mutableLin is constant. Another way of stating this is that ProjPotAcc

is surjective on set inclusion. As the only objects added to mutableLin are not mem-

bers of S0
existed, they are excluded when intersecting the result with what initially

existed. As the base case of mutableLin is mutable, this induction must hold.

Although these properties are many individual theorems in SDM, they are presented

as a single property in Figure 12.31.
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Figure 12.33 Corrected final theorem and proof.
If S0

α1−→ S1 . . .
αn−→ Sn is an execution,

and E ⊆ Si
existed,

and ei = S0
α1−→ S1 . . .

αi−→ Si are sub-executions

mutatedPotAccS0
(en) ∩ S0

existed ⊆mutablePotAccS0
(E)

Proof:
mutatedPotAccS0

(en) ∩ Sexisted0 ⊆mutablePotAccS0
(E)

let pi = P0
α1−→ P1 . . .

αi−→ Piin
by Definition

mutableLinE(pn) ∩ S0
existed ⊆mutablePotAccS0

(E)
by Theorem 12.26 instantiated reflexively

let P0
α1−→ P1 . . .

αn−→ Pn ≤ L0 → L1 · · · → Ln ∈ LinPotAccS0
and li = L0 → L1 · · · → Li in

by Theorem 12.29
mutableLinE(ln) ∩ S0

existed ⊆mutablePotAccS0
(E)

by Theorem 12.27
this is Theorem 12.32

The E ⊆ Si
existed requirement is an invariant of mutableLin over Lin, so that

constraint can be satisfied. The remaining cases are evident by examination of the

theorem in Figure 12.20. Using the result in Figure 12.31 as an induction step, the

theorem in Figure 12.32 is produced.

With the exception of a parameterized definition of mutable, the statement of the

main theorem in Figure 12.33 is identical to the SW theorem. Discharging the main

theorem proceeds by subset transitivity and previous definitions. From Figure 12.26,

mutableLin approximates mutated and may be substituted by transitivity. There

must exist a lineage in LinPotAccS0
that approximates PotAcc. Because mutableLin

preserves ordering in Figure 12.27, it must also approximate PotAcc and may be
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substituted by transitivity. The remaining relation is precisely that mutableLin is

mutable from Figure 12.32. Therefore, the main theorem holds; what is mutated,

when restricted to what existed, is a subset of what was determined mutable.

As SDM began as a mechanical verification attempt for SW, it can be used to

correct the proof execution. The corrections in this chapter are altered from those

found in SDM, but follow the spirit of that proof. They also contain some of the

suggestions and simplifications found in Chapter 11 on future work. These alterations

generally impact the proof execution, but do not significantly impact the statement

of the main theorem in SW. Previous conclusions based on the SW result [Sha03] can

be expected to hold without modification.
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Related Work

This chapter discusses other access-control proofs that are related to SDM. Con-

structing confinement from memoryless subsystems is an approach that differs from

the constructor model. The Provably Secure Operating System, PSOS, was the first

attempt to specify and build a capability-based operating system that supported con-

finement through memoryless subsystems. SCOLL is a language for describing the

behavior of entities within capability-based systems, and to reason about different

authority configurations the system may come to have in the future. seL4 is the first

microkernel to be fully connected to its specification by automated verification. The

take-grant models for seL4 are similar to SDM.
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13.1 Memoryless Subsystems

Memoryless subsystems are a protection mechanism for mutually suspicious pro-

grams. In “Memoryless Subsystems,” [Fen74] Fenton constructs a general-purpose

machine with infinite registers that are statically tagged as privileged or unprivileged,

with the exception of the program counter. The program counter has a variable tag

which is upgraded to privileged whenever impacted by privileged data. The machine

provides a call-return procedure that preserves and restores the value and protection-

state of the program counter and the machine may only halt in the unprivileged state.

From this, he defines a memoryless system as one that, when started in an unprivi-

leged state, no unprivileged information may be impacted by privileged information.

His solution to leaking information by non-termination requires both privileged and

unprivileged input to provide counters for their respective operations.

The use of memoryless subsystems to produce security policies depends on their

initial configuration and how resulting data is dispersed by the system. Memoryless

subsystems can be used as part of a confinement model that differs from the construc-

tor model. A memoryless subsystem where all output is considered privileged must

also be confined, assuming the destination of this privileged data is authorized by the

caller. Enforcing this constraint upon a memoryless subsystem can be accomplished

by erasing all non-privileged registers after execution or by requiring all registers to

be privileged.

While it is possible to model memoryless confinement in SDM, it is difficult be-
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cause SDM does not consider state as part of the model. Therefore, each invocation

of a memoryless subsystem must be modeled in SDM as a fresh subsystem over shared

unprivileged state, if any. This violates the intuition that there is an injective map

from objects in the system to objects in the model.

13.2 PSOS

The Provably Secure Operating System, PSOS, was the first attempt at a me-

chanically verifiable operating system built on sound design principles [NBF+80].

The PSOS specification and implementation is structured as a layered TCB. Each

layer is clearly delineated and refines the system by adding services and features not

present in previous layers. The lowest layers of the system are constructed from com-

putational hardware and the minimal software to construct capabilities. Subsequent

layers range from memory management and I/O up to users and applications. Many

high-level structures in modern capability-based systems resemble those developed as

part of the PSOS specification.

The PSOS system specification was not only rendered in English text, but also

in the non-procedural specification language SPECIAL. SPECIAL is an assertion

language designed to capture system requirements and to verify their composition as

part of the refinement process. Many theorems about the different layers of PSOS

were verified in SPECIAL. The SPECIAL project would eventually be succeeded by
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the PVS [ORS92] proof system.

In PSOS, the Confined System Manager, or CSM, is responsible for constructing

confined subsystems. As with the constructor, the CSM tests the specification of an

object before instantiating it. Confinement provided by the CSM requires all objects

to be recursively memoryless so that they may be safely reused by otherwise indepen-

dent subsystems. This permits the CSM to memoize the result of producing confined

subsystems to aid in confinement attestation and to permit complex structures to be

built through repeated invocation.

When an application desires to make a confined entity, it presents a specification

of that entity as a vector of capabilities. The make segments confined interface

inspects all elements for capabilities to known confined system functions, previously

certified objects, or another element of the presented vector. If satisfied, the CSM

retains a copy of all capabilities and returns a copy of the vector where all write

or delete access has been removed. These capabilities include the “confined-delete”

permission, which can be used in conjunction with the CSM to perform deletes only

to certified segments. To make extended objects, the CSM essentially has the same

behavior, though the capability vector upon which the object is based is not granted

“confined-delete” permissions. This restriction is in place as a confined object must

not be able to delete capabilities from another confined object as this could cause

data transfer. Objects not so constrained may write data to a confined subsystem

through deletion without violating confinement.
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Many theorems of high-level PSOS properties remain unpublished or unverified.

Unfortunately, this includes the confinement property for the Confined Systems Man-

ager. As it is using a memoryless confinement mechanism, the PSOS CSM can be

conceptually modeled by SDM using fresh subsystems.

13.3 SCOLL

SCOLL, the Safe Collaboration Language, is a system description language for

statically reasoning about the authority relationships of subsystems in capability-

based systems. [JSR05] SCOLL allows developers to define a system, its semantics,

an initial configuration, Horn clauses defining the behavior of various subsystems,

and goal conditions which are to be preserved. Static reasoning is performed by

the SCOLLAR model checker, which computes constraints that preserve the goal

conditions while attempting to be minimal.

Alfred Spiessens presents a proof of the safety property for capability-based sys-

tems as part of his work on SCOLL. [Spi07] SCOLLAR relies on the tractability of

the safety property to produce solutions which preserve the goal conditions. Positive

goal conditions are liveness constraints, while negative goal conditions are safety con-

straints. Although SCOLL and SCOLLAR are not formally verified, they do produce

meaningful, and more importantly, understandable solutions to the safety problem.

SCOLLAR has been used to examine and validate a number of capability-based
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patterns. Revocable capabilities via the caretaker pattern has been examined along

with the methods by which it can be circumvented. Inescapable interposition has

also been examined. In this scenario, two fully untrusted subjects are prevented

from escalating their authority to one another by the interposition of proxies with

known behavior. SCOLLAR has determined that no further behavioral restrictions

are necessary to preserve the interposition arrangement, indicating that escalating

authority is impossible.

SCOLL is an extremely useful tool for reasoning about safety in capability-based

systems. However, SCOLL has not been extended to reason about information flow

and therefore cannot describe the confinement problem. Due to their legibility, so-

lutions presented by SCOLLAR are easily inspected and understood. However, the

safety property upon which SCOLLAR relies has not been mechanically checked.

13.4 seL4

Section 10.1.3 presents an brief overview of the seL4 system. As previously men-

tioned, the seL4 microkernel [EKK06] is the L4 microkernel [Lie96] implementation

modeled and inspected as part of the L4.verified project [Kle10]. To achieve this goal,

the seL4 mirokernel is a capability-based system.

In contrast to the systems described in Chapter 2, memory management inter-

faces in seL4 are handled directly by the kernel. seL4 provides Untyped Memory
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objects representing system memory. An Untyped Memory object may be subdi-

vided into other Untyped Memory objects or into other primitive kernel objects. The

kernel maintains a Capability Deriviation Tree, or CDT, to track the relationships

between capabilities naming object derivations. When an Untyped Memory object

is retyped, the system checks the CDT to determine which capabilities to invalidate.

This interface is extended to all capabilities, and processes may choose to either copy

capabilites, creating siblings in the CDT, or by minting new and restricted capabili-

ties as children in the CDT. The terms copy and mint sometimes appear as imitate

and grant in the seL4 literature.

13.4.1 seL4 models

Elkaduwe et. al. presented the first access control model for seL4. [EKE08] [Elk10]

Like SW and SDM, it is a state-transition model over a capability graph as a system

state. All operations require a sane system state in which all capabilities name objects

that are part of the system. The operation preconditions require a sane state and

appropriate capabilities authorizing the operation.

The Elkaduwe model partitions data and capability operations based on access

rights following earlier take-grant models [LS77] [Sny77]. Data-only operations require

Read or Write permissions, while all state update operations are modeled with Grant

and Create. The ability for a thread to retrieve a capability from a storage object

is modeled by inverting the relationship so it appears that the storage object Grants
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capabilities to the thread. The ability to create new objects requires holding a Create

capability to some other object, presumably representing untyped memory.

The operations of the system are straight-forward. SysNoOp represents any self-

mutation not involved with a capability. SysRead and SysWrite model explicit data

mutation and require capabilities with Read or Write permissions respectively. Sys-

Grant requires two capabilities: the invoked capability with the Grant permission

and a capability to transfer. The SysGrant operation may “diminish” the transferred

capability by reducing the available access rights. SysCreate also requires two capa-

bilities: the invoked capability with the Create permission, and a Grant capability to

an object where a capability to a new object will be inserted. SysRemove removes a

specific capability from an object using a capability, and SysRevoke revokes an un-

specified collection of capabilities from the system by repeatedly invoking SysRemove

based on the capability derivation tree.

The model defines subsystems as an emergent property of the arrangement of

capabilities. First, the leak judgment is defined from the holder of a Grant capability

to its target. Next, two objects are connected if there is a leak between them in either

direction. Finally, two objects are members of the same subsystem if they are in the

transitive, reflexive closure of connected. They then verify that, from this point, it is

not possible for the access rights between members of subsystems to increase over the

execution of the system. This must be the case as both operations to add capabilities

to the state of the system require the Grant permission.
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The ability for information to flow between objects is examined next. The canAc-

cess judgment is defined between objects A to B if any capability containing a sub-

set of {Grant, Read,Write} access rights exists between them in either direction.

All information flow between objects is defined as the transitive, reflexive closure of

canAccess. As before, this initial property is verified to hold over the life of the sys-

tem. Therefore, the potential information flows over the life of the system is statically

determined.

There are two problems with the model. First, the definitions of subsystems and

authorized flows are emergent rather than intentional. That is, subsystems emerge

as those collections of objects which can share capabilities irrespective of any hu-

man labeling or intent in their construction. This is not the standard definition of

a subsystem. A subsystem is any subset of the system objects to be considered for

inspection. By restricting subsystems in this way, many desirable properties, in-

cluding confinement, become impossible to express. The same problem arises with

information flow. While information flow may not increase between emergent subsys-

tems, there is no discussion of whether that information flow was expected or how to

constrain it without complete partitions.

The other problem with the model is that no access rights are required to remove

capabilities from an object. Recall that capabilities are data and capability flow is

data flow. Both SW and SDM ensures that all potential data flow are modeled

as such. Unfortunately, no access rights are required to perform either SysRemove
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or SysRevoke in the Elkaduwe model. This creates an information channel when

capabilities are deleted from objects without holding a Write or Grant capability.

In the case of SysRemove, a capability with no permissions still authorizes data

to be written. The deletion of a capability can be observed by a subject through the

attempt to use a now defunct capability. This could be caused by attempting to read

from a page no longer in virtual memory, or by attempting to invoke a capability

no longer in a CNode. Because this information flow is not captured by a SysWrite

operation, it is not modeled as data motion.

The capability derivation tree, or CDT, is modeled as an axiom that also hides

information flow at a much grander scale. The capability derivation tree is a map

from capabilities to their parent. When the parent capability is revoked, all children

are also revoked. The CDT is not modeled as part of the system and is assumed as a

function that returns some unspecified collection of capabilities to remove. Perform-

ing SysRevoke could remove any capability in the model; it follows that performing

SysRevoke may write data to as many as all objects in the system.

The CDT in the seL4 implementation is not so unconstrained. However, the issue

can still arise as the revocation of a capability will delete all derived child capabilities.

If a system is constructed such that a child capability crosses an intended subsystem

boundary, then it is possible that an unauthorized communication channel between

subsystems exists.

These flaws could have been detected if the Elkaduwe model had described in-
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formation flow occurring at each operation, as is the case in SW and SDM. If the

SysRemove and SysRevoke operations had been modeled with data motion, then

proofs of consistency between the permission state of the model and the information

flow by operations would not have been possible. Because the system is finite, such a

proof would often contain enough information to infer the conditions for a counterex-

ample, namely when no permissions are present. This would obligate an update to

the model, presumably requiring a Grant permission to perform the SysRevoke and

SysRemove operations.

These specification flaws highlight two subtleties arising when building a system

model. Deletion, even deletion of access control permissions, is a form of data flow

and can be easily overlooked when building a system model. Using emergent behavior

to define expected behavior weakens a model.

The Boyton model is the second take-grant model developed for seL4. [Boy09]

It’s primary contribution is to extend the Elkaduwe model to reason about shared

capability storage. Like most capability-based systems, seL4 uses capabilities to build

high-level structures such as address spaces and applications. Some of these structures

may be understood by the kernel itself, as is the case for address spaces. This causes

some interpretations of the security infrastructure to appear to modify objects from

a distance, such as threads modifying pages or capability-lists through an address

space.

The solution presented by the Boyton proof is to introduce a store permission into
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the system, which is required to place a capability into thread storage. Object A is

directly store-connected to B if A holds a capability with Store permission naming

B. Objects are store-connected by transitive, reflexive closure over direct store con-

nections. When examining the capabilities which may be used by an object during

any operation, all capabilities accessible in store-connected objects are considered.

The SysGrant operation is updated to write to any store-connected objects and the

SysCreate operation returns a {Grant, Store} capability. Taken together, these ad-

mit loads and stores through memory traversal to be captured by a single model

operation.

The definition of leak is nearly unchanged in the Boyton proof. Because shared

storage is another mechanism of transferring capabilities, any two objects that are

store-connected to a third can leak capabilities and are therefore connected. The

definition of a subsystem is still emergent as those collections of objects that are not

connected. As with the Elkaduwe proof, this system can only reason about emergent

mandatory properties and cannot reason about security policies, such as confinement.

Additionally, no change to capability revocation is made. Capability deletion and the

CDT remain a back-channel of information flow.

The Boyton proof does refine the notion of information flow. The definition set-

flow is defined as A can flow to B if there is a capability with Write from A to B or

a capability with Read from B to A. Flow is the transitive, reflexive closure of set-

flow. This two-stage emergent behavior is slightly more refined than the canAccess
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definition of Elkaduwe as it does not consider all connections bidirectional. However,

this definition only discusses data reads and writes that could occur via the read and

write operations excluding all others.

It should be noted that these models have never been and cannot be connected to

the current security proofs of seL4. The policies that have been verified are specified

on a per-subject basis and remain low-level. The policy developer must have deep

knowledge of primitive system structures to successfully define a policy. The policies

that can be described are global, mandatory, and cannot describe dynamic border

policies, such as confinement. Extending these policies to a high-level of abstraction

remains an unsolved problem.

13.5 CHERI

CHERI is a capability-based instruction set architecture (ISA) and compiler that

provides hardware support for the simultaneous execution of legacy and capability-

based software. [WWN+15] This support is extended to link legacy and capability-

based software libraries at either the source or binary level and does not require a

transition away from the C programming language. Offering a hybrid environment

is intended to facilitate the transition of legacy TCB software into capability-based

software.

The CHERI ISA is an extension of the 64-bit MIPS RISC ISA extended with ca-
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pability support. The CHERI CPU is implemented as an FPGA soft-core processor

with a standard MMU and capability co-processor. When the capability co-processor

is disabled, CHERI can run MIPS operating systems without modification. A system

supervisor can enable the capability co-processor to provide capability-based protec-

tion within applications.

CHERI capabilities are segment descriptors that also include permissions and a

type field. Holding a CHERI capability grants the specified access to a range of mem-

ory defined at byte-granularity. Unlike IA32 segments, capability address translation

is applied before MMU virtual address translation with the effect that capability-

based segments are internal to each MMU-based address space. The CHERI ISA

permits both capabilities and data to reside in the same MMU-based address space

and maintains a hardware-enforced separation between them. Capabilities are tagged

by a capability bit and, whenever a capability is modified by a data instruction, the

capability bit is cleared and can not be recovered. Instructions modifying capabilities

are always monotonically non-decreasing over the segment range and permissions.

Capabilities can be used either explicitly or implicitly in CHERI. They can be

loaded and stored in the capability register file, or referenced and dereferenced in

memory. Therefore, CHERI capabilites can be used as safe pointers by C compilers

similar to Cyclone’s fat pointers. [JMG+02] “Global” capabilities are universally ac-

cessible in an MMU-based address space, and can be used to provide legacy software

and libraries access to specific portions of an application heap.
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CheriBSD is a modification of FreeBSD to support hybrid application compart-

mentalization using CHERI. Like a traditional Unix, each application is given its

own MMU-based address space. Capability-based compartmentalization is primarily

managed via the construction of a per-thread trusted stack that links a chain of dis-

joint per-compartment stacks. Invocations of CCall (or resp. Return) push (or pop)

a capability to a new (or the previous) compartment stack to (or from) the trusted

stack to preserve compartmentalization. CheriBSD also provides ABI wrappers to

link capability-based software libraries with legacy libraries within an application,

and vice versa. These wrappers come in two varieties with different goals: one en-

forcing the greatest compartmentalization and one enforcing the most compatibility.

To support the use of capabilites when communicating with the system, CheriBSD

provides capability-based wrappers for many system objects.

SDM models pure capability-based systems and is not intended to model hybrid

systems like CheriBSD. Although CheriBSD guarantees compartmentalized code is

capability-based and limits legacy access within compartments, it necessarily imple-

ments standard Unix mechanisms for legacy applications and libraries. These appli-

cations are not bound by capability-based access control, making cross-compartment

policies difficult to implement.

SDM can be applied to a capability-based system running on CHERI, but may also

be applicable to a compartment running in CheriBSD. Compartments in CheriBSD

may be made purely capability-based, even when linked against legacy code using an
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ABI wrapper. This might be accomplished by a compartment that does not permit

global capabilities and only links legacy libraries fully sandboxed using capabilities.

All access within such a compartment must be governed by the use of capabilities, in-

cluding access outside the system. Provided no system object can be used to fabricate

capabilities, the constructor pattern can be applied by a one-to-one correspondence

with SDM objects and operational semantics.
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Conclusion

This dissertation presents SDM: a general, extensible model for capability-based

systems and a subsequent mechanically checked proof of confinement. Confinement

is the security policy requiring all outward information flow from a subsystem to be

authorized. Despite practical implementations of confinement in capability-based sys-

tems, the enforcability of confinement continues to be questioned. The mechanically

verified proof herein is designed to allay remaining concerns in that regard.

Confinement is relevant to security in capability-based systems for many reasons.

Confinement sits at the border of mandatory and discretionary policies and is capa-

ble of implementing either. Given a composable confinement mechanism, applications

can enforce robust security policies, scoping authority precisely where it is needed and

consequently limiting the impact of faults. Different portions of the system can op-

erate under distinct security policies implemented by independent security managers
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and mutually suspicious security managers can limit the interaction of the subsys-

tems under their control. Confinement is not a built-in policy for capability-based

systems; it is application-defined and non-privileged. The enforcability of confine-

ment validates further use of application-defined polices. Confinement also forms

the foundation of agency, providing a user with reasonable certainty that a program

wielding a their authority is acting on their behalf.

The constructor pattern is used to implement confinement in many capability-

based systems. The constructor is a trusted subsystem used to define and fabricate

new confined subsystems. The constructor is responsible for performing the confine-

ment test on the subsystem image, permitting parents to establish the confinement

of new subsystems in advance of requesting their instantiation.

New subsystems are confined by the manner of their instantiation. The constraints

placed on the construction of a confined subsystem are simple. All unauthorized capa-

bilities in the new subsystem must be weak-only, trivially non-mutating, or completely

internal to the subsystem. In the constructor pattern, capabilities to recursively con-

fined constructors may also be permitted. Such constructors preserve confinement by

induction.

SDM increases confidence in the confinement mechanism by using automated veri-

fication to increase rigor and simplify review. All of SDM is embedded and checked in

the Coq proof assistant providing assurance for a correct proof execution. While this

allows reviewers to safely elide complexities of proof execution, relevant definitions
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and theorems in SDM are intended to be amenable to review. Operations are defined

legibly in three parts: a pre-condition, state-transition, and an upper-limit on infor-

mation flow. The entire model is axiom-free and includes a trivial implementation

for each abstraction. The implementation functions terminate and its data struc-

tures are finite. These two features eliminate the places where verification executions

might contain flaws overlooked during review. Therefore, SDM presents a proof that

capability-based systems can enforce confinement which is both comprehensive and

comprehensible.

SDM contains the first mechanically verified proof of the safety property for

capability-based systems. It defines a least upper bound on all potential access and

describes how potential access evolves with each system operation. The potential

access of the system is always decreasing between all existing objects and must also

be decreasing between any existing subset of those objects. As an upper-bound,

potential access solves the safety property for capability-based systems.

SDM demonstrates a least-upper bound on information flow for object-capability

systems. Even though the system models potential data flow at each operation,

the potential for all data motion corresponds to potential access. Intuitively, this is

because each operation requires a capability with access rights which correspond to

the information flow that occurs.

SDM provides the first mechanically verified proof of confinement for capability-

based systems. The resulting upper-bound on information flow is used to validate
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the confinement test as a post-condition on the construction of new subsystems. The

potential information flow out of a subsystem passing the confinement test is verified

to be identical to the potential information flow of all subsystem consisting only of

authorized capabilities. Therefore, the confinement test must produce a confined

subsystem.

This dissertation also demonstrates how SDM can be applied to many capability-

based systems and related models. SDM can be applied to KeyKOS, EROS, Coyotos,

and seL4 and may be generally applied to many other capability-based systems. SDM

specifically targets modeling Coyotos, a microkernel designed to be embedded for ver-

ification. The seL4 microkernel is also of interest as it has already been mechanically

verified to meet its abstract specification. The SW proof upon which this model

was originally based has been updated with the results of SDM. This update makes

no substantive changes to the statement of the main theorem or underlying system

and consequently preserves any results based on the SW proof. SDM conclusively

demonstrates the enforcability of confinement in capability-based systems.
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