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Preface

Work started on the CAP project in 1970. The initial planning was done jointly by
both authors, but as time went on itwas the firstauthor who assumed leadership
of the project and was reponsible for most of the major decisions. The origin of
the project lay in two visits paid by the second author in June 1968 and August
1969 to the Institute for Computer Research at the University of Chicago.
Professor R. Fabry, then a graduate student, was there working under Profesor V
H.Yngve on the design of a computer with hardware-supported capabilities. We
felt that this approach to memory protection broke new ground, and that it
should be followed up by building a computer on a sufficiently large scale to
support a complete operating system. As time went on the decision was taken
(by RMN) to base the design on implicitly, rather than explicitly, loaded capabil-
ity registers. This is perhaps the most distinctive feature of the CAP computer
from the hardware point of view.

Professor D. J. Wheeler took on his competent shoulders the responsibility for
the design of the CAP hardware. He was ably assisted by Mr. N.W. B. Unwin. Mr.
V. Claydon was responsible for the mechanical work, and Mr. D. B. Prince and
Mr. R J. Bennett assisted with the commissioning. It contributed immensely to the
success of the project that the design and construction of the CAP computer was
carried through to high professional standards and fully met its specification.
Professor Wheeler himself took a close interest in the project in all its aspects and
we have profited greatly from the continuing discussions we have had with him.
The CAP project was an exercise in the design of a coordinated hardware,
firmware, and software system. A number of proposals for the protection
structure were examined and it was decided to adopt one that had been worked
out in some detail by Dr. R. D. H. Walker in his doctoral thesis. Dr. Walker
remained in the Laboratory as a member of the Faculty and was responsible for
much of the implementation. In particular, he designed and implemented the
microprogram and the input-output system.

The choice of a programming language for an operating system is a crucial
one. Early in the CAP project two workers in the Laboratory, Dr. S. R. Bourne and
Mr. M. J. T. Guy, produced a compiler for a very small subset of ALGOL 68. It
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appeared to us that this language had potential meritas a system programming
language and we were able to provide support for a small group which, under
Dr. Bourne, was eventually reponsible for the ALGOL 68C system. As a system
program language ALGOL 68C has proved a distinct success, and we hope that
the programs given at the end of the book will be of interest from this point of
view, as well as from the point of view of the CAP system itself. Dr. A. D. Birrell,
who had worked as a graduate student under Dr. Bourne, was responsible for
transferring the ALGOL 68C compiled to the CAP computer and writing the run
time system. He went on to make a substantial contribution to the operating
system, including the filing system. Many of the major protected procedures in
the system were written or specified by him.

R. M. N.
M. V. W.

Cambridge, England
May, 1979
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CHAPTER 1

CAP FUNDAMENTALS

The need for hardware memory protection was first met when

operating systems which permitted the running of users' programs written

in a variety of languages, including assembly language, came into use.

One early system, the CTSS, had a separate memory to hold the supervisor

and this memory could be accessed only when the computer was in

privileged mode. More flexibility in the use of available memory space

is required and it is now common for computers to be provided with a

number of base-limit registers, each of which, when appropriately loaded,

points to and delimits a segment of memory; when the computer is

operating in normal mode only those parts of the memory that lie within

segments pointed to by base-limit registers are accessible. Associated

with each base-limit register are a few extra bits which define the type

of access permitted, for example, read-only, read-write, execute-only,

etc. If an attempt is made to access memory outside the permitted limits

or to make an access of a forbidden type, the hardware switches the

computer to privileged mode and sends control to a place in memory

determined by the nature of the violation that has occurred. This type

of organisation is illustrated in Figure 1.1, taken from Wilkes (1975),

where a fuller discussion of such memory protection systems will be

found.

In systems like that shown in Figure 1.1, loading of the

base-limit registers can only take place when the processor is operating

in the privileged mode; since only trusted programs belonging to the

operating system are allowed to run in privileged mode, effective control

is established over what goes into the base-limit registers and hence

over which segments of memory are made accessible at any given time.

Systems such as the CAP work on a different principle. There is nothing

privileged about the operations of loading the base-limit registers, but

the bit patterns that can be put into them are strictly controlled. Only

words taken from a set that is closed as far as the user is concerned can

be caused to go into the base-limit registers. In a rather similar way

one can prevent the unauthorised firing of a gun by either restricting

the loading of the gun to trusted personnel, or by mounting a guard on

the ammunition. Either of these precautions, if rigorously enforced, is

effective by itself and there is no need for both.

The difference between a conventional processor with a privileged

mode and one with CAP-like architecture is emphasised by the use of

different terminology. In the case of the conventional processor the
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Instruction register BASE-LIMIT REGISTERS

I'M • "
ENABLING FLIP-FLOPS

Read

Write

MODE FLIP-FLOP

Program counter

Setting of enabling flip-flops

Execution sequence:
Set M = B+p ifp<L; otherwise trap
Fetch instruction into instruction register
Set enabling flip-flops from Cs
Set M = Bs+a if a<Li; otherwise trap
Execute instruction; trap if execution not enabled
Increment p
Repeat

Trap sets mode flip-flop

Memory address
register
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R
RW
E

Read

*
*

Write

*

Figure 1.1 A Protection Architecture Using Base-Limit Registers
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words that go into base-limit registers are called segment descriptors,

whereas in the case of the CAP and similar machines the base-limit

registers are renamed capability registers and the words that go into

them are called capabilities. A capability contains a base, a limit, and

an access code.

Capability Architectures

In a machine with a capability architecture the memory thus

contains words of two different types, namely, data words (which term

includes instructions) and capabilities. In order to be able to access a

segment of memory it is necessary to possess a capability for it.

Protection depends on the fact that capabilities cannot be forged. It

must not be possible, unless the necessary high degree of privilege is

available, for a bit pattern to be generated in an arithmetic register

and transferred, via the memory or otherwise, to a capability register.

Thus while capabilities may be manufactured by the part of the system

whose function it is to do this, they may not be counterfeited elsewhere.

Data words and capabilities are stored in distinct segments and

no segment ever contains a mixture of data words and capabilities. There

are two different types of capability, namely D-type and C-tvpe.

Possession of a D-type capability for a segment enables words to be

transferred from that segment to an arithmetic register, or vice versa;

possession of a C-type capability enables words to be transferred from

the segment to a capability register, or vice versa. In the CAP it also

enables certain digits in the word to be transferred from the segment to

an arithmetic register, but not the other way round. The former involves

no loss of protection, but it does enable the bits in a capability to be

inspected. If the only capabilities that were to exist giving access to

segments containing capabilities were of C-type and the only ones that

were to exist giving access to segments containing data were of D-type,

then the system would be intolerably restrictive. Relaxation of the

rules is, however, possible in a controlled manner. For example, in the

CAP operating system a certain procedure, responsible for performing

housekeeping tasks necessary after the occurrence of an interrupt, is

given a D-type capability for a segment containing capabilities.

Elsewhere that segment is accessed by means of a C-type capability.

Thus, although we may speak of capability segments and data segments, we

do not imply that capabilities for them are always of a particular type.

There must be one very highly trusted system procedure that has both a

C-type and a D-type capability for the same segment. This protected

procedure may be likened to the Royal Mint, since it may perform legally
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CAPABILITY REGISTERS ENABLING FLIP-FLOPS
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Figure 1.2 A Protect ion Archi tecture Using Capabi l i ty Registers
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what would elsewhere be an act of forgery; that is, it may manufacture

capabilities. Figure 1.2, also taken from Wilkes (1975), shows the type

of organisation just described.

Loading of the capability registers may be done explicitly by

instructions included for that purpose, very much in the way that index

registers are loaded. Plessey System 250 works in this way. In the CAP

computer loading of the capability registers takes place implicitly when

capabilities are referred to. The capability registers form, in effect,

an associative memory that operates in very much the same way as the

associative memory used in a paging system.

In the CAP and similar machines the rules governing the

manipulation of capabilities are enforced by hardware. In systems of

which HYDRA is an example, similar rules are enforced by software, the

computer on which the software runs being a conventional one with a

privileged mode. The fact that it is possible to implement capability

systems in software should not be allowed to obscure the essential

difference between computers with conventional hardware and those with

capability type hardware; nor should the fact that base-limit registers

and capability registers play a similar role in addressing memory.

The Control of Privilege

The conventional system with a privileged mode enables facilities

for memory protection to be put at the disposal of the writer of the

operating system. Similar facilities cannot, however, be put at the

disposal of the designer of a subsystem (for example, a transaction

processing subsystem, or a real time subsystem) which will run under the

main operating system unless he is allowed to incorporate part of his

subsystem within the operating system. Protection systems that have

levels or rings of protection enable this difficulty to be overcome,

provided that the writer of the operating system does not use all the

levels himself, but leaves some to be used by writers of subsystems. In

a capability system there is no difficulty in placing at the disposal of

the writer of subsystems facilities which are exactly similar to those

available to the writer of the main system. Moreover, they can be

extended' if necessary to the writers of sub-subsystems. Furthermore,

there is nothing hierarchical about capabilities, whereas with rings of

protection a process has access to everything in its own ring and to

rings outside it. It is this non-hierarchical characteristic of

capabilities that is perhaps their most distinctive feature.

A hierarchical organisation is appropriate to the management of

the flow of control (since there must be some pinnacle of authority) but
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it is unnecessarily restrictive in the case of protection. This fact

must have become apparent to anyone who has tried to plan a system of

locks and keys for a building with a master key, submasters, and so on.

The realisation that a hierarchical system of memory protection is

inadequate came almost simultaneously to operating system specialists and

to programming language specialists. To the former one of the principal

attractions of capabilities was that they seemed to lend themselves

naturally to a non-hierarchical protection scheme. The latter took up

ideas that had already appeared in SIMULA and other languages and

generalised them under the name of abstract data types.

Memory protection can be thought of in two ways: in terms of

addressing or in terms of lookout. The former is exemplified by the

scope rules of a high level language. A programmer has no way of

addressing a variable that is out of scope; he may think that he can do

so, but the identifiers that he writes under this misapprehension will be

invalid and his program will be rejected by the compiler. Similarly, the

possession of a capability for an object gives the programmer a means of

addressing that object; without the capability he cannot validly even

refer to it. On the other hand, in a programming situation in which all

variables are global, the programmer may have accurate knowledge of where

the various objects are in memory or know valid symbolic addresses for

them. However, if he refers to an object in a part of the memory that is

locked out, when the relevant instruction comes to be executed the memory

protection system will produce a run time trap.

There is a further requirement for an ideal memory protection

system that has little to do with the original motivation for providing

memory protection. This requirement is that at any time the running

procedure should have access only to the data that it requires and to

nothing else. Moreover, it should be possible by inspecting the program,

or by examining a run time trace, to determine unambiguously which data

are in fact accessible. Benefits flow from this both at the time when

the operating system is being developed and when it is being run in

service. During development a large class of program errors, namely

those which lead to a procedure attempting to access data segments which

it should not access, can be readily and surely located. When the system

is put into service any residual bugs can similarly be found and dealt

with in such a way that they are unlikely to reappear. At the same time,

there will be a much reduced likelihood that they will cause widespread

corruption of data held in the system. The same applies to bugs

inadvertently introduced into the system when changes are made to correct

defects or to introduce new facilities. If the effects of such



CAP FUNDAMENTALS 7

consequential bugs can be contained, then the management will make

changes with more confidence and be more willing to respond to users'

requests. A protection system that enables access privileges to be kept

at all times to the minimum also goes a long way to containing the

effects of hardware faults, since many of these will lead to run time

violations before they have had time to cause widespread corruption of

information in the system. To sum up, one may say that a protection

system that enables access to be limited in the manner described makes

the system more rugged and better able to withstand the strains imposed

on it in practical operation.

THE CAP SYSTEM

Domains of Protection

The set of capabilities to which a process has access - that is,

can cause to be loaded into the processor capability registers -

constitutes the domain of protection.

A special instruction is needed for changing the domain of

protection. Such a change is associated by convention with the process

entering a new procedure and the instruction is known as an ENTER

instruction. The ENTER instruction is, therefore, a special kind of

procedure call. In the early studies of Fabry (see Wilkes, 1975) on

which Figure 1.2 (page 1) is based, it was envisaged that, before the

execution of an ENTER instruction, a number of capabilities would be

loaded into capability registers and that these capabilities would

continue to be available to the process when it had entered the

procedure. Such capabilities would in effect be passed as parameters to

the procedure; since one or more of them could be a capability for a

capability type segment, there would be no limit to the number of

capabilities that could be passed in this way. One of the capability

registers could, by convention, be used to hold the capability for a

segment containing global capabilities that were always to be available

to the process.

In order for an ENTER instruction to operate correctly in the

system shown in Figure 1.2 an enter capability, denoted by EN, must be

loaded into one of the capability registers. The enter capability

specifies a segment of memory that is, in fact, of capability type. The

first entry in this segment is by convention a capability for the code

segment of the procedure. The ENTER instruction brings about two

actions. One is to transfer control to the code of the procedure (at a

specified point, namely the beginning) and the second is to make
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available to the process a regular capability for the segment specified

by the enter capability. It will be seen that the sole use that can be

made of an enter capability is to use it in conjunction with an ENTER

instruction to enter the procedure to which it refers. The capability

segment specified by the enter capability contains capabilities that are

intended for use by any process that has occasion to run in the

procedure, but only while it is actually doing so. There is no way in

which the process can get access to these capabilities without entering

the procedure. The code of the procedure must be so written that, at the

time of exit from it, none of these capabilities are loaded in capability

registers. In certain circumstances a simple jump might be used for

leaving the procedure. This, however, would imply that the procedure was

thoroughly trustworthy, since a jump to the wrong location could give

rise to loss of protection. This potentially dangerous situation can be

avoided if an ENTER instruction is used for leaving a procedure as well

as for entering it. A procedure designed in this way may be called a

protected procedure. There is a close parallel between protected

procedures and abstract data types.

In the CAP project these ideas have been developed further. A

program is regarded as being composed of a collection of protected

procedures, so that at all times the process is running in one protected

procedure or another. It is moreover recognised that, in accordance with

the principles of structured programming, protected procedures will be

used in a nested manner; consequently parameter passing is implemented by

means of a stack and there is a RETURN instruction that has the effect of

restoring the situation that existed before the corresponding ENTER

instruction took effect. The RETURN instruction is used for leaving the

procedure instead of another ENTER instruction, and has the same property

of preventing any leakage of capabilities from one domain to another.

The fact that the system is designed on the understanding that the

programmer will use nested ENTER and RETURN instructions to give a

hierarchical organisation to the flow of control does not in any way

imply a hierarchical protection system. In fact, as already pointed out,

in a capability architecture the two functions of organising the flow of

control and of providing protection are completely divorced. In the CAP,

a protected procedure consists of code and data segments encapsulated so

as to form a single object. Very frequently the same code segments or

data segments are used with different workspace segments by a number of

protected procedures performing similar functions for different processes

or for the same process but in different circumstances. These are

referred to as instances of the same protected procedure.
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Protection Environment for a Process

There is in the above discussion an implicit assumption that one

process only runs in the computer at a given time. Something more is

required if it is desired to design an operating system that will run a

number of independent user jobs at the same time. In such systems each

user job runs as a separate process, that is, it has its own virtual

processor. One of the functions of the operating system, or more

strictly of that part of the operating system sometimes known as the

coordinator, is to create a sufficient number of virtual processors from

the limited number - in practice one or two - of real processors with

which the system is provided. This it does by time slicing. Each

process has its own process base, in which its status is recorded when it

is not actually running in one of the real processors. The user

processes may be regarded as subprocesses of the main process that runs

in the coordinator.

It is necessary to be able to give one user process privileges

that are not given to another, and vice versa. Thus, on activating a

user process, the coordinator must define a protection environment for it

to run in. This environment includes all capabilities that the process

will need, but in general, not all of them will be available to the

process at the same time; as it runs it will move from one domain of

protection to another, the changes being brought about by the execution

of ENTER instructions in the manner described above.

Having defined the protection environment, the coordinator must

cause the user process to be entered. Return to the coordinator can take

place either as a result of the process executing the appropriate

instruction, or as a result of the occurrence of an interrupt or a trap.

In all cases the status of the process must be preserved. It may be

noted that in a capability computer there is more information to be

preserved than in a conventional computer. When a process is entered

from the coordinator sufficient information must be recorded in the

microprogram memory to make the return possible. Specially

microprogrammed operations must therefore be provided both for entering

and returning from a process. The way in which this is done in the CAP

system is described below.

Relative Capabilities

In a segment capability as so far defined, the base is an

absolute address in memory and the capability selects a segment out of

the entire available memory. Such capabilities may be called absolute

capabilities. A natural extension is to define a relative capability in
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which the base is specified relatively to the base of some other segment;

thus, a relative capability selects a subsegment out of a segment already

defined. In addition to the three components already mentioned, namely,

base, limit, and access code, a capability must now include a reference

either to the whole memory or to some other capability. In formal terms

this may be expressed as follows:

capability ::= (base, limit, access code, reference)

reference ::= whole memory I capability

There is thus a chain of reference leading back from a relative

capability and ultimately terminating on an absolute capability. By

following this chain back a relative capability may be evaluated. that

is, replaced by an equivalent absolute capability. The access code in

this absolute capability is computed during the process of evaluation so

as to be in no respect more permissive than any of the access codes

encountered on the way.

The ability to create relative capabilities facilitates the

handing on by a process to subprocesses dependent on it of a selection of

the memory access privileges that it has available. The fact that all

capabilities in the system are ultimately dependent on a relatively small

number of absolute capabilities also facilitates memory management and

the revocation of outdated capabilities when that becomes necessary.

The Process Resource List

The set of capabilities available to the coordinator are

contained in a segment known as the master resource list (MRL).

Similarly, the set of capabilities available to a subprocess running

under the coordinator are contained in a segment known as its process

resource list (PRL); there is one PEL for each subprocess. PRLs contain

relative capabilities defined ultimately with respect to absolute

capabilities in the MRL. The MRL is the only place where absolute

capabilities are to be found.

The capabilities directly available to a process at any time are

contained in a number of capability segments. There is hardware support

for up to 16 such segments but, in the ordinary way, processes use six

only. These are numbered from 1 through 6, but are also referred to by

the letters G, A, N, P, I, and R. The G capability segment contains

global capabilities and remains unchanged during the life of the process.

The P, I, and R capability segments are changed when an ENTER instruction

takes effect and the process enters a new protected procedure. P is

commonly used to contain capabilities for code segments, I to contain
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capabilities for a stack and other segments peculiar to the process, and

R to contain capabilities for data segments permanently associated with

the procedure. These uses are, however, a matter of convention. Not all

protected procedures make use of both I and R. The N and the A

capability segments are implemented as the top and next to the top items

on a stack known as the C-stack. An ENTER instruction pushes the stack

down and the old N capability segment becomes the new A capability

segment. A MAKEIND instruction creates a new N capability segment on top

ready for the next call. A RETURN instruction pops the stack up and

reverses the effect of ENTER.

Implementation of ENTER. RETURN, and MAKEIND .Instructions

The actions of the ENTER, RETURN, and MAKEIND instructions that

have been described above are implemented in the following manner. Slots

1 through 6 in the process base are designated to hold offsets in the PRL

of the capabilities for the 6 capability segments G, A, N, P, I, R. The

entry in the first slot remains unchanged throughout the lifetime of the

process. Offsets in the PRL of capabilities for the three segments that

are special to a protected procedure are held in the enter capability for

the procedure, and are copied by the ENTER instruction into slots 4, 5,

and 6 in the process base, where they overwrite the entries that were

there before. The ENTER instruction also copies the entry from slot 3 to

slot 2, thus making the old A capability segment become the new N

capability segment. The MAKEIND instruction forms a new capability

segment at the top of the stack and puts the capability for it into

either slot 2 or slot 3 in the PRL, these slots being used alternately by

MAKEIND instructions. The ENTER instruction preserves on the stack

sufficient information about the former entries in the slots in the

process base and the PRL for them to be reinstated in due course by a

RETURN instruction. The first item in the P segment of a protected

procedure is a capability for a segment containing the code and the final

act of the microprogram implementing the ENTER instruction is to transfer

control to the beginning of this segment.

The example on the next page shows the contents of the PRL of a

process, together with the contents of its process base, before and after

entering a new protected procedure.
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seg C-stack
seg A1

seg N1

seg I1

enter 6 , t ,7
seg P1

seg R,

seg G

seg R2

seg P2
-
-
enter 11 , 15, 10

seg I2_

0

1

2

3

1)

5

6

7

-

1

2

3

6

i)

7
-

-

1

3

-

1 1

15

10

-

-

1

3

2

1 1

15

10

-

The PRL contains a mixture of segment capabilities and enter

capabilities. The contents of the process base are shown as follows:

(a) when the process is running in protected procedure 1.

(b) after the execution of an ENTER instruction using the enter

capability at offset 14 in the PRL. The process is now running

in protected procedure 2. Nothing has been changed in the PRL,

but the segment corresponding to the capability at offset 2

should now be known as A2 instead of N, .

(c) after the subsequent execution of a MAKEIND instruction. A new

N segment, N2, has been created on the C-stack and (although

this does not appear in the table) a capability for it has been

put at offset 2 in the PRL overwriting that for A1 . The

execution of a RETURN instruction in protected procedure 2

restores the process base to the state shown at (a), and also

restores the PRL to its original state.

It will be observed that the capabilities for the three

capability segments associated jointly with the process and the procedure

are in the custody of the process, since they are embedded - or rather

pointers to them are embedded - in enter capabilities held in its PRL.
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The only way that the process can make use of these capabilities,

however, is by executing an ENTER instruction for the protected procedure

with which they are associated.

The address of a word in memory must specify the identity of the

capability segment containing the capability for the segment concerned,

the offset of the slot in the capability segment containing that

capability, and finally the offset in the segment of the word required.

Thus an instruction to add into the accumulator word 26 of the segment

defined by a capability standing in the P capability segment - that is,

capability segment number 4 - at offset 3 could be written:

XADDS 4/3/26

The number of the capability segment and the offset in it - 4/3 in this

instance - are together referred to as the capability specifier.

Setting Up a Subprooesa

In order to activate a subprooess the coordinator must possess or acquire

a segment which will become the PRL of the subprooess. This segment will

contain the capabilities that the subprooess will need, together with

capabilities for segments that will form its process base and capability

segments. The coordinator then executes an ENTER SUBPROCESS (ESP)

instruction having as an argument a capability for the segment just

mentioned. The microprogram which executes the ENTER SUBPROCESS

instruction dumps the status of the coordinator's process in its own

process base and activates the subprocess. Return to the coordinator is

brought about in due course by the execution of an ENTER COORDINATOR (EC)

instruction. This dumps into the process base of the subprocess the

status of that subprocess, and reloads the status of the superior process

from the process base of the coordinator.

The CAP microprogram was designed in such a way that a

subprocess, for example a user process, can itself act as a coordinator

for subprocesses running below it. For each subprocess it must first of

all prepare a segment which will act as the PRL. It can then enter or

re-enter the subprooess as necessary by executing an ENTER SUBPROCESS

instruction with a capability for that segment as argument. The

subprocess can act in a similar way, so that a hierarchy of coordinators

of indefinite depth can be established, the top coordinator being known

as the master coordinator. Although this feature was implemented and is

described in what follows, it has not, in fact, been found to be useful

for the purposes for which it was intended. The reasons for this will be

discussed in Chapter 5.
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Note on Nomenclature

Two extreme points of view may be taken about the status of the

entries in capability segments and in PRLs. They may be regarded as mere

pointers constituting a chain of reference which finally ends on the

absolute capability in the MRL. The term capability is then reserved for

what has been termed above as an absolute capability. The other extreme

is to refer to all the entries as capabilities whether they occur in the

MRL, PRL, or a capability segment, it being understood that the actual

format is not necessarily the same in all cases. The latter point of

view has been adopted in the present book. In some publications relating

to the CAP, entries in capability segments have been referred to as

capabilities, but in the case of PRLs the term PRL entry has been used.

The same was done for the MRL. In earlier publications the capability

segments were referred to as indirection tables or indireotories: this

nomenclature emphasised the fact that the capability segments serve to

provide access to a selection only of the capabilities in the PRL.

lhe__JIaj3abilltv_Loading Cycle

In the CAP there are 6'1 capability registers contained in a 64

word store known as the capability store. No segment can be accessed by

the main memory access circuits unless an (evaluated) capability for it

exists in this store. If a capability is referred to in the address of

an instruction and it is not already to be found in the capability store,

the microprogram automatically enters the capability loading cycle. This

cycle evaluates and loads the missing capability, if necessary

overwriting, according to appropriate rules, a capability already loaded.

In addition to holding evaluated capabilities, the capability store also

contains a data structure which ( 1) provides a chain of reference from

each evaluated capability back to the absolute capability in the MRL on

which it is ultimately based, and (2) provides a backward chain of

reference for nested ENTER SUBPROCESS instructions.

To evaluate and load a segment capability, the microprogram first

reads the capability from the capability segment in which it resides.

Like all segment capabilities, it will consist of a relative base, a

size, and an access code, along with a pointer to the capability in the

PRL of the process. This latter capability will next be read from the

PRL and will again consist of a relative base, a size, and an access

code, together with the address of a capability in the address space of

the next superior process. The bases, sizes, and access codes are

combined according to obvious algorithms, and then the cycle proceeds

with the reading of the capability in the superior's address space, just
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as was done for the capability in the junior's address space. The cycle

continues in this way and finally terminates when the MRL is reached.

When a capability loading cycle has terminated and the evaluated

capability has been loaded, the original instruction in the program which

gave rise to the initiation of the capability loading cycle is retried

and, if all has gone well, will now be executed successfully. It may,

however, happen that at some stage in a loading cycle a capability needed

by the microprogram - possibly for a capability segment - is found not to

be loaded. It would be awkward to make the microprogram work

recursively, and instead the following procedure is adopted. If a

capability needed by the microprogram is found to be missing, the current

capability loading cycle is abandoned and a new one initiated to load the

missing capability. This cycle may itself have to be abandoned and

another initiated. The process of initiating capability loading cycles

and abandoning them will be continued as long as necessary, but

eventually a cycle will run to completion and an evaluated capability

will be successfully loaded. The original instruction will then be

retried and, since the capability that was missing initially will still

be missing, the whole procedure will be repeated. Quite possibly the

original instruction may have to be retried a number of times, but

eventually all the required capabilities will be loaded and the

instruction will be successfully executed.

The overwriting rules for the capability store are designed in

such a way that the chains of reference referred to on the previous page

are preserved intact. In particular, the evaluated capabilities for the

MRL and the process base of the top level process are never overwritten;

neither are those for the PRL and the process base of the current

process, nor those for capability segments that have evaluated

capabilities in the capability store. During the capability loading

cycle a wide variety of errors may be detected. For example, a

capability segment may contain a pointer beyond the end of the PRL, or a

PRL may contain an address that is invalid in the environment of the

superior process. Altogether there are 16 distinct types of capability

loading cycle trap. Some of these traps may be caused by the user

writing an erroneous virtual address, others can reflect a corruption of

the system or a subprooess set up incorrectly, while some may be

deliberately caused to indicate, for example, that a segment asked for is

not loaded in the main memory. In all oases the microprogram action is

the same: it causes the coordinator of the offending process to be

resumed and supplied with detailed information about what has occurred.

It is then entirely up to the software to classify and interpret the
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various causes of failure. It may be noted that, since the error action

is to resume the next senior process, there is no means of handling

faults of this, or indeed of any other, kind in the most senior process.

Reliance, therefore, must be placed on the master coordinator being

written correctly and all the material that it requires must be kept

permanently in main memory.

Capability Handling Instructions

In addition to the ENTER, RETURN, MAKEIND, ENTER SUBPROCES3, and

ENTER COORDINATOR instructions whose actions have been indicated above,

there are three other instructions which concern capabilities. The

MOVECAP instruction enables a capability to be copied from a capability

segment to another segment for which write capability access is

available. The REFINE instruction copies a capability in the same way as

MOVECAP but, in addition, is able to alter the base, size, and access

code in the capability 30 that the access it affords is restricted. The

FLUSH instruction is used to ensure that the capability store does not

contain capabilities that have become obsolete as a result of changes

made to one or more of the capability segments or PRLs which were used by

the capability loading cycle when it loaded them. The operation of

flushing is done automatically in the case of MOVECAP and REFINE; an

explicit FLUSH instruction is only required on the rare occasions when

changes to a capability segment or a PRL are made by a (highly

privileged) procedure that has D-type access to it.

Capability Formats

All capabilities occupy two consecutive words in the CAP memory.

The leading bits of the second word always indicate the type of the

capability. In the case of a segment capability, the first word contains

either an absolute memory address or, in the case of a relative

capability, a reference to the capability with respect to which it is

defined. In the case of a capability in the PRL, the reference consists

of a segment specifier; in the case of a capability in a capability

segment, the reference is to the PRL and consists simply of an offset.

The second word in a segment capability contains a statement of the

length of the segment. It also contains five access bits known as WC,

RC, W, R, E, corresponding respectively to write capability, read

capability, write data, read data, execute instruction.

The format of an enter capability depends on whether it occurs in

a PRL (or in the MRL) or in a capability segment. In the former case,

the first word contains three 10 bit numbers. These are offsets, in the
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same PRL (or in the MKL), for the slots where capabilities for the P, I,

and R capability segments are to be found. The second word contains 14

bits, which are known by analogy with the bits in a segment capability as

access bits. All that the microprogram does with them, however, is to

hand them over to the programmer to use as he thinks fit. In the CAP

filing system, five of these bits are used in enter capabilities for

controlling access to file directories. Enter capabilities in capability

segments are all defined in terms of a corresponding enter capability in

the PRL, and their first word simply contains the offset of this

capability. The second word contains the 11 access bits.

Peripheral Capabilities

Access to peripherals is controlled by capabilities. In order to

avoid having a special form of capability for this purpose, a device has

been adopted which involves sacrificing a small amount of main memory,

namely that in the segment delimited by the addresses 0 and 31. Each

word in this segment corresponds to one of the peripherals and any

capability that would allow it to be accessed allows the corresponding

peripheral to be activated. Instructions are provided for transferring

either a single character or a block of words to or from a peripheral.

In the CAP all memory accesses for peripheral transfers take

place in the protection environment of the process doing the transfer and

thus use the capability unit in a completely normal way. This approach

avoids the problems that arise when autonomous channels bypass the normal

protection system. It is made possible by the fact that all input and

output is buffered in an auxiliary computer. A practical consequence is

that block transfers take place in a series of bursts during which all

memory cycles are used, instead of by the more usual cycle stealing

procedure.

Software Capabilities

The protected procedure mechanism is capable, in principle, of

providing as finely structured a protection system as is required. There

are, however, certain overheads associated with the use of protected

procedures and in practice it has been found both inconvenient and

inefficient to have to establish a separate protected procedure for every

distinguishable action that it is desired to protect. Software

capabilities enable this to be avoided.

Advantage is taken of the fact that information from capabilities

can be read into arithmetic registers. A software capability is held in

a capability segment (and therefore is just as unforgeable as a regular
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capability) but it is interpreted by a program rather than by the

hardware. It enables a single protected procedure to be used to perform

a variety of related functions with separate protection for each of those

functions. The user calls the protected procedure in the ordinary way,

but quotes a software capability as an additional argument. This is

inspected within the procedure and the call rejected if it is not in

order. An example of a software capability is one giving authority for a

particular message channel to be set up by the appropriate protected

procedure. The first two bits in the second word of a software

capability indicate that it is a capability of software type. Otherwise

the way that the bits are used is a software convention and varies from

one software capability to another.



CHAPTER 2

THE CAP HARDWARE AND MICROPROGRAM

The CAP is a 32 bit computer. Those parts of the hardware that

are particularly interesting from the point of view of protection are the

microprogram unit and the capability unit, and these are described in

detail in this chapter. There is also a floating point arithmetic unit

which runs autonomously under its own control. At present the computer

has 192K words of main memory, although the addressing scheme would allow

much more to be connected. A slave store transparent to the program is

provided for the purpose of reducing the effective memory access time.

Since the construction of the CAP computer was undertaken for

the sole purpose of providing a vehicle for research in memory

protection, an approach was taken to the provision of channels and

input-output facilities which would minimise the amount of effort that

would have to be spent in design and construction. There are only two

peripheral devices attached to the CAP itself; they are a teletype and a

paper tape reader whose sole use is to load the microprogram memory from

a paper tape. All other peripheral transfers from the CAP are done via a

link to an auxiliary computer (a CTL Modular One) to which the main

peripherals are attached. These include a fixed head disc unit, a

movable head disc unit, a line printer, a paper tape punch, a paper tape

reader, and a multiplexer for users' terminals.

The microprogram is contain-ed in a memory of UK words each of 16

bits. The memory is writable, except for a few words at the top end

which contain a read-only bootstrap routine. The CAP is, however, used

in such a way that the microprogram memory is loaded once for all when

the system is initialised, and no dynamic reloading takes place during

operation. The microprogram implements a fairly conventional instruction

set and it also implements the special instructions that deal with

process and protection domain changing.

The central register unit contains 16 registers - known as BO to

B15 - which are accessible to the program and are used for such purposes

as fixed point arithmetic and address modification. There are 16 other

registers, AO to A15, which are not visible to the program, but which are

used by the microprogram for working space.

Instructions are 32 bits long, the bits being denoted by dO to

d31 starting at the least significant end. The layout of an instruction

is as follows:
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F Ba Bm N

31 24 20 16

where:

F denotes a function code given by d24-d31
Ba denotes a register identified by d20-d23
Bm denotes a register identified by dl6-d19
N denotes the signed integer formed by dO-d15

Ba and Bm are registers in the blocks of 16 already mentioned. Their

contents will be referred to as ba and bra respectively. It appears to

the programmer that BO always contains 0, although it can be used as an

ordinary register by the microprogrammer. B15 holds the address of the

next instruction in sequence. The effective address (32 bits) which is

presented to the capability unit is n = N + bm.

Representative examples of the conventional instructions are

given below with the following additional notation:

[x] denotes the contents of the memory location addressed by the 32
bit quantity x,

& is the bitwise logical AND operation.

Primes are used to denote the contents of a register or memory
location after the instruction has been executed.

Function Explanation

BN

BBPS

BEAN

BBAS

ESB

ESBPS

SLRN

MODNN

MODNS

JNLT

JSLT

SREN

SREFN

SREFS

CASE

ba' = n

ba' = ba + [n]

ba' = ba & n

ba' = ba & [n]

ba' = [n]; [n]' = ba

[n]' = ba + [n]; ba' = [n]

shift ba logically n places right

add n to address in next instruction

add [n] to address in next instruction

if ba < o then b15' = n; that is jump to n
if ba < o then b15' = [n]

ba1 = b15; b15' =n (a subroutine jump)

[ba]' = bit; [ba+1]' = b15; [ba+2]' = b13;
bit' = ba; b15' = n,

(ALGOL68C procedure call and BCPL function application)
as SREFN but b15' = [n]

if 0 < ba < n, b15' = b15 + ba

(for the ALGOL68C CASE statement)
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MOVE [bm+r]' = [ba+r] where r = 0 , 1 , 2 bn-1

GET8YTE ba' = byte bn of string of bytes starting in [bra]

Main memory

V- store

F P Unit

A regis ters

Figure 2.1 The Central Register Unit

The Microprogram Unit

Figure 2.1 is a block diagram of the central register unit

showing the data paths that exist between the various registers. The

execution of a machine instruction begins with the simultaneous loading

from memory of its 16 most significant bits into FR and its 16 least

significant bits (with the first bit extended leftward to make 32 bits in

all) into AR.
The microprogram must be able to read certain input signals and

certain internal flip flops, and must similarly be able to supply control

signals to the central register unit. For convenience all these inputs

and outputs to the microprogram are grouped together so as to be

accessible in a single address space. This is referred to as the

V-sbore, although it is not a store in any usual sense of the term. The

words in the V-store are nominally 32 bits wide, but in most cases only a
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few bits in each word have any significance. Some locations are

read-write, some are read-only, and others are write-only; some flip

flops are represented by two separate bits, one in a read-only word and

one in a write-only word. Register D (32 bits) plays a central role in

the operation of the microprogram. The results of all arithmetic and

logical operations performed by micro-instructions pass into it, as well

as going to any other destination that may be specified for them. The

same applies to information that may be read from or to the main memory,

the V-store, and the floating point arithmetic unit.

Micro-instructions fall into three groups, each with its own

format. Micro-instructions in the first group take two operands, perform

a logical or arithmetic operation using them, and send the result to a

selected destination. Micro-instructions in the second group contain a

12 bit address referring to a word in the microprogram memory and are

used for accessing that memory. Two jump instructions are included, one

of which saves a link and is used for entering mioro-subroutines. The

third group contains micro-instructions for accessing the V-store and

performing tests on information in it. This group also contains

micro-instructions for shifting the number in the central register D

either arithmetically or logically.

The microprogram addresses the main memory via the capability

unit. It does this by placing the full address - that is, capability

specifier and offset - of the required word in the 32 bit register P and

at the same time placing in the 8 bit register PAR information about the

type of memory access that is required. The capability unit is then

responsible for checking the validity of the request and adding the

segment base to the offset supplied.

The Capability_yjirt

The principal constituent of the capability unit is the

capability store which contains 61 words of 84 bits, 13 of which are used

as parity bits. The locations in this store are, as was explained in

Chapter 1, known as capability registers and contain the evaluated forms

of those capabilities that are in current use. The microprogram is

capable of accessing the capability store and is responsible for

evaluating and loading capabilities as required. Special circuits are

provided within the capability unit for performing address bound

checking, for checking access rights, and for adding the segment base to

the offset of the required word. Some of the fields in the capability

registers are used to contain pointers from one capability to another; in

this way the microprogram can establish a data structure that models
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dynamically the process structure of the program that is running. Except

when engineering tests are being done, all accesses to the main memory in

the CAP are made via the capability unit, and the checks mentioned above
are always performed.

A typical access request to the memory is for a single read or

write operation of C-type or D-type as the case may be. The memory

access cycle usually consists of two steps. The first is the execution

of a micro-instruction which loads an address into the register P and

access request bits into register PAR. As soon as this is done, the

capability unit proceeds autonomously to check that the requested access

is permitted. Step 2 is the execution of a second micro-instruction

which reads the required word from memory or writes a word to memory,

whichever is called for by the access request bits. There is an

interlock to prevent step 2 being performed before the capability unit

and the memory are ready. Other micro-instructions, unconnected with

memory access, may be placed between steps 1 and 2 and will be executed

in parallel with the operation of the capability unit. In the case of

some instructions, the access bits indicate that two accesses to memory

are required, the first being for reading and the second for writing. In

this case step 2 will consist of the execution of a read

micro-instruction and there will be an eventual third step consisting of

the execution of a write micro-instruction.

Between steps 1 and 2 the capability unit searches the capability

store for the capability specified in the address that has been placed in

register P. If this capability is not found, a trap, or rather a jump,

occurs at microprogram level when step 2 is attempted and the

microprogram routine for executing the capability loading cycle is

entered. This loads the required capability, overwriting if necessary

one of those already there. A microprogram trap of a different sort will

occur if the access demanded by the program is an illegal one, for

example, if it is to a word lying outside the limit of the segment

concerned. In this case the error is reported, via the microprogram, to

the program, where it is to be presumed there will be a routine for

dealing with the error.
In addition to the fields containing the base, limit, and access

code of a capability, each word in the capability store has a tag field

(divided into two parts), a count field, and an ancillary field. The

contents of the two parts of the tag field taken together constitute a

short term unique identifier for each capability held in the capability

store, and are used by the hardware when ascertaining whether or not a

particular capability is present. The entries in the tag field serve the
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additional purpose of giving a chain of reference back from a capability

associated with the running process to the absolute capability in the MRL

with respect to which it is ultimately defined. The second part of the

tag field of a capability associated with the running process contains

the address in the capability store of the evaluated capability for the

relevant capability segment, and the first part contains the offset in

that segment of the capability in question. The tag field of the

capability for the capability segment similarly contains the address in

the capability store of the capability for the PRL and the appropriate

offset within it. Entries in the ancillary field provide a chain of

backward reference for capability segments and PRLs. In the case of a

PRL, the entry gives the address in the capability unit of the capability

for the coordinator's process base. In the case of capability segments,

it contains the address of the capability for the appropriate PRL. There

is no entry in the case of other segments. The purpose of the entries

for capability segments is to enable a procedure to use a capability

segment containing capabilities defined at a higher level in the process

hierarchy than that of the PRL of the process in which it runs. For

reasons explained in Chapter 5 on page 59 this facility has been little

used. Figure 2.2 illustrates the way in which the two parts of the tag

field and the ancillary field are used.

It is the function of the microprogram to write information into

all the fields of the capability store and to update it as the execution

of the program proceeds. The tag field together with the fields

containing the base, limit, and access code of a capability, are

referenced during the memory access cycle by the hardware of the

capability unit which, as already explained, acts independently of the

microprogram. The count and the ancillary fields are not accessed by the

hardware and the way they are used is entirely a function of the way the

microprogram is written. The count field, as its name implies, records

the number of times the capability concerned is referenced from within

the capability unit or from one of the registers in the microprogram

unit. The information in the count field is used by the microprogram when

it is necessary to overwrite a capability in order to find room for a new
one.

Memory Access Validation

When the microprogram generates a memory request by loading P, it

simultaneously loads 8 access request bits into PAR. The capability unit

uses 5 of these bits to check the validity of the request and, if it is

valid, the bits are then used by the memory control unit which makes the
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required location in the main memory available to the microprogram. The 5

bits correspond to the following operations: write capability; read

capability; write data; read data; execute instruction. If one or more

read type bits are 1s and none of the write type bits are Is, then the

memory control initiates a memory read cycle. The microprogram is

expected to complete this cycle by accepting the word from the memory

(step 1 in the above description). If one or two write type bits are 1s,

then the memory control initiates a write cycle which the microprogram is

similarly expected to complete in due course. If a combination of both

read and write type bits are 1s, then the memory control first initiates

a read cycle. When the microprogram has completed this cycle by

accepting the word (step 2), the memory control automatically initiates a

write cycle to the same address, and this cycle is in due course also

completed by the microprogram (step 3).

In order to check the validity of a memory access request, the

capability unit first searches the capability store to see whether it

contains a capability for the segment in which the requested word lies.

In the description that follows of the manner in which the search is

made, it will be assumed that the capability unit is in normal mode.

There are three other modes which will be described later.

During the matching operation the second part of the tag field is

compared with the segment number standing in the P register. The first

part of the field is matched with a word from a small store known as the

TGM store. This contains 16 words and the one used for the match is

selected by the 4 most significant digits in the P register; these are

the digits of the segment specifier that indicate which capability

segment belonging to the current process contains the capability for the

segment being accessed. The matching operation is shown schematically in

Figure 2.3. It follows from the above description that the TGM store

must contain at the appropriate place the address in the capability store

of the evaluated form of the capability for that capability segment, and

that a copy of that address must appear in the first part of the tag

field of the evaluated capability. It is the duty of the microprogram to

write this address into the tag field and into the TGM store.

The content addressing of the capability store on its tag field

is performed partly by association and partly by searching. As seen by

the microprogram the capability store appears as a straightforward store

of 71 bits plus some parity bits, but its internal structure is more

complex. It consists in fact of two separate stores. One is a 64 word

store 14 bits wide (plus some parity bits). The second is a 16 word

store, each word containing 228 bits (plus some parity bits). The first
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store holds the count and ancillary fields of the evaluated capabilities

and the second holds the tag, base, limit, and access fields, It sets to a

word. When the capability store is accessed by the microprogram, the

appropriate set of 57 bits from the second store is selected at the
output .

number of capability segment

offset of capability in capability segment

16

offset of
required word in

target segment

search key for
tag field in
capability store

Figure 2.3

It is only the second store that is accessed autonomously by the

capability unit when searching for a capability. The search starts by

one of the locations in that store being read. The tag fields in the 4

quarter words thus obtained are compared simultaneously by the hardware

with the digits from the TGM store and the segment field of the P

register. If a match is obtained the required capability has been found

and the contents of the selected base, limit, and access fields are

passed to the request validation circuits. If a match is not obtained,

the next word in the store is read and the process repeated. This goes

on until either a match is obtained or failure reported. There is

obviously a premium on placing capabilities in the store where they will
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be found most rapidly and the microprogram is designed to do as good a

job in this respect as is reasonably possible.

The starting address for the search is derived from the it most

significant digits of the word in the TGM store used to match the second

part of the tag field by inverting the most significant digit. The

practical effect of this is to start the search approximately 32 places

on in the capability store from the address initially contained in the

TGM store. A 4 bit register, which can be read by the microprogram via

the V-store, contains a count of the number of words (if this is greater

than 2) that had to be examined before one was found that would match.

If no match is obtained, the register holds the number 15. Each word in

the TGM store contains a bit additional to those used in the match. If

this bit is a 0, the equivalence logic is disabled and a search will

always fail.

The mode in which the capability unit operates is determined by

two bits in a register accessible to the microprogram through the

V-store. Of the four possible modes, the normal mode has already been

described. In absolute mode, which is only used for the initial

bootstrap, for hardware testing, and for maintenance, all capability

checks are bypassed and the 20 least significant bits of P are routed

directly to the main memory access circuits. In this mode, parity errors

in main memory do not produce a microprogram trap during the extraction

and decoding of an instruction. In direct mode and last mode no search

of the capability store takes place. In direct mode the capability whose

tag, base, and limit fields are passed to the address validation circuits

is the one standing at the address in the capability store given by the 6

least significant digits in the segment specifier field of P. The

microprogram is thus enabled to address the capability store directly.

Last mode is used when it is required to make a series of main memory

accesses using the same evaluated capability. The microprogram must

first write the address of the capability in the capability store to the

proper place in the V-store.

Access and limit checks are made for all modes of the capability

unit other than absolute mode. The limit checking circuits will indicate

an error if the segment offset number in P is equal to or greater than

that specified in the limit field of the capability. Circuits for

performing this comparison are permanently connected and will yield a

decision in the time they take to settle down. Similarly, the

permanently connected access validation circuits will indicate an error

if any bit in the access field in P is a 1 when the corresponding bit in

the access field of the capability is a 0. As already explained, the
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corresponding traps do not take place until the microprogram attempts to
complete the memory access cycle.

The Microprogram

The CAP microprogram falls into three main parts: that which

implements the regular instruction set of the machine, that which

performs operations upon capabilities, and that which handles input and

output. The common starting point for all these is a sequence, known as

gtage li which extracts and decodes instructions. Stage 1 includes

instruction fetch, incrementation of the program counter, computation of

the effective address and its dispatch if necoessary to the capability-

unit (with the requisite access bits, if any), and branching on the

function code. These operations can be accomplished in four or five

micro-instructions, depending on the instruction being executed. For a

simple instruction, such as one which adds a number from the memory into

a register, these micro-instructions can also perform, the operations

required to complete the execution of the instruction. In more complex

cases a jump occurs and the implementation is completed by a further

sequence of micro-instructions; for example, a test-and-count instruction

takes a further three micro-instructions. All instructions are, as a

matter of policy, implemented so as to be restartable from the beginning

if a trap occurs on any memory access. The MOVE instruction and related

instructions are arranged so that, when they are restarted after an

interruption they will be resumed at the point at which they left off.

Adherence to this policy imposed a practical upper limit on the

complexity of the special instructions that could be implemented.

The part of the microprogram concerned with capability operations

may itself be subdivided into three main parts. First, there is the

capability loading cycle to which reference has already been made and

which is initiated whenever a search for a particular evaluated

capability in the capability store fails. Secondly, there is microcode

to implement a group of instructions for changing the environment and

passing capabilities as arguments. These instructions are: ENTER,

RETURN, MOVECAP, REFINE, MAKEIND, and FLUSH. The third part implements

the ENTER SUBPROCESS and ENTER COORDINATOR instructions. All the above

instructions make use of capabilities for memory access and may thus

cause capability loading cycles to be initiated. They are subject to the

same restartability discipline as are regular instructions.

The ENTER, RETURN, and MAKEIND instructions perform operations on

the C-staok. Since the C-staok is not required to be resident in memory,

it cannot be guaranteed that a capability for it will be loaded. The
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microcode for the above instructions, therefore, starts by ensuring that

this is so.
In order to make the microprogram as compact as possible, certain

common operations on the C-staok - and also on the process base - are

performed by micro-subroutines. The ENTER and RETURN instructions can

give rise to traps and there is even the possibility that the C-stack

will be malformed; care was taken, therefore, when writing the microcode

for the ENTER and RETURN instructions, to ensure that at all times one

domain or the other is sufficiently well established to have a trap

reported to it.

The MOVECAP and REFINE instructions both perform operations on

capability segments. As a result of their actions some of the evaluated

capabilities in the capability store may be rendered invalid and the

microcode must mark them as such. It must also mark as invalid any

evaluated capabilities whose original loading cycles made use of them.

The microcode for doing this is also used by the FLUSH instruction which

explicitly invalidates capabilities in the capability store.

The ENTER SUBPROCESS instruction establishes a new current PRL

and a new current process base. The microcode loads the appropriate

capabilities and checks that the segment about to become the new current

process base is adequate for the purpose; it checks, for example, that

the segment is long enough and that the capability for it gives read and

write access. One of the functions of the ENTER SUBPROCESS instruction

is to save the contents of the processor registers in the old process

base before copying new values into them from the new process base. As

an aid to handling interrupts and interprocess communication, a bit

[known, following Saltzer (1966), as the wake-up waiting switch! in the

old process base is tested and, if it is found to be set, the ENTER

SUBPROCESS instruction is abandoned. The ENTER COORDINATOR instruction

performs the converse operation to ENTER SUBPROCESS. In addition to

being entered explicitly, the microcode for this instruction is also

entered whenever any trap occurs as a result of an error detected either

by the microprogram or by the hardware.

A separate section of the microprogram deals with input and

output which, as already explained, are handled through a peripheral

computer. There are instructions for transferring both single characters

and blocks of words, and for issuing commands to peripheral devices. All

such instructions must be supported by an appropriate capability.

Information is transferred by the microprogram from a buffer in the CAP

computer to a buffer in the peripheral computer and vice versa. These

buffers are in areas set aside for the purpose in the main memories of
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the two machines and the microprogram is responsible for the manipulation

of the necessary pointers. For efficiency reasons the microprogram

stores some information relating to input and output in the microprogram

memory. Input and output is handled within the current process so that

all accesses to the main memory of the CAP use the capability unit in the

regular manner and may, in particular, give rise to capability loading

cycles and virtual memory traps.

The modular nature of the CAP microprogram makes it possible to

introduce changes in one part of the system without affecting others.

For example, it would be possible to experiment with different protection

structures by making changes to the part of the microprogram that handles

capabilities and implements the capability loading cycle; other parts

would be very little affected.



CHAPTER 3

THE CAP OPERATING SiSTEM

The CAP operating system is intended to provide an environment in

which users' programs may run and in which they may take full advantage

of the hardware-supported capability system of the machine. It is also

intended to constitute in itself an example of the exploitation of those

facilities.

The operating system, like all other programs in the CAP,

consists of a collection of protected procedures with linkage between

them provided by the microprogram. In particular, the microprogram

supports the ENTER instruction, by which protected procedures are entered

and left, and the C-staok on which arguments of capability type are

passed. By convention, numerical arguments are passed in the processor

registers B1 to B5.

Each protected procedure is a self-contained object and no

assumptions are made by the microprogram about the language in which the

various protected procedures are written. Provided that they conform to

the interface outlined above, the protected procedures making up a

complete program may be written in a variety of languages. It was at one

time thought that some of the procedures constituting the operating

system would be written in ALGOL68C and some in BCPL; in fact, as it has

turned out, they are all written in ALGOL68C, although a number of other

protected procedures closely associated with the operating system - such

as a paginator - are written in BCPL. From the point of view of the

microprogram all protected procedures have the same status, those

constituting the operating system being in no way distinguishable.

Since the protected procedures are connected together by ENTER

and RETURN instructions and not by the procedure calling mechanism of the

language in which they are written, each protected procedure is compiled

as a complete program. Means must be found - for example by the

inclusion of machine code sections - to effect the connection. The way

this is done in the case of ALGOL68C is described in Appendix 2. An

important consequence of the above statement that the protected

procedures are all separate programs is that any one of them may be

recompiled without affecting the others. This contributes greatly to the

modularity of the resulting system.

The fact that there is no requirement that all the protected

procedures forming a program should be written in the same high level

language means that the compile time type checking facilities normally

available in ALGOL68C (for example) are not available for calls from one
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protected procedure to another. Since the interfaces between the

protected procedures are simple and clearly defined, this lack was not

felt to any noticeable extent when the operating system was being

debugged. In fact, the compile time checks performed by the ALGOL68C

compiler within the individual protected procedures and the run time

checks performed by the capability hardware together provide a much more

comprehensive set of checks than a programmer normally enjoys when

developing a complicated program.

Processes and Their Management

The CAP operating system supports a moderate and fixed number of

processes, some of which provide operating system services, and some of

which are assigned to the users. The processes are all managed by the

master coordinator which performs scheduling and despatching functions,

performs some functions in relation to trap handling, and supports an

interprocess message system. Some operating system services are provided

by protected procedures entered by the user process. Others are provided

by system processes activated by messages. Since in order to send a

message a user process enters a protected procedure, the interface is the

same in both oases, and the programmer usually does not need to know by

which technique a particular service is provided. All the user processes

and most of the system processes run in a virtual memory in which the

unit of swapping is the segment, except that very large segments are

handled by a windowing technique. The system processes that do not run

in the virtual memory are those which support the virtual memory itself.

There is a filing system very intimately related to the virtual memory.

Segments are swapped to and from their place of residence in the filing

system, rather than from a copy on a logically separate disc. It is thus

the case that the notions of file and segment are equivalent in the same

sense that they are in MULTICS.
It has been stated earlier that the facilities available to a

process are all represented in its process resource list (PRL). The

state of the proc'ess, both in a hardware and in a software sense, is

recorded in the segment called the process base for which there is a

capability placed by convention in the first position in the PRL.

Alterations to the resources of the process or in its state involve

changes either to its PRL, or to its process base, or to both. Every

process possesses an enter capability for its own instance of a protected

procedure called ECPROC which has the privilege required to make these

changes. ECPROC also provides an interface to the facilities of the

master coordinator. The client of ECPROC does not need to know whether a
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particular service is executed within ECPROC or whether ECPROC calls the

master coordinator. The policy has been to provide services entirely in

ECPROC whenever possible, since the master coordinator itself is

serialised and may only execute services for one process at a time.

Furthermore, the coordinator is incapable of taking virtual memory traps

and may therefore only touch material which is known to be in the main

memory. ECPROC is not subject to this restriction.

Some coordinator services (this expression will be used

indifferently to refer to those provided by ECPROC or by the coordinator

strictly so called) are available to all callers. Others, such as the

creation of new capabilities, are highly privileged and are only

available in one or two protection domains. In general, all calls to

ECPROC have to be supported by the presentation of a software capability

that gives authority to request a particular service. In accordance with

common usage, calls on ECPROC will sometimes be referred to as

primitives.

Capability Management. The CAP architecture is such that various

operations on capabilities are most conveniently performed by the

coordinator. ECPROC provides a suitable interface to these. The

presenting process must possess the appropriate software capability and

it is convenient to refer to such capabilities as permission

capabilities. The operations on capabilities performed by the

coordinator are the creation of capabilities, the alteration of existing

capabilities, and the extraction from existing capabilities of

information beyond that which is ordinarily available to users. In

addition, there is an operation which ECPROC can perform on behalf of the

swapping system which has the effect of disabling all instances of a

capability for a segment that is about to be swapped out, or conversely,

to reinstate them after it is swapped in. This service is a store

management feature rather than a capability management feature.

Interprocess Communication. The interprocess communication system is

concerned with information transfer and synchronisation between

processes. There are WAIT and WAKE-UP primitives of the usual kind and

also provision for passing messages from one process to another.

Messages are of four kinds: null messages, data messages, segment

messages, and full messages. A null message consists simply of a

synchronisation signal. A data message carries four words of data. A

segment message carries a capability for a memory segment. A full

message carries both four words of data and also a capability for a

memory segment. Messages other than null messages may demand a reply-
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If a process is in a waiting state, it will be woken up when a message is
addressed to it.

The sending and receiving of messages is mediated by a data

structure belonging to the coordinator and called a message channel.

Each channel contains a statement of the type of message for which it may

be used and other types of message may not be sent or received on that

particular channel. ECPROC is responsible for setting up and deleting

channels. However, the user does not normally use ECPROC directly for

these purposes, but goes instead via another protected procedure known as

SETUP. The advantage of proceeding in this way is that SETUP is

responsible for the administration of an external scheme of message

channel names unknown to the master coordinator.

Messages in transit are recorded in a single buffer segment which

is common to all processes. It is possible for ECPROC to make use of

this segment on behalf of all processes, either to insert a message into

it or to remove a message from it, without requiring any special

interlock. This has been achieved by careful use of indivisible machine

instructions. At the receiving end of the channel an enquiry facility is

provided to enable a process to determine how many incoming messages are

waiting to be accepted. An error is signaled if an attempt is made to

accept a message when there is not one there; it is the responsibility of

the receiving program to make use of the WAIT primitive where this is

appropriate. No action is taken to ensure that a recipient process is

woken up only if the message being sent is one for which it is known to

have a receiving capability in its current protection domain; processes

must, therefore, be prepared to be woken up in circumstances in which

there is no action for them to take.
In the case of messages requiring a reply, it depends on the

ECPROC entry used whether the sending process is halted immediately to

await the reply, or whether it continues to run; in the latter case it

will presumably make an enquiry later and possibly go into a waiting

state. In the case of nonreply messages this choice does not exist.

Nonreply messages are used extensively in circumstances in which some

cleaning up action or action to preserve consistency is required, but in

which the further progress of the sender does not depend on the result.

Segment Rea&rj^ion and Interlocks. Some segments are available to a

considerable number of processes, usually by means of instances of the

same protected procedure. For example, in the filing system a segment

containing a file directory is handled in this way. The master

coordinator provides a reservation facility for controlling access to

shared segments. This is based on a looking mechanism that allows
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multiple readers of a segment but only one writer. The standard

reservation primitive causes the calling process to be held up if the

segment required is already reserved by some other process, but an

alternative call is available which will reserve the segment if possible

and if not, give a return code without halting the process. It is a

programming rule that shared segments should be reserved before being

accessed, but this rule is not enforced by the software or hardware.

This has not been found to present a serious hazard in practice because

the processes competing for a shared segment typically run in the same

simple piece of shared code.

The Handling of Peripheral Interrupts. The coordinator is responsible

for waking up the correct process when a peripheral interrupt occurs.

The use of peripherals is controlled by capabilities but, in order to

claim the interrupts of a particular peripheral, the holder of the

appropriate capability must inform the master coordinator that he has it;

otherwise the master coordinator does not know where to send the

interrupts. If a capability for accessing a particular peripheral were

to be possessed by more than one process then confusion would result.

This is avoided by placing capabilities for peripherals in the custody of

suitable protected procedures.

The Handling of Traps, Errors, and Attentions. Traps are essentially

internal interrupts and are generated within the microprogram. Errors

are generated within a program. In the CAP system both traps and errors

- collectively referred to as faults - are handled in a very similar

manner by a routine that forms part of ECPROC. In the case of an error,

the program enters ECPROC by executing an ENTER instruction with an

appropriate parameter. In the case of a trap, an entry to the master

coordinator is made directly by the microprogram which then enters

ECPROC, but the code is written so as to simulate the effect of an entry

in the normal way by means of an ENTER instruction.

ECPROC first looks to see whether a virtual memory trap or a trap

resulting from an attempt to enter a protected procedure just retrieved

from the filing system and requiring generation (see page 18) has

occurred. These traps are of routine occurrence and must be dealt with

efficiently. ECPROC initiates the necessary action and in due course

returns control directly to the program in such a manner that the

offending instruction is retried. In the case of other faults ECPROC

puts a mark in the frame on the C-stack belonging to the procedure in

which the fault occurred, and deposits a description of the fault in a

standard place. It then executes a RETURN instruction, having first
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modified the link in the C-stack frame so that control passes to a

specific place in the first program segment of the faulting procedure.

It is assumed that the programmer will have placed there a routine

capable of dealing appropriately with all the faults that can occur. It

is the further responsibility of this routine to remove the mark placed

on the stack and this it does by making a suitable call on ECPROC.

The above description is incomplete since it can .happen that,

when ECPROC comes to mark the frame belonging to the faulting procedure,

it finds that it is already marked. This will be the case if the fault

occurred when an earlier fault was being dealt with. In these

oiroumstanoes, ECPROC goes down the stack until it finds a frame that is

unmarked. It marks this and then modifies the links on the stack so

that, on the execution of the RETURN instruction, control passes to the

procedure corresponding to the frame just marked, bypassing the

intermediate procedures. Thus, if a procedure cannot handle a fault that

has occurred within it, a fault is raised in the procedure that called

it; if that procedure cannot handle the fault, then a fault is raised in

its own caller, and so on.

It will be remembered that virtual memory traps cannot be dealt

with when the master coordinator is running (see page 3t). In order to

avoid having the C-stack permanently resident, it is arranged that, when

entry to ECPROC takes place from the master coordinator, space provided

for the purpose in the process base is used for the C-stack frame. Room

for three such frames is provided in every process base and it can be

shown that this is as many as will ever be required.

Attentions are generated by a user typing a specific character on

a terminal, this character being recognised for what it is by the process

responsible for that terminal. Attentions cause compulsory transfer of

control to a specified place in the procedure running when the attention

is generated. The implementation is very similar to that used for

faults.

Attentions have varying degrees of severity. They may be reset

by a call to ECPROC. This call has to be supported by a permission

capability of sufficient power to allow the resetting of the attention in

question. The procedure in which user processes run initially, namely

STARTOP (see page 12), has a permission capability which enables any

attention to be reset. Command programs have a slightly less powerful

permission capability and programs running under them less powerful

capabilities still. If a procedure attempts to reset an attention with

an insufficiently powerful permission capability, control returns to the

caller of that procedure which can then in turn attempt to reset the
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attention. Eventually, a procedure will be reached with a sufficiently

powerful permission capability to be successful. In the case of an

attention of maximum severity this will be STARTOP and the effect will be

to terminate the user's session.

The Virtual Memory System

Real Store Manager. A process called the real stone, manager is

responsible for bringing segments into the main memory when they are

required and for deciding which segments should be swapped out in order

to make room for them. There is a capability for every swappable segment

in one of the master coordinator's capability segments. In the case of a

segment that is loaded in the main memory the oapability has its normal

form. If the segment is not in the main memory, the oapability has a

special form and is then known as an o.utCorm oapability. If a process

attempts to use the segment, a trap will occur during the oapability

loading cycle when the outform oapability is encountered. The trap will

be reported to the master coordinator which will refer the matter to

ECPROC. ECPROC will discover that the trap is due to a segment being out

of the main memory and will send a message to the real store manager

requesting that it be loaded. The sending process waits in ECPROC until

a reply is received and then retries the instruction that failed. Since

the real store manager will by now have loaded the missing segment and

converted the outform capability into a normal one, the instruction will

succeed. Conversely, when the real store manager causes a segment to be

swapped out in order to make room for another segment, it converts the

oapability for the first segment into an outform oapability, and in doing

so invalidates any dependent entries that there may be in the oapability

store .

The disc address of a segment which is not in the main memory is

recorded in the outform oapability that represents it. There is in

addition a data structure in which is recorded where each segment

currently in main memory starts, where it finishes, and what its disc

address is. On receipt of a message indicating that a virtual memory

trap has occurred, the real store manager inspects this data structure in

order to ascertain whether there is room to bring the missing segment in

without swapping any other segment out; if so, it does this and updates

the data structure accordingly. If there is not room, the real store

manager consults an algorithm for instructions as to which segment or

segments to swap out. Information is available about whether a segment

has been written to while in main memory; if not, copying back to the

disc is unnecessary and the operation of swapping out amounts to no more
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than making the space occupied by the segment available for reuse. The

operations of writing a segment to the disc and reading the segment from

the disc are performed by a protected procedure called by the real store

manager. This procedure has available to it a disc map whose management

will be described below. The operation of the real store manager is held

up until the disc transfer is complete.

The largest single segment that the real store manager is

prepared to handle is 32K words long. It is possible to access larger

segments by windowing. Windowing essentially provides a facility whereby

a segment may be equated with part of another segment or, to put it more

naturally, with part of a file. Sequential access to long files is

obtained by opening a succession of windows on them. This is usually

done by having two windows in existence at a time so as to provide the

effect of double buffering.

The real store manager provides a number of miscellaneous

facilities. One of these makes it possible for the programmer to make

sure that at a particular moment the disc copy of a specified segment is

up to date; if the segment is not in main memory, this implies no action

on the part of the real store manager, but if it is in main memory and

has been written to, a new copy must be made. This facility is primarily

used in connection with file directories and similar objects. Another

facility enables the programmer to cause a segment to be swapped out, for

example, when he knows that the segment will not be required again in the

near future.

As mentioned above, the real store manager maintains a data

structure in which is recorded the disc address, size, and access

particulars of every segment with which it is concerned. This table is

updated from information received from the virtual store manager

described in the next section.

Victual Store Manager. The real store manager has the duty just

described of managing the swapping of segments which are currently in use

to and from the disc. Segments may be, and frequently are, shared

between different processes. The condition for withdrawing a segment

from the real store manager's regime is that no current process has a

capability for it. This level of administration is the province of the

virtual store manager.
Whenever it is required to issue a process with a capability for

a segment, a message containing the long term name for the segment as

used by the filing system is sent to the virtual store manager. The

virtual store manager finds out whether the segment is in the currently

active virtual memory, that is, whether a capability for it already
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exists in one of the coordinator's capability segments. If not, the

virtual store manager calls the real store manager to cause an (outform)

capability to be constructed and inserted. In either case the virtual

store manager returns to its caller the specifier of the capability in

question.

The virtual store manager associates with each segment for which

it is responsible a reference count which is simply a count of the number

of processes which possess a capability for the segment. The virtual

store manager increments the reference count by one whenever a new

process is issued with a capability for the segment and decrements it by

one whenever it receives a message to the effect that a capability is no

longer required by one of the processes that was using it. This message

does not require a reply, but if the result is that the reference count

becomes zero, then the long term management system (see below) is

communicated with to ascertain whether the segment is known to it. If

not, then steps are taken to eliminate all knowledge of the segment from

the system.

The real store manager must, of necessity, be permanently

resident in main memory. The virtual store manager does not require to

be permanently resident. In the original implementation of the CAP

operating system, the functions of the virtual store manager and the real

store manager were combined. Separating them reduced significantly the

amount of material that had to be permanently resident.

Long Term Management

System Internal Names. None of the information held by the real store

manager or the virtual store manager persists from one run of the system

to the next. The management of persistent material is in the hands of a

protected procedure known as the system Eternal names manager (SINMAN).

System internal names are integers which remain associated with the

objects they represent as long as those objects exist. For convenience,

the system internal name of an object is taken to be the address at which

the object begins on the disc.

In order to discuss the operation of SINMAN it is first necessary

to consider the types of permanent object which the system supports.

There are three of these as follows: segments, which are simply at this

level blocks of uninterpreted information; directory segments, which

relate text names to system internal names; procedure d ftaojli-P-fclsa

blocks, which are templates for the construction of protected procedures

and which contain the system internal names of the objects that will go
to make them up.
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Directories and procedure description blocks both have the

property that the occurrence of a system internal name in any one of them

is a sufficient reason for maintaining the corresponding object in

existence. SINMAN's primary duty is to maintain a list of such names,

together with the names of other objects that should also be kept in

existence because they are in the PRL of some process in the system.

Along with this goes the duty of deleting from the list objects that

cease to be in one of the above categories. The list is known as the SIN

directory. It is indexed by the system internal name and contains

reference counts (showing how many references to each system internal

name there are in the directories or procedure description blocks)

together with information about the type and size of the object

concerned. The SIN directory is updated when new objects are created,

when capabilities for objects are inserted into directories or procedure

description blocks, or when they are removed.

SINMAN has a secondary function which is logically independent of

the primary function just described and which might perhaps have been

better performed by a separate procedure. This is to issue capabilities

for particular objects on the list when requested by a suitably

authorised client to do so. Such requests are made by quoting the system

internal name. Some capabilities, for example, those for segments of the

ALGOL68C run time system, are used by many, in not all, protected

procedures. It is quite possible, therefore, that when a process

requests a capability for an object it already has one in its PHL. For

each process an index is maintained relating entries in the PRL to system

internal names. When presented with a system internal name and asked for

a capability for the corresponding object, the first thing that SINMAN

does is to consult the index; if the name of the object is there, it

delivers the appropriate capability. If it is not, SINMAN sends a

message to the virtual store manager asking for information with which to

construct the capability. If the virtual store manager has no knowledge

of the object, then it will ask the real store manager to generate the

required information. In any case, the virtual store manager returns the

information to SINMAN which proceeds to construct the capability,

consulting the SIN directory to find out whether the object is a segment,

a directory, or a procedure description block.
SINMAN deletes at once from the SIN directory without further

formality any object of type segment whose reference count falls to zero

and which is not in the currently active virtual memory. Objects of type

directory or of type procedure description block may contain within

themselves references to other objects. Before deleting them, it is
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therefore necessary to scan them and decrement the reference counts of

any other objects referred to. Even so, the effect of the deletion may

be to leave one or more detached loops. The only way in which the

existence of such detached loops may be detected and the space they take

up recovered is by making use of some form of scanning garbage collector.

Accordingly, a separate process has been provided which implements a

garbage collecting algorithm and which runs slowly in the background.

Its detailed action will be described on page 55.

As a process runs, it is likely to request from time to time the

creation of new segments and its PRL will tend to fill up. A process

can, however, lose access to segments for which it has capabilities in

its PRL. This will happen, for example, if all capabilities held in

capability segments belonging to the process and defined in terms of a

particular capability in the PRL are overwritten by MOVECAP instructions.

In this case, the slot in the PRL can be reused. However, the only way

to find out that this is possible is to perform a garbage collecting

operation. This is quite distinct from the garbage collection described

in the last paragraph and is performed by a procedure known as PRLGARB.

PRLGARB is entered automatically if the PRL becomes full, but its

services can be asked for explicitly. It identifies all the slots in the

PRL which are not referred to in any of the protection domains

represented on the C-staok. PRLGARB has access to the index which

relates entries in the PRL to system internal names and deletes entries

from it as required; it also communicates by message with the virtual

store manager to indicate that certain capabilities are no longer in use

within the process.

Command Program, and User Interface

It was stated on page 33 that there are a fixed number of user

processes. These are created during system generation and are equipped

with all the standard facilities required for users' processes to run.

Initially each process runs in its own instance of a protected procedure

called STARTOP. STARTOP has access to various message channels and a

capability that enables it to access the master file directory. When the

system is initialised, each instance of STARTOP sends a message to a

process known as Initiator requesting work to do and then halts waiting

for a reply. Initiator is in communication with the set of processes

which manage the interactive terminals and, when a user types a

particular character on an idle terminal, Initiator recognises the action

as a request to log in. It is then in a position to reply to one of the

messages from an instance of STARTOP, assuming that there is one
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outstanding. The reply includes the number of the terminal concerned and

STARTOP secures an enter capability for a protected procedure through

which it can communicate with that terminal. It then issues a prompt to

the user asking for his identifier. Armed with this, it enters a

protected procedure called LOGIN, which requests the user to type his
password.

LOGIN then checks that the user's identifier and the password

just typed are to be found in the file of authorised users and retrieves

from the same file the name of the command program to be entered. This

will normally be the standard system command program. LOGIN returns

control to STARTOP which retrieves from the master file directory a

capability for the command program and also one for the user's file

directory. STARTOP enters the command program, passing the latter

capability as a parameter. The user is now in command status and

anything that he types is treated as a command.

Some system processes run exactly as though they were user

processes. The despooling process is one of. these; it has a special

program called DESPOOL that stands in the same relation to it as does the

command program to an ordinary user. The despooling process is, however,

activated automatically by Initiator.

There is available to everyone a protected procedure called RUN

which permits a user process to activate Initiator directly. It is thus

possible for a user process to start up an independent process which will

run initially in a protected procedure for which the user process

provides a capability.

The standard command program is based upon a particular view of

the functions that such a program should perform. It will call commands

whose names are typed by the user and pass to them the residue of the

command line as an argument string. It is also capable of resetting any

attentions that the terminal user may have created, thus enabling him to

force a return to command status. Normally, when searching for the

program to execute a command, the command program goes first to the

user's file directory and then to the command library, but it is possible

to alter this and include other directories in the sequence.

It was felt that, if the command program were always to decode

the argument of a command, an undesirable rigidity would be imposed upon

the format of command lines. It is, nevertheless, desirable to have some

de facto standardisation and the following compromise was adopted. The

command program enters the procedure that will execute the command that

has been called, passing as arguments a capability for a segment

containing the complete command line and an enter capability for a
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protected procedure known as FARMS. PARMS provides a variety of

faollitioo for command line decoding; it can search for positional and

keyword parameters, perform decimal to binary conversion, and open files.

It is entirely at the discretion of the writer of a program for executing

a particular command whether or not he makes use of PARMS, but in

practice it is rare for him not to do so.

It is often convenient for programs that execute commands to have

their arguments passed to them in machine registers instead of in the

form of character strings. Most such programs are, in fact, able to

accept parameters in either way. A convention has been established

whereby the content of a particular register indicates which method is

being used.

On completion of a command, control returns to the command

program and the user is once again in command status. It will be

remembered that the command program is a protected procedure that was

originally entered from STARTOP. When the user types a LOGOUT command,

the command program is caused to execute a RETURN instruction which sends

control back to STARTOP. STARTOP issues a suitable message to the

terminal recording the fact that the session is ended. It then sends a

message to Initiator requesting further work and, after performing a

garbage collection of its own PRL, becomes dormant once more until it

receives a reply.



CHAPTER H

THE CAP FILING SYSTEM

From the point of view of a user at the console, the CAP filing

system resembles other filing systems in that it contains the names of

objects which the user wishes to retain for future use. Each user has

his own user file directory and in it are entered the names of objects

which are of three types: segments, protected procedures, and other

directories. A system programmer, working on other parts of the

operating system, sees the matter slightly differently. From his point

of view the function of the filing system is to preserve capabilities for

objects in such a way that they can later be retrieved. The implementer

of the filing system has still another point of view. What are actually

preserved are not capabilities themselves, but information from which

capabilities can be reconstructed. This information is held in directory

segments which are ordinary data segments. It consists of the text name

of the object, its system internal name, and information concerning

access rights. Thus the act of retrieving a capability is not, as the

term might suggest, a simple extraction of the capability from a

directory segment.

Many of the underlying mechanisms on which the filing system

depends have already been described. In particular, procedure

description blocks were introduced on page 40 in connection with the

management of system internal names. A procedure description block is a

recipe or template for the generation of an instance of a protected

procedure. Generation takes place partly when the protected procedure is

retrieved from the filing system and partly when it is first entered.

A procedure description block contains information about the

number and size of the capability segments and workspace segments that

the protected procedure requires. It also contains a list of system

internal names of objects for which capabilities must be placed in the

appropriate capability segments when the protected procedure is

generated.
Protected procedures are created by a system protected procedure

called MAKEPACK. It is necessary first to procure from SINMAN a

capability for an empty segment of type procedure description block and

to hand it to MAKEPACK together with the necessary capabilities.

MAKEPACK then returns an enter capability - in fact, it is always an

outform enter capability - for the protected procedure. There is no

special privilege required for the use of MAKEPACK since it is impossible

to cause a capability to be incorporated in a new procedure description
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block without passing it to MAKEPACK as an argument, and this implies the

legitimate possession of the capability.

DIRMAN

Directory segments are not accessed directly from outside the

filing system, but are invariably accessed via instances of a protected

procedure known as DIRMAN (directory manager). An instance of DIRMAN

consists of the code for the management of directory segments, some local

work space, and the relevant directory segment itself. If a user process

has access to a number of directory segments then it will have an equal

number of instances of DIRMAN; similarly, if a particular directory

segment is available to a number of processes, then each process will

have an instance of DIRMAN corresponding to it. From the point of view

of the user, the function of DIRMAN is to retrieve capabilities requested

in terms of textual names and to perform the converse operation of

preserving, along with the textual name, capabilities passed to it.

However, as explained above, what is actually preserved is not the

capability itself but information from which the capability may be

reconstructed. So that it may perform the above functions, DIRMAN is

equipped with an enter capability for SINMAN, which performs the

underlying operations. DIRMAN acts as a gatekeeper, checking the

validity of the request, performing text name to system internal name

translation, and verifying that the user is entitled to the access status

that he requests.

The operation of preserving a capability for a segment proceeds

as follows. DIRMAN is called with a text name and a capability as

arguments. It calls SINMAN, giving the capability as an argument, and

SINMAN consults the virtual store manager to ascertain the corresponding

system internal name. DIRMAN then performs the operation of preservation

by placing the text name alongside the corresponding system internal name

in the directory segment, at the same time requesting SINMAN to increment

by one the reference count for the system internal name. The need to

maintain the integrity of the system against failure - in so far as this

is possible - imposes certain constraints on the order in which these and

consequential operations are performed. This subject is discussed later

in the chapter.

For the converse operation of retrieval, DIRMAN is called with

the text name for the capability and the desired access status as

parameters. It searches the directory segment to obtain the system

internal name corresponding to the given capability and checks that the

requested access status is available. If all is well, DIRMAN then calls
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SINMAN, this time with the system internal name as a numerical argument.

After suitable transactions with the virtual store manager, SINMAN

constructs the capability and returns it to DIRMAN for passing back to

the original caller.

When DIRMAN is asked to preserve an enter capability for a

protected procedure, it proceeds in a similar manner, except that what it

puts in the directory segment alongside the text name is the system

internal name of the procedure description block. When DIRMAN is asked

to retrieve the object by being given the text name as a parameter, it

discovers, on the basis of information that it receives from SINMAN, that

the system internal name refers to a procedure control block and it

delivers an enter capability for an instance of the protected procedure.

Objects of type directory are seen by a user process as instances

of DIRMAN. When a process wishes to preserve a directory in another

directory, it passes an enter capability for the instance of DIRMAN

correponding to the first directory to the instance of DIRMAN

corresponding to the second. DIRMAN discovers, again on the basis of

information that it receives from SINMAN, that the enter capability is

for an instance of itself. Whereas, in the case of an ordinary protected

procedure, it would put in the directory segment the system internal name

of the procedure description block, in this case it puts there the system

internal name of the the relevant directory segment, along with the text

name by which it is known. When, at a later time, DIRMAN is asked to

retrieve the directory, it will deliver an instance of itself with the

appropriate directory segment bound in.

Just as segment capabilities have access bits determining their

access status, so do enter capabilities for particular instances of

DIRMAN. There are five such bits, of which one gives permission to

create entries in the directory. The interpretation of the other four

will be given on page 49.
There are no restrictions on the way in which the system internal

name for one directory segment may be preserved in another. The

structures formed are, therefore, properly described as directed graphs

rather than as hierarchies of any form. Consequently a user may have

more than one naming path available to him for reaching the same object.

If he wishes to follow one of these paths, the text that he presents to

DIRMAN must consist of several components. DIRMAN will take the first

component of the name and access its own directory segment to find the

system internal name that corresponds. It will then go to SINMAN for the

capability for the object concerned. This will turn out to be a directory

segment and DIRMAN will repeat the procedure for the second component of
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the name, using this directory segment instead of its own. This process

will continue until all the components of the name have been used up.

Retrieval of the object from the final directory reached will then take

place in the usual way.

The Retrieval of Procedure Description Blocks

It would have been possible to arrange that, on retrieval of a

procedure description block, a complete instance of the protected

procedure that it describes would be immediately generated. This would

have been analogous to the way in which an instance of DIRMAN is

generated when an object of type directory is retrieved. For the

following practical reasons this approach was not taken. A protected

procedure is likely to contain capabilities for other protected

procedures, some of which may only be entered if the course of control in

the primary procedure goes in a certain way, for example, if an error of

a particular kind occurs. To avoid waste of work, the construction of

the complete instance of the protected procedure is deferred until it is

known that it will actually be required. Accordingly, when a protected

procedure is retrieved from the filing system, DIRMAN causes a correct

enter capability to be placed in the capability segment of the process,

but in the PRL it places a capability of segment type for the segment

containing the procedure description block. When an attempt is made to

use the enter capability as the argument of an ENTER instruction, the

microprogram detects the inconsistency and a trap occurs. The trap

handling routine (part of ECPROC) calls a system protected procedure

known as LINKER. LINKER has a capability for SINMAN and it can also read

the information in the procedure description block using the segment type

capability for it in the PRL. It can therefore construct the three

capabilities required to convert the capability in the PRL into a legal

enter capability (see page 11). When it has done this, it returns

control to the trap handling routine which completes the task. The work

is divided in this way because the trap handling routine already has

those privileges necessary to complete the construction of the enter

capability and to place it in the PRL, and it is unnecessary to give them

to LINKER as well. When the trap handling routine has finished its work,

the ENTER instruction that originally gave rise to the trap is retried.

The capability for the segment containing the procedure

description block placed in the PRL is in every way the same as a regular

segment capability. The access bits are, however, used in a special way

and to emphasize this are denoted by L, I, M instead of R, W, E. L gives

authority for the LINKER to perform its task, I gives authority for the
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contents of the procedure description block to be inspected, and M gives

authority for them to be modified. Inspection or modification of a

procedure description block is effected through the agency of MAKEPACK.

User File Directories and Master File Directory

It will be convenient from now on to refer to directory segments

simply as directories or file directories. A user, of course, does not

have direct access to these, but accesses them through instances of

DIRMAN. Each user has his own user file directory and when he logs in to

the system the process which is established for him is automatically

equipped with an enter capability for an instance of DIRMAN through which

he may access it. Capabilities for all user file directories are

preserved in the master file directory. A user file directory will

contain preserved capabilities and associated text names, and may include

capabilities for other directories. If a particular user wishes to group

certain of his files together in a way which has logical significance for

him, he can ask the system to provide him with a new, empty, directory

and preserve in it capabilities for those files. In the ordinary way he

will preserve a capability for this new directory in his user file

directory, but there is no obligation upon him to do this. It may be

that the grouping he wishes to establish is strictly temporary and that

he will wish the directory to go away when the current phase of his work

is finished. Indeed, it is possible for him to create for short term

purposes a complex network of directories which will vanish when he logs

out, just as a scratch segment would do.

Since capabilities may be passed from one user to another, it is

unnecessary to arrange that DIRMAN should accept instructions of the form

"allow access to .BIN if user equals RMN." If a user decides that

another user should be able to make use of one of his segments, all he

needs to do is to place a capability for that segment in a directory -

created for the purpose, if necessary - to which the second user also has

access. The latter can then, if he wishes, preserve a copy of the

capability in his user file directory or in some other directory. He

does not need to give it the same text name. Capabilities for objects

other than segments can be handed over in a similar way and so can

software capabilities.

Assess Control

Segment capabilities preserved in file directories contain three

data access bits, R, W, E. It has already been mentioned that enter

capabilities for particular instances of DIRMAN contain five access bits.
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These will be denoted by C, V, X, Y, Z. The first gives permission to

create entries in the directory; that is, if a process executes an ENTER

instruction with an enter capability for DIRMAN as a parameter and with

another parameter indicating that a new entry is to be created, an error

will be signalled unless C = 1. The remaining four bits form the

elements of an access vector which will be denoted by a..

Associated with every entry in the directory are two matrices,

the permission matrix denoted by P and the access control matrix denoted

by A. The permission matrix has four rows and three columns. The access

control matrix has four rows and three columns if the entry refers to a

segment or a procedure description block, and four rows and five columns

if it refers to a directory. The elements of the matrices are either 1s

or Os. As will be seen shortly, the matrices determine the access status

that may be associated with a retrieved capability. The user specifies,

when he preserves a capability, what he wishes the matrices to be.

DIRMAN will prevent him from setting up the matrices (or from altering

them after they have been set up) in such a way that the capability can

be retrieved with greater access status than was associated with it when

it was preserved.

When DIRMAN is used to perform an operation on an entry in a

directory, a permission vector. j>, is computed by multiplying the access

vector into the permission matrix; thus

J2 = aP

where Boolean arithmetic is implied. The elements of s. each give

permission for a particular operation to be performed. If the element is

a 1, permission is accorded; otherwise it is not. The actions associated

with the elements of _E are as follows:

£l gives permission to delete the entry

£o gives permission to update the entry (that is, to make it contain
a different preserved capability)

£3 gives permission to alter one or both of the matrices P and A

When DIRMAN is used to retrieve a capability for an object represented in

a directory, an access code vector jr is computed as follows:

i = aA

where again Boolean arithmetic is implied. If the capability being

retrieved is a capability for a segment, i will have three elements and

their values will be copied into the retrieved capability to form the

access code; that is, they will become the values of the bits R, W, E.

Similarly, if the capability is a capability for a procedure description
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block, there will also be three elements in jr and their values will be

copied into the retrieved capability to form the access digits L, I, M.

In the case of a capability for a directory, v. will have five elements

whose values will be copied into the retrieved enter capability for

DIRMAN as the values of C, V, X, Y, Z.

In the above it has been assumed that the process calling DIRMAN

wishes to receive a capability which has the maximum access status

allowed by the matrices P and A. There are, however, occasions - for

example, when the capability is to be passed on to another process or

procedure - when maximum access status is not required. In this case

DIRMAN may be called with a parameter specifying what the access bits

should be. DIRMAN will place these digits in the retrieved capability,

having first checked that the access they imply is not more privileged

than the caller would have obtained if he had asked for maximum

privilege; that is, it checks that no digit in the requested access code

is a 1 when the corresponding digit in the maximum permitted code is a 0.

The mechanism by which the access bits in a directory capability

are determined has now been explained and it remains to describe how the

system is used in practice. The status associated with each bit in the

access code are given by the rows of P and A. In the case of general

matrices, therefore, no direct significance is to be attached to the bits

V, X, Y, Z as far as the access bits in the retrieved capability are

concerned. In some cases, significance can be attached to certain

combinations of digits. One such case is that of directory capabilities

preserved for the use of the ultimate human user of the filing system.

In this case the following default matrices are used for segment type

entries (data segments) and directory type entries respectively:

SEGMENT TYPE DIRECTORY TYPE

1
0

0

0

1
1
0

0

1
0

0

0

1 1
1 1
1 1
1 0

0

0

0

0

1
0

0

0

0

0

0

0

1
1

0

0

1
1

1
0

1
0

0

0

0

1

0

0

0

0

1
0

0

0

0

1

A capability for a file directory preserved in the user file directory of

its owner, in that of one of his close friends, in that of one of his

friends, and in that of a. member of the general public might, given the

above matrix, have access codes as follows:
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owner 1 1 1 1 1

close friend 0 0 1 1 1

friend 0 0 0 1 1

general public 0 0 0 0 1

The owner could, in fact, give himself the same privileges by using the

access code 11000, but he would not then be able to refine the capability

- by replacing 1s by Os in the access code - in order to pass a lower

degree of privilege to someone else.

When a user requests the system to create for him a new

directory, he receives a capability for it with access code 1 1 1 1 1 . It is

then left to the user to set up the access matrices, using the above

default option or not as he sees fit. There is a similar arrangement for

new procedure description blocks.

The use of the access matrices may be further illustrated with

reference to a file directory known as .LIBRARY which contains procedure

description blocks for protected procedures which either form part of the

operating system or are provided as utility programs for the benefit of

users. An example of the first group is MAKEPACK and an example of the

second group is the standard text editor. There are three groups of

users who require different degrees of privilege in relation to .LIBRARY.

These are the program librarian who is responsible for overseeing the

contents as a whole, the utility programmers who are responsible for

maintaining the utility programs, and the system programmers who are

responsible for maintaining the system programs. In addition, there is

the command program through which the protected procedures in .LIBRARY

are used.

The access matrices for system procedures and utility procedures

respectively are set up as follows:

SYSTEM PROCEDURES UTILITY PROCEDURES

0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 1 1

0 1 0 1 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

Capabilities preserved in the user file directories belonging to the

program librarian, the utility programmers, and the system programmers,

and in the master file directory (for the command program) have access
codes as follows:
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program librarian 1 1 0 0 0

utility programmers 0 0 1 0 0

system programmers 0 0 0 1 0

master file directory 0 0 0 0 1

It may be verified that the privileges accorded in the several

categories are as follows. The program librarian can make new entries in

.LIBRARY and he can make changes to any of the access matrices. He has

not the immediate power of deleting entries, but he can alter a

particular access matrix in order to give himself this power and then

delete the corresponding entry. This is an example of a device commonly

used to prevent accidental deletion of an entry; the filing system will

prevent a situation arising in which there is an entry in existence with

no way of deleting it. Utility programmers and system programmers have

the power to modify and test protected procedures in their respective

categories and to install new versions. They cannot interfere with

procedures that are not in their own categories, nor can they create new

entries in the library. The command program can cause protected

procedures to be generated and entered, but cannot access them or make

use of them in any other way.

Disc Management

Practical aspects of disc management include space allocation,

integrity control, provision for restart, and garbage collection.

A system process called Module is responsible for allocating disc

space requested for new objects, for de-allocating that space when it is

no longer required, and for altering the allocation of space to existing

objects. It is also capable of writing its allocation map to disc when

requested to do so by SINMAN; two separate areas of disc, used

alternately, are set aside for this purpose. To avoid the danger of

inconsistency, no allocation or de-allocation of space takes place while

writing operations are in progress. Module is also responsible for

checking the consistency of its allocation maps during system restart.

It is not possible to arrange that new versions of all file

directories, procedure description blocks, the SIN directory, and the

allocation map are written to disc simultaneously. There will thus

inevitably be a period during which the versions on the disc are

inconsistent and complications will ensue if a system crash occurs during

this period. Care has been taken in the implementation that this

inconsistency should be on the safe side so that, when the system is

restarted, the information can be brought to a state of consistency with

little effort and not too much loss of material. The disc versions of all
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directories and procedure description blocks, the SIN directory, and the

disc allocation map are required to satisfy the following rules:

1. Nothing must be recorded in the SIN directory as permanently

existing that has not already been recorded in the disc

allocation map as having disc space allocated to it.

2. Nothing must have its system internal name recorded in a

directory or procedure description block unless that name has

already been marked as permanently existing in the SIN

directory.

It is the responsibility of the directory and system internal

name management system to ensure that the above rules are observed. When

the system stops abruptly, it may be found on restart that there is space

allocated on the disc which is not recorded in the SIN directory, or that

there is space allocated in the SIN directory which is not used by any

directory or procedure description block. A process known as Restart is

responsible for making the records consistent at the cost of possibly

destroying 3ome information. Restart automatically recovers any disc

space that is rendered inaccessible from the master directory as a result

of the forcing of consistency.

Observance of the above rules implies a certain degree of

serialisation of the various disc transfers involved. Considerable

efforts have been made in the design of the CAP system to reduce, by

optimisations of various sorts, the degradation of the response given to

users that such serialisation is liable to cause. For example, when disc

space is first allocated for a segment, the version of the disc

allocation map held in the main memory is updated, but no steps are taken

at that point to ensure that the version on disc is up to date. This

need not be done until a capability for the new object is preserved. It

may be that, by this time, the disc version of the map has been updated

for some other purpose, and a system of version numbers is provided

whereby it may be ascertained whether or not this is so.

When a capability is preserved, it is necessary to ensure that

the SIN directory is up to date on disc before the directory or procedure

description block is updated. There will be no violation of the rules,

however, if the updating of the file directory is deferred. Accordingly,

control is returned to the user as soon as the version in main memory has

been updated, and a message, calling for no reply, is sent to a separate

process known as Ensurer. requesting that the necessary disc writing

operation should be performed in due course. Similarly, when a user

deletes an entry from a file directory, control may be returned at once
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to his program, leaving the disc versions of the SIN directory and the

disc allocation map to be updated later.

Occasionally RESTART detects an inconsistency in the data

structures held on the diso that can only be the consequence of software

error or of serious hardware malfunction. In this case RESTART will

report the error and request the services of an expert to examine the

state of the filing system. A consequence of the careful attention given

to ensuring that the rules set out above are observed is that it is

possible to be quite precise as to when an expert should be called.

Since the hardware capability protection system makes it extremely

unlikely that trouble occurring outside the filing system itself will

interfere with the integrity of the filing system data structures, a call

for an expert is very rare. When one is called, it is usually because

hardware malfunction of the disc system has caused information to be

written to the wrong place.

It was mentioned on page 41 that disc space can be lost during

normal running of the system through directories becoming detached. It

would not be very satisfactory to rely upon periodic restarts to recover

this space. Accordingly, there is an asynchronous garbage collector that

runs at regular intervals. This need deal only with directories and

procedure description blocks, since ordinary segments are dealt with by

the reference count system.

When the garbage collector begins a scan of the disc, it first

makes a copy of the SIN directory as it exists at that moment.

References in what follows to the SIN directory will be to this copy.

The garbage collector goes through the SIN directory and notes all those

system internal names which refer to objects of type directory, a term

which will for the purposes of this discussion be taken to cover also

procedure description blocks. It then puts a mark against the item

corresponding to the master directory. It scans that directory for

system internal names and puts a similar mark in the SIN directory

against all names that it finds. It then ticks off the master directory

as dealt with. The garbage collector proceeds to scan, in the same way

as it did the master directory, each object of type directory whose

system internal name is marked in the SIN directory, ticking it off when

dealt with. It scans the SIN directory repeatedly until all objects of

type directory have either been marked and subsequently ticked, or have

not been marked at all. It is the latter that can be collected as

garbage.
Since the garbage collector runs under time sharing while the

system is operating in the normal way, it is necessary that it should be
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informed when a new capability for a directory is created or when one is

retrieved from another directory. SINMAN sends a nonreply message to the

garbage collector every time this happens and the directories in question

are marked as needing inspection. The end of the garbage collecting

operation is reached when there are no directories in the SIN directory

with marks against them and no messages waiting to be dealt with. At

this point the garbage collector will have identified as garbage whatever

was garbage at the beginning of its run, and may or may not have

identified material that became garbage during the run. It is necessary

that any directories that have been declared garbage should be scanned in

order to decrement the reference counts of all objects referred to in

them.

At the end of a garbage collecting operation, a valuable check on

consistency may be made by verifying that the reference counts of the

garbage directories themselves are all zero. If they are not, it

indicates that there is something seriously wrong with the garbage

collector or that a hardware error has occurred. This check was

particularly useful during the debugging of the garbage collector. Since

the garbage collector gives rise to a substantial amount of disc traffic,

it is normally arranged to run in short bursts so that users are not

disturbed. Two parameters determine how often the garbage collector is

woken up and how many directories it will deal with each time. Typically

these are set so that it is woken up once a minute and scans 10

directories. The practical result is that garbage is unlikely to persist

for more than one or two hours before being collected.



CHAPTER 5

DISCUSSION AND CONCLUSIONS

Planning of the CAP project started in 1970. The research

objectives formulated then and set out in Chapter 1 have been followed

throughout with only minor changes in emphasis. The CAP computer and its

operating system have been in use since 1976 and have survived the test

of having a number of users from outside the CAP research group as well

as from within it. An attempt will be made in the present chapter to

summarize some of the lessons that have been learned.

Two fundamental decisions were taken at the beginning of the

project. One was that segments would be swapped as a whole instead of in

pages and the other was that a local rather than a global naming system

would be used. Some of the consequences of these decisions will be

discussed in the sections that follow. Later sections will deal with a

number of specific problems. Some of these will be recognised as

problems that face the designer of any operating system, irrespective of

the computer on which it is intended to run; they are seen here in

particular relation to the protection features of the CAP.

Segment Swapping and Its Consequences

In a conventionally paged and segmented system the unit of

protection is the segment and the entries in the segment table correspond

in a rough way to the contents of the capability store in the CAP. They

are, however, software entities and the protection is enforced by the

kernel of the operating system, which also plays an important role in the

transfer of pages to and from the main memory. At the time the CAP

project was being planned it did not appear straightforward to graft on

to such a system a hardware capability mechanism of the type described in

Chapter 1. Moreover, it was desired to be able to protect segments of

any length from one word upwards, whereas in a conventional paging system

the grain of protection is a page. It was accordingly decided that a

hardware paging system would not be built. Instead, a system would be

designed in which segments of normal size would be swapped as a whole and

very large segments would be brought partially into main memory by a

windowing process under the control of the programmer.

It is not easy to design a satisfactory algorithm for the space

management of segments varying in size from a few words up to 32K words

in length in the presence of swapping. Any evaluation of the CAP project

must take into account the fact that it was intended to be an

experimental model for a very large multipurpose time sharing system



58 DISCUSSION AND CONCLUSIONS

serving many users. Such a system would have vastly more main memory

than the CAP. As things stand the physical limitations of the CAP memory

have influenced the design of the operating system and caused it to

depart to some extent from what would otherwise have been desirable.

This is inevitable in any experimental system intended to be put to

practical use. When the project was planned it appeared probable that

very large mass core memory would become available at a cost that would

be within the project's budget. If this had happened, and if one had

been fitted to the CAP as its main memory, the result would have been a

computer functionally similar to, although slower than, the large scale

systems that we had in mind. The present prospect is, of course, that

very large semiconductor main memories will become economically possible.

The effect of this will perhaps be to favor the system used in the CAP,

that is, the transfer of segments as a whole to and from the filing

system, as compared with a system in which individual pages are swapped

to and from from a fixed head disc.

The problem of managing space in the main memory becomes

particularly acute if a large number of small segments must be handled.

Such problems are by no means confined to the CAP or to systems in which

space is managed in a similar way. Analagous problems arise with paging

systems in which it is found that excessive memory fragmentation and a

high paging rate occur if a lot of segments in frequent use are of less

than one page in length. Inevitably, there will be conflict between the

desire of the system designer to structure his program in the most

logical and elegant manner, and the need to control the proliferation of

small independent segments. In the CAP small segments are sometimes made

by subsegmentlng a longer segment which is treated as a whole for

swapping purposes. An example is to be found in the program for

STOREMAN, given in Appendix 3, where new capability segments are created

by the subsegmentation of a large segment, one such segment being given

to each process for the purpose. This leads to complications in the PRL

garbage collector and in one or two other places. A more fundamental

consequence of the pressure to avoid small segments is seen in connection

with directory segments and procedure description blocks. In each case

using two segments instead of one would have led to a better structure.

One of the segments would have contained the system internal names and

would have been the same whether it was associated with a file directory

or with a procedure description block. The second segment would have

contained the data structure appropriate either to a file directory or to

a procedure description block as the case might be. The fact that the

first segment would have been the same in both cases would have resulted
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in a simplification of programs such as Restart and Disogarb which, at

present, must be able to access both directory segments and procedure

description blocks with their different formats.

Problems associated with swapping and the shortage of space in

the main memory influenced the decisions taken about procedure capability

segments. It had been intended originally that all instances of a

particular protected procedure, in whatever process they occurred, would

share the same P capability segment. This is clearly not possible if the

capabilities in that segment are defined relatively to those in the PRL

of a particular process. Instead, they must be defined in terms of those

in the PRL of the process next above in the hierarchy. At the top level

this will be the MRL. It was proposed that, when an enter capability for

a shared protected procedure occurred in the PRL of a process, it would

contain a special pointer indicating that the P capability segment was to

be obtained by going to a higher level in the hierarchy; when the

capability was evaluated a corresponding pointer would be inserted in the

ancillary field in the capability store. This feature is, in fact,

implemented in the CAP microprogram and is used in the particular case of

ECPROC. It is not used in other cases because it proved too complicated

to manage virtual memory traps properly. In particular, complicated

investigations in the various PRLs and capability segments would have

been necessary to distinguish between traps from various causes. The

system as designed suffered from the further disadvantage that it would

have been necessary to designate in advance those protected procedures

that could be shared in the above sense.

Implementation of shared P capability segments would have been

made much easier if there had been enough main memory for the code

segments of a procedure to remain resident as long as it was in the

active virtual memory. Capability management would then have been in the

hands of LINKER and complications associated with swapping would have

been avoided.

The Consequences of Local Naming

In the CAP system the segments associated with a protected

procedure are referred to in terms of the offsets of their capabilities

in the various capability segments belonging to the process. Thus every

instance of a protected procedure has its own address space or, in other

words, names are local to an instance of a protected procedure. One

consequence of this is that it is not possible to pass directly from one

protected procedure to another a data structure that extends over several

segments, since the intersegment pointers embedded in the segments would
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not be valid in the second procedure. This has not proved to be a

limitation in practice. The majority of the data structures that it has

been necessary to pass have all been accommodated in a single segment

which could be passed without difficulty by passing a capability for it.

If an occasion does arise to pass a large multisegment data structure,

the natural thing to do is to bind it into a protected procedure through

the code of which it can be accessed. This is in accordance with the

principle that any structure which is complex enough to need several data

segments is also worth protecting in order to hide its details from its

users. Thus, what might at one time have been seen as implying a

limitation in the CAP system, can now be seen as being in accordance with

modern programming doctrine.

The fact that the same capability is known by different names in

different protected procedures means that, given the way in which the

capability unit is organised, the capability store may contain a number

of copies of the evaluated capability for the same segment. Since some

segments, such as those containing parts of the ALGOL68C run time system,

are used by almost every protected procedure, this is a serious matter as

far as utilisation of the space in the capability store is concerned.

The provision made for 61 locations has been found to be adequate rather

than generous as had been expected. If it had been possible to bring

into full use the facility mentioned in the last section whereby

instances of protected procedures could share the same P capability

segment, the pressure on space in the capability store would have been

somewhat reduced.

In the design of all capability systems a tension is felt between

the efficiency - in the short term - of allowing capabilities to be

copied and passed around freely, and the convenience from the managerial

point of view of keeping track of them. Efficiency demands that there

should be no overheads attached to the operations of moving or copying

capabilities, while good management - especially memory management - is

facilitated if a record is made when a capability is moved or copied.

Indeed, if no records at all are kept, the resulting gain in efficiency is

likely to be negatived by the cost of performing extensive garbage

collecting operations. The records usually take the form of reference

counts indicating how often a capability is referred to. When the

reference count falls to zero, the slot containing the capability can be

reused. The use of reference counts does not, however, necessarily

allow garbage collection to be dispensed with altogether since, in

certain circumstances, circular chains of references may be formed.
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In the design of the CAP system a compromisp was made. It was

realised that the passage of capabilities between protected procedures in

the same process would be very much more frequent than the passage of

capabilities between processes and that it would be worthwhile making the

former very efficient. This is why such instructions as MOVECAP and

REFINE simply overwrite the previous content of the relevant capability

slot without preserving any record of the operation. On the other hand,

the virtual store manager maintains reference counts of the number of

PRLs containing capabilities for segments that are in active use, and

with their aid it can perform its managerial function without garbage

collection being necessary. From the point of view of the total amount

of garbage collection to be done, the compromise adopted is very

satisfactory. The scale of each PRL garbage collection performed is

small and it is reasonable to hold up the work of a process while it is

being done.

While the system as implemented certainly works, it is possible

that an alternative scheme in which reference counts were maintained on a

system wide basis would be preferable. It would be necessary to accept

the complication in MOVECAP and similar instructions that this would

entail, together with the fact that the residual garbage collection

necessary would be on a system wide scale and therefore somewhat time

consuming. In return it would be possible to design the system so that

addresses had a global rather than a merely local significance. The

problem about the passage of enter capabilities between processes

mentioned in the next section would not arise. A. J. Herbert has made a

proposal for a new CAP protection system of this type. It would be based

on the use of a central capability list and would run on the same

hardware as the present system, but with a new microprogram. Appendix 1

contains a reprint of the paper by Herbert in which the proposals are set

out in detail. It is hoped to implement this new system and it will then

be possible to evaluate its practical advantages and disadvantages

compared with the present system.

The Control of Subprocesses

At the time the CAP project was being planned, it was a

requirement, generally accepted by all those concerned with the design of

very large time sharing systems, that it should be possible for the

management of such a system to allocate resources to a user who would be

able to reallocate them among his own clients. For example, the teacher

of a course on programming should be able to reallocate to his students

the resources allocated to him, and have the computer control the use
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that thsy -nake of them without the system management being involved in

any way. There are two ways in which this may be done. One is to make

it possible for a subordinate operating system - or rather a subordinate

coordinator, since the central filing system would be available at the

lower level - to run under the main operating system. The other is for

all the processes to be controlled by the same coordinator, but for the

coordinator to be so designed that it can recognise a hierarchical

relationship between the processes and act accordingly.

In the case of the CAP the first approach was taken. Provision

was made in the implementation of the ENTER SUBPROCESS and ENTER

COORDINATOR instructions for a hierarchy of coordinators to be

established under the master coordinator. Considerations of elegance and

generality dictated that the hierarchy should, in principle, be of

indefinite depth, although it was realised that in fact one, or at very

most two, levels below the main system would be all that would ever be

required. When activating a subprocess, the coordinator at a particular

level would pass to it the capabilities that it needed. Whenever an

interrupt took place the master coordinator would be entered. It would

consult its scheduling algorithm and decide which process to activate;

this might or might not be the process that had been interrupted.

Similarly, subordinate coordinators when entered would consult their own

scheduling algorithm and decide which of their subprocesses to activate.

In this way they could share among their subprocesses the processor time

that had been allocated to them.

Whenever an attempt is made to run one operating system or

coordinator under another, a major difficulty encountered is that of

giving users at the lower level access to the main filing system. The

difficulty lies in providing sufficiently powerful, but at the same time

efficient, facilities for passing messages from one level to another. It

was first encountered in the early days of time sharing when attempts

were made to run time sharing systems under conventional batch type

operating systems. Some of the most successful time sharing systems

operating in this way provided a filing system of their own entirely

separate from that associated with the batch operating system.

That the difficulty just described was particularly acute in the

case of the CAP became apparent when it was realised that, for reasons

explained in detail in the next section, the passing of an enter

capability from a process to a subordinate process would result in a loss

of protection. It was thought at first that the difficulties could be

circumvented if the superior process were to pass, not the enter

capability, but capabilities for code and data segments with the the aid
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of which a new enter capability could be constructed at subordinate

level. However, this is not really practicable since the subordinate

user cannot have passed to him any system procedures and data structures

that will help him with the work and he is in almost as exposed a

position as a user presented with a bare machine. It must be concluded,

therefore, that the inability to pass enter capabilities is fatal to the

successful operation of a hierarchy of coordinators in the manner

described above.

At one time a plan was drawn up for making a more modest use of

the facility provided in the microprogram for one coordinator to run

under another. It was proposed that the major processes of the system,

such as those for peripheral handling, real store management, and virtual

store management would be directly responsible to the master coordinator,

whereas user programs would be responsible to a subordinate coordinator,

itaelf responsible to the master coordinator. It was felt that this

would be a practical way of providing separate scheduling for system

processes and user processes. It turned out, however, on closer

examination that, despite the apparent elegance of the notion, all that

would be achieved would be an increase in the amount of trusted software

and a lengthening of the chains of communication between user processes

and system services. The problem of the filing system was also

encountered. If the filing system were defined at the upper level it

would be difficult to make it available to users in an efficient manner.

On the other hand, if it were defined at user level, it would be

unavailable to the system processes. These would then require a

rudimentary filing system of their own, especially if they were to be

able to bootstrap themselves into operation at the beginning of a run.

In the face of these considerations the decision was taken to have one

level of coordination only.
In the next section the consequences of passing enter

capabilities from one process level to another are examined in detail and

it is shown how the loss of protection arises.

Suborocesses and Enter Capabilities

In Figure 5.1 coordinators are indicated by square boxes and

other procedures by round boxes. Lines connecting boxes indicate a route

that a process may traverse (in either direction) as it runs, first in

one procedure and then in another. Code in certain of the boxes may be

identical and in practice would be shared. Processes running in boxes

enclosed by one of the ovals come under the immediate jurisdiction of the

same coordinator and may be said to run in the same domain of
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coordination. The reason why a loss of protection results if enter

capabilities are allowed to be passed across the boundaries of domains of

coordination is connected with the existence of an external interrupt

system and the fact that when an interrupt takes place a coordinator at

any level stores in space available to itself the information necessary

for restarting the interrupted process.

procedure

Figure 5.1 Domains of Coordination and Domains of Protection

Suppose the writer of a routine intended to be run in a given

domain of coordination has available to him an enter capability for a

procedure associated with which there is information that must be

protected. He may use that enter capability for the purpose of entering

the procedure, but this will not enable him to do anything with the

protected information that the writer of the procedure has not provided

for. Eventually control will come back to the original routine with the

authorised action completed, or the authorised information passed.

Everything happens within one domain of coordination and no breach of

protection is possible. Suppose, however, the writer of the routine that

we are considering decides to make it a coordinator and causes it to pass

to a subordinate process, operating in another domain of coordination,

the enter capability in question. This enter capability is used within
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the second domain to enter the protected procedure. While running in the

procedure, the subordinate process is open, as all processes are, to the

hazard of arbitrary interruption as a result of the occurrence of an

external interrupt. When this happens, the contents of the processor

registers and all necessary information for restarting the process are

placed on the associated process base by the coordinator to which it is

responsible. Since, at the moment of interruption, the process was

running in the protected procedure, some of the information placed there

may be confidential to that procedure. It has, however, been placed on a

process base accessible to a coordinator in a higher domain of

coordination and has, therefore, become freely available to the superior
process.

The above may be made clearer if a special case is considered.

Suppose there is a procedure which has access to a table containing

detailed information that is not supposed to be generally available. The

procedure is designed to produce a statistical report based on

information in the table and pass this report back to a process that has

entered it in the proper way by means of an enter capability. Suppose

that a user who has access to this enter capability wishes to attempt to

get access to the entire table. He would proceed as follows. He would

first write a routine to run as part of a process in his primary domain

of coordination. He would design this routine to act as a coordinator;

this he is entitled to do since any user can write a coordinator and set

up a subsystem. He would then write another routine which would run in a

subordinate process under the coordinator and would repeatedly enter the

protected procedure, requesting information in a legitimate manner. He

would expect the subordinate process to be interrupted frequently, as all

processes are; on some occasions it would be interrupted while running in

the protected procedure and information concerning the latter would be

placed in a segment accessible to the coordinator. Since he himself is

responsible for writing the coordinator, he can arrange that, whenever it

is re-entered after an interrupt, the information relating to the

subordinate process is examined in the hope that it will contain means of

accessing the confidential information that he is seeking. His progress

will not, of course, be straightforward since he will be groping in the

dark and may not be able to recognise the significance of the information

that he uncovers. Nor does one wish to stress the breaching of

protection in the context of deliberate wrongdoing. We are more

concerned with the way things may go wrong as a result of a software

error or hardware failure. Anything could happen if pointers and other

items became available in illegitimate ways.
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The difficulty just explained arises because the status of a

process is stored in space accessible to the coordinator. A way out of

the difficulty would be to arrange for the status to be stored centrally.

This, of course, is what happens in the alternative approach to subsystem

implementation in which all processes are handled by a unique system

coordinator.

The Address Argument Validation Problem

This problem is well known to those concerned with protection in

operating systems. Suppose a process enters a procedure and in doing so

passes from one protection environment to another. Suppose further that

it carries with it the address of an object as a parameter. It is a

requirement for proper protection that the object shall be accessible in

the original protection environment, namely, that of the caller. It is

necessary to guard against the possibility that the address may be valid

in the protection environment of the called procedure (and hence give

rise to no trap when it is used) and yet be invalid in that of the

caller. Obviously the check of validity cannot be made before the change

in environment takes place, since the calling procedure is not to be

trusted. It cannot be made by the operating system during the calling

process, since there is no way in which the system can know whether what

is being passed is a numerical argument or an address. The validation of

the address must, therefore, be performed in the called procedure and

sufficient information to make this possible must be preserved about the

protection environment of the caller.

Validation of addresses is complex and lengthy if performed by

software and designers of large computer systems now usually provide

hardware supoort. In the Honeywell 6180 computer on which MULTICS runs

there is a convention that addresses should be passed from one ring of

protection to another by making indirect reference to words placed by the

calling procedure on the stack. When performing the indirection, the

hardware automatically checks that the address is not being used in a

ring with a lower degree of privilege than the ring of the caller. The

ICL 2900 series of computers also uses rings of protection. Here the

check is made by means of a special validating instruction and there are

conventions regarding its use which the writer of a procedure designed to

be called from other rings must follow. In either of these systems,

provided that the called procedure is correctly written, no violation of

protection can occur as a result of error or malice on the part of the

writer of the calling procedure.
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In a capability system no threat to protection is raised by the

passage of capabilities from one procedure to another, since a calling

procedure can pass a capability only if it has access to it itself. A

threat does, however, arise if an attempt is made to pass from one

procedure to another a data structure stretching across more than one

segment. It has already been pointed out that, in the CAP system, it is

not possible to do this for reasons that have nothing to do with

protection, but which are a consequence of the use of a local naming

scheme. It follows that in the CAP there is nothing corresponding to the

address argument validation problem.

The reason why multisegment data structures are dangerous is that

they contain pointers from words in one segment to words in another. A

pointer will consist of a bit pattern specifying a capability for the

second segment and an offset in it. If the capability is specified

uniquely by a global name, then no problem arises. It is more likely,

however, that, in the interests of efficiency, the bit pattern will

identify the capability by pointing to where it can be found. For

example, in the case of a computer in which capability registers are

referred to explicitly, a capability may be identified by giving the

number of the register in which it stands. A loss of protection will

occur if the calling procedure specifies the wrong register. In the

Plessey System 250 this cannot happen, since the capability registers are

referred to by means of tags in the instructions (cf. index register

tags) and these tags are never changed. In other systems a validity

check would be necessary. The price paid for not needing such a check in

the Plessey System 250 is that in addition to it being impracticable to

pass multisegment data structures from one protected procedure to

another, it is also extremely difficult to use them within a single

protected procedure.

Modularity

A consequence of the CAP'S protection system which was not fully

appreciated at the outset is the high degree of modularity which it

enforces on the software. The unit of modularity is the protected

procedure. The procedure description block which defines the protected

procedure contains a complete and unambiguous specification, not only of

the code and data belonging to the procedure, but also of the environment

required for it to operate correctly.
The nature of the modularity that this achieves is indicated by

the statement that protected procedures may, in principle, be written in

any language that takes the programmer's fancy. In practice, all the
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procedures of the operating system proper have been written in ALGOL68C,

but there are one or two procedures used for text editing and such

purposes that are written in BCPL. The interface between the procedures

has quite deliberately been defined at a very low level, namely at

machine code level. In consequence no type checking is provided across

the boundary. This has not, in practice, been a serious drawback, no

doubt because of the simplicity of the interface.

The fact that the modularity extends to the environment as well

as the code makes it unusually easy to make structural alterations to the

operating system. In particular, it is very easy to substitute a service

process for a service procedure. One first sets up a new process with

the same environment as that associated in the original process with the

protected procedure providing the service. One then needs to make only a

small change to the calling sequence. The details of the way this is

done for procedures written in ALGOL68C are explained in Appendix 2. The

ease of transfer of programs from the procedural to the message mode of

call exemplifies the duality of operating system structures drawn

attention to by Lauer and Needham (1978). This duality is often obscured

by an excess of implicit assumptions about the environments in which

programs may run.

The Minimum privilege Principle

The minimum privilege principle asserts that, at any time, a

running program shall be given those, and only those, privileges of

whatever kind that are logically necessary for the correct performance of

its task. In many computer systems the principle is either inapplicable

or the architecture imposes severe•limits on the extent to which it can

be observed. In the case of the CAP and other systems that emphasize

protection, there are no such limits and it is a matter for debate how

far one should go. It is clear that, in the case of material that is

sensitive in the sense that its corruption or leakage would have serious

consequences, a strong case can be made out for following the principle

very strictly, even to the extent of subdividing data structures to a

fine degree. At the same time it must be recognised that in any system,

however effective the hardware support, there are bound to be overheads

involved in changing the domain of protection and this consideration will

set a limit to what a practical designer is prepared to do. The case for

following the principle strictly in the case of data whose corruption or

leakage would lead merely to minor inconvenience must be made on the

grounds of facilitating the development of the programs and of making the

system more rugged, in the sense that the term was used in Chapter 1. In



DISCUSSION AND CONCLUSIONS 69

a tightly protected system, an error of any kind is likely soon to lead

to a protection trap and, even if it does not, the source of any observed

corruption of a part of the system can readily be located by examining

all protected procedures that have capabilities for it. The system is in

consequence more resilient to bugs whose effects do not show up until it

has been running for some time, to hardware incidents, to accidents of

all kinds, and to unexpected and possibly dangerous side effects of any

modifioations that may be made to the system while it is in service.

A further reason that can be advanced for adopting the minimum

privilege approach in a strict form is that it makes it easy to lay down

guide lines for members of the team working on system development. It is

not obvious what other guidance could be given to designers who must

decide, among other things, which capabilities a certain procedure should

have. Associated with minimum privilege is the principle of data

abstraction; in CAP terms this means that, if a data structure is

required to be accessible in a number of different domains of protection,

then it should be managed by and only accessible through a protected

procedure defined for the purpose.

In order that the minimum privilege principle may be correctly

applied, it is necessary to ensure that any tract of code which requires

special privileges should be as small as possible. This consideration

will be the major one in deciding on the scope and function of the

modules into which the system is divided. An example in the CAP is

furnished by the protected procedure MAKEPACK, which has important

privileges in relation to SINMAN. MAKEPACK was kept small by omitting

everything concerned with the user interface. The omitted material was

included in another protected procedure (MAKEPDB) which requires no

special privilege of any kind. By the same token, it is desirable to

arrange that individual capabilities do not give a wider range of

privilege than is likely to be needed on any particular occasion. This

is particularly the case in relation to enter capabilities. If a

protected procedure is capable of performing a variety of functions, not

all of which will normally be required by a particular caller, some means

must be found whereby they can be separately authorised. In the case of

the CAP this is done by the use of software capabilities or by the use of

access bits in enter capabilities, which provide what Saltzer and

Schroeder (1975) refer to as separation of privilege. In the basic parts

of the CAP system the separation of privilege was taken a long way. For

example, the privilege to create a capability is distinct from the

privilege to modify an existing one. It could be argued that this is

going too far, because the consequences of abuse of either privilege
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would not appear to differ materially. It was difficult, however, to be

quite sure that this was really the case, and separation was thought to

be a wise precaution.

A static audit of the protection structure of the CAP was carried

out by D. J. Cook (Cook, 1978) and, perhaps not surprisingly, a good deal

of overprivilege was found to exist. Some of this was connected with

SINMAN and it may be worth while explaining how this came about. The

early design of SINMAN was quite simple, but as time went on additional

facilities were added without anyone having a proper appreciation of what

was happening. The consequence was that the privileges were not properly

separated. When the full significance of this finally became apparent,

all the programs that used SINMAN had been successfully debugged and

there was consequently little incentive for the design team to put things

right. Tnis was, perhaps, a pity because the additional ruggedness that

would have been imparted to the system if privilege had been properly

separated would have been worth having. The experience just related

emphasizes the fact that the designers' understanding of a program grows

as the program is developed. It is rarely possible to produce a really

well structured program on the first attempt.

Another source of overprivilege arose from the existence of the G

(global) capability segment. None of the capabilities in that segment

are such that their misuse could do the system any harm, but it is

nevertheless true that some of them are surplus to the requirements of

many programs. The purist would say that these should not be put in the

G capability segment and he would perhaps be right.

It is interesting to note that if the aim of the CAP project had

been to study security rather than protection, the presence of some of

the G capabilities would have been more serious. For example, one of

them enables the current process to ascertain the name of the user on

whose behalf it is running. It would thus be possible for a dishonest

system programmer to write a program that would discriminate against a

particular user. This would be less easy if the capability giving access

to the user's name were only accessible to code that really required it.

G capabilitiss have something in common with global variables which it is

now considered good programming practice to avoid as far as possible. If

we were to produce a new version of the CAP operating system, we would

certainly make less use of the G capability segment.
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Restricting the Use of Capabilities

It would sometimes be useful if restrictions could be placed on

the use of capabilities in a way that is not possible in the existing CAP

system. Consider, for example, the capability needed by the command

program for resetting certain classes of attentions. It will be recalled

that software capabilities for resetting certain attentions are freely

available; with their aid the user is able to build into any subsystem

that he writes means whereby an operator at a console can intervene to

divert the flow of control from one part of the subsystem to another.

Certain attentions, however, need more powerful software capabilities to

reset them. The command program possesses one of these and the effect of

its use is to return the user to command status; that is, it aborts his

program without terminating his session. An even more powerful software

capability for resetting attentions is possessed by STARTOP and this,

when used, terminates the user's session.

At first sight it might appear that no harm would result if the

two powerful capabilities just referred to were made generally available,

since by misusing them a user could do harm only to himself. However,

they might become incorporated into utility routines or into other

routines passed from one user to another and this could be embarrassing.

For example, by using the software capability normally used only by the

command program, it would be possible to write a routine containing a

loop from which the user could only escape by terminating his session.

As the CAP system stands at the moment, the software capability

for resetting attentions used by the command program is placed in its P

capability segment when it is generated. If instead the capability were

passed to it as a parameter when it is entered from STARTOP, it would be

possible for a user to write a command program of his own that would take

the place of the regular one. All he would have to do would be to ensure

that the entry in the file containing users' particulars (see page H3)

was changed accordingly. However, this would enable a user to obtain a

copy of the capability for resetting attentions which he could then

preserve in the filing system and incorporate in other programs. It

would be possible to prevent him doing this by passing, not the

capability itself, but an enter capability constructed by MAKEENTER for a

two line protected procedure equipped with the capability which would

reset the attention. Since such an enter capability cannot be preserved

in the filing system this would provide a way round the difficulty. A

better solution, but one involving a radical change to the system, would

be to have a bit in a capability which indicated whether it could be

preserved or not.
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Further thought, however, suggests that a more generalised

implementation might be considered. All capabilities of whatever type

would have a set of bits in them whose integrity would be maintained by

the microprogram in the same way as other bits in the capability; the

interpretation of these particular bits would, however, be entirely a

matter of software convention. It would be rather as though all

capabilities had a software capability incorporated within them. There

is a parallel here with the system used in connection with the entries in

a file directory and described in Chapter l|. What is there called the

access control matrix is concerned with the uses that may be made of the

object for which a capability has been preserved and the permission

matrix is concerned with operations that may be performed on the entry

itself.

The remarks that have just been made have a bearing on the

problem of the revocation of capabilities. There are issues here that go

deeper than mere questions of implementation and depend on the view taken

of the nature of capabilities. In the CAP, a user who has been given or

has otherwise acquired a capability is free to preserve it in the filing

system. No record is kept centrally. The original owner of the

capability has, therefore, no way of revoking it. Nor can he destroy the

object to which it refers since the filing system will maintain it in

existence as long as there is a capability for it anywhere in the system.

This is consistent with the view that a capability is a ticket which is

unforgeable and which will not lose its validity.

If the system were to keep a central record of the whereabouts of

all capabilities it would, in theory, be possible for them to be revoked

by being marked as invalid. The overheads of having such a record would,

however, be prohibitive. If the destruction of objects were to be

permitted without all capabilities for them being marked as invalid, then

means would have to be found to prevent the capabilities being reused

for new objects; in practice, this means giving them unique identifiers

which are never re-used. This can be done, but it adds substantial

overheads to the management of capabilities.

There is room for debate about the circumstances in which the

revocation of capabilities is necessary, or indeed whether it is

necessary at all. The provision of capabilities which oould be handled

by a user during his current session but not preserved would, perhaps,

meet some requirements without imposing the substantial overheads

mentioned above. A user wishing to use a revocable object would need to

request a capability for it on each occasion he logged in. The owner of

the capability would be free to determine from time to time the
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conditions on which the request oould be granted. Once having granted

the request, he could not go back on his action, but the capability would
lapse at the* end of the user's session.

Tagged Capability Architecture

In the CAP, capabilities and data words are strictly segregated

into capability segments and data segments. Various proposals have,

however, been made for computer designs in which each word is stored in

memory with an extra tag bit to indicate whether it is a data word or a

capability. The advantage of doing this is that by mixing data words and

capabilities in the same segment it is possible to reduce the number of

small segments that have to be handled; for example, the capabilities

required by a procedure can be put in the same segment as the code of the

procedure. The capabilities themselves would still be capabilities for

segments and would carry access bits indicating read, write, and execute

access.

In such a computer, enforcement by the hardware of the rule that

capabilities cannot be counterfeited is effected in the following manner.

When one of the arithmetic registers is loaded from the memory, the tag

bit associated with the word in the memory is ignored; when the content

of an arithmetic register is copied into memory, the tag bit is forced to

be a 0. When an attempt is made to load a capability register from the

memory, a check is made by the hardware and an error signalled if the tag

bit is not a 1. As in other capability systems, it is necessary that a

sufficiently trusted system procedure should have the power of creating

capabilities; in this case it would be the power to execute a machine

instruction that would convert a tag bit from a 0 into a 1. The

execution of this instruction would be controlled by a special kind of

capability in much the way that the execution of input and output

instructions is controlled in the CAP computer. The possession of this

special capability would be confined to the highly trusted procedure just

mentioned.
Experience obtained in designing the CAP operating system has

shown very clearly the importance of being able to relax in a controlled

manner the rules under which protection is enforced; for example, the

procedure responsible for performing housekeeping tasks necessary after

the occurrence of an interrupt is given a D-type capability for a segment

containing capabilities that elsewhere is accessed by means of a C-type

capability (see page 3). The tag system in the form just described would

not provide the necessary degree of flexibility. The reader will perhaps

be able to devise ways in which it could be provided without destroying
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the purity of the tagged architecture concept. We will not pursue the

subject here since we feel that there is a separate objection to the use

of tagged capabilities that in itself is sufficiently strong to make

their use unattractive in a system of the CAP type.

The methods for the management of capabilities that are used in

the CAP operating system depend on the fact that capabilities are

confined to capability segments. In a tagged architecture they would be

scattered throughout the memory and, as far as we can see, their

management would involve extensive scans through memory, in particular,

when they were being preserved in the filing system and when the segments

to which they refer were about to be destroyed or removed from main

memory. It is possible that this is not an insuperable objection and

that fresh insights will lead to proposals for a tagged architecture that

would be both elegant and efficient. It should, however, be added that

any such architecture would have to meet an objection that can be raised

against all systems of tagging for whatever purpose the tags are used,

namely that they imply an increase in the length of the memory word above

what would otherwise be necessary. Since the cost of memory is likely in

the future to dominate the cost of processors, this means a proportionate

increase in the total cost. A designer who has to consider the overall

economy of his design and who has competing requirements to reconcile

might not be prepared to incur this cost. He would be more likely to do

so if it could be shown that reducing the number of small segments that

have to be handled would lead to a compensating economy in memory usage.

We may perhaps add that, in designing the CAP computer and its

operating system, we and our colleagues were anxious to demonstrate the

possibility of producing a tightly protected general purpose operating

system that would run on a computer with no privileged mode. The CAP

philosophy was to avoid anything in the nature of a kernel running in a

privileged mode, except in so far as the microprogram might be said to

play this role. It is apparent however, that in a different context -

for example, that of a system intended specifically for transaction

processing, with perhaps more emphasis on privacy than on system

ruggedness - the same ideas might well find a different implementation,

both in terms of hardware and in terms of software. One lesson in

particular has been learned. That is the high importance that is now to

be attached to protected procedures and their generalisations, by

whatever names they may be known. It is clear that future designers of

integrated hardware and software computer systems will need to consider

very carefully what form of support to give to such objects.
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Protection Kernels

In both HYDRA [1] and CAL-TSS [2] a large body of code, the kernel, is

responsible for protection mechanisms. The kernel provides software

emulation of a machine which includes high level protection functions in

its repertoire of operations. Software emulation of simple protection

operations is slow and cumbersome; a complex function, such as moving

between protection domains, is considerably slower, perhaps by a factor

of 1000, than a simple hardware procedure call. Software kernels are

characteristically large and written in machine code. The inefficiency

of kernel primitives encourages the implementation of complex compound

functions within the kernel to cut down on the number of calls to it.

All of the above factors increase the complexity of the kernel and lead

to a corresponding rise in the probability that it contains errors.

The complexity of the kernel can be reduced by breaking it down

into a basic kernel which provides the bare bones of the kernel

mechanisms and a high level kernel which implements more complex

functions in terms of the primitives of the basic kernel. The high level

kernel has the use of the protection mechanisms of the basic kernel,

increasing its ruggedness. There are two major considerations in this

approach: firstly, identifying primitives that belong to the basic kernel

and, secondly, reducing overheads to a minimum within it.

The first problem is a matter of careful design and philosophy;

the second may be alleviated by making the basic kernel part of the

hardware of the machine. Hard-wired protection mechanisms are

traditionally simple in nature - the inspection of access control bits

and addressing limits. In a microprogrammed machine with an adequate

supply of microprogram memory, it is possible to consider using

*This appendix is a copy, with minor revisions, of a paper first

presented at ii2eme Colloque Internationale sur les Syste'mes

d'Exploitation," IRIA-Rocquencourt and published in "Operating Systems,"

edited by D. Lanciaux, North-Holland Publishing Co., 1979-
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microprogram control of protection hardware to implement a sophisticated

protection system.

If individual facilities in a microprogrammed kernel are long in

terms of numbers of instructions obeyed in providing them, there will be

only small gains in efficiency. As the range of facilities provided by

the kernel increases so does the size and complexity of its code,

increasing the risk of errors and poor reliability. The kernel should be

compact and its operations should be simple if it is to be successful.

It should be designed independently of considerations of the detailed

design of higher levels of the system and should be envisaged as a

self-contained protection system in its own right so that the protection

system may maintain its integrity even if the system it supports should

fail.

The Cambridge CAP Computer

CAP is a microprogrammable processor, designed and built at the

University of Cambridge, England, for use in the investigation of

hardware-supported capability-based protection systems [3]- The

microprogrammer has access to the hardware of the machine, in particular,

to a capability unit. The unit consists of 64 capability registers each

of which has base, size, access code and tag fields. The base, size and

access fields describe a contiguous set of locations of store and the

access conferred by the capability register for that region of store. A

memory transfer is carried out in two parts: firstly a capability

register is selected and then the address of the word to access is

specified as an offset within the region delimited by the register. If

the offset exceeds the size field, or the nature of the access is not

commensurate with the access code, a protection violation is signalled to

the microprogram. Provided that there is no protection violation, the

word of store accessed is the one whose absolute address is the summation

of the base field and the offset. Capability registers can be selected

by performing an associative search of all the registers in the

capability unit for one having a particular value in its tag field. This

mode of operation can be used to make the unit function as a capability

cache.

As well as protection, the CAP microprogram is responsible for

the basic instruction set of the machine, interrupt handling and

peripheral device transfers over a fast link to a peripheral processor.

A memory protection system has been constructed for the machine

and is described elsewhere [U]. The system has been successful [5]

primarily because of its fine-grainedness and the efficiency of its
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mechanisms. The subject of this paper is a. design (CAP-3) that extends

the scope of the memory protection scheme (CAP-1) to offer a wider range

of facilities, including the protection of abstract or typed objects.

Naming Structure

Unlike CAP-1 which has a nested naming structure, where the name

of an object is its address in a higher name space, CAP-3 has a global

naming structure. Every capability includes a global name which selects

an entry in a central table, the map, describing the object referenced by

the capability. All capabilities for the same object, although possibly

conferring differing access rights, lead to the same map slot.

Protection operations upon objects are done by altering the contents of

map entries.

In a global naming scheme such as that employed by HYDRA, global

names are unique for the entire lifetime of the system. Such a name

space is vast, with long identifiers (64 bits) and is sparse because many

names will belong to deleted objects. To handle the identifiers, it is

usual to organise the map as a hash table, keyed on unique identifiers.

The HYDRA kernel is obliged to ensure that it always keeps the map in a

consistent state, even over a system break, so that capabilities

preserved on backing store will be interpreted correctly when the system

is restarted. Hashing is a slow and complex process compared to direct

indexing; assembling an object such as a domain that contains many

capabilities will consume considerable effort. As the map holds an entry

for every object currently known to the system its size, even if the map

is represented compactly, is too great to hold totally in memory: some

swapping mechanism is needed to page the large overall structure from

disc or drum into a smaller resident table. The ideal swapping system

would be the virtual memory mechanisms of the operating system, but these

cannot be used as the virtual memory relies on the kernel for protection!

CAP-3 leaves unique name management in the above sense to

software; the kernel provides no support for long term names nor for

preserving naming integrity over system breaks. These functions must be

carried out by software running above the kernel and it is the duty of

this software to map its naming system onto that of the kernel. The

central map is resident in store and addressed directly as a vector by

simple indexing. The map may have a maximum of 16383 entries, although

its size in practice is expected to be much smaller (say 2000-4000

entries). Objects only remain in the map if there is an active

capability for them. An active capability is one that is addressible by

an active process running in the machine. The microprogram will detect a
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capability becoming inactive and reclaim the corresponding map slot for

subsequent reuse.

The advantages that the global naming scheme of CAP-3 has over

the nested scheme of CAP-1 are that the global nature of names makes it

possible to transfer capabilities between protection domains without

having to translate names between spaces, and that evaluation of

capabilities can be faster than in CAP-1 as it is not necessary to climb

a hierarchy of name spaces in the course of the computation.

Segments

The basic unit of memory protection is the segment, a contiguous

set of words of memory up to 65535 words in all, with a granularity of

one word. Segment capabilities may have data access, in which case the

access code is a selection of read data, write data, and execute,, or

capability access, with accesses read capability and write capability.

The access codes can be used to ensure that capabilities are neither

forged nor corrupted.

Addressing

Addresses in CAP-3 are interpreted relative to a domain of

protection. The structure of a protection domain is rooted in a

capability segment called the domain descriptor. There are entries in

the domain descriptor for up to 16 capability segments that form the

address space of the domain. Each of these segments can hold up to 256

capabilities. A virtual address (32 bits) divides into two major parts:

a capability specifier (16 bits) and an offset (16 bits). The capability

specifier further breaks into two: capability segment selector (t bits)

selecting one of the 16 segments in the domain descriptor and a

capability offset (8 bits) indexing a capability from within the selected

segment. In addition there are four unused bits. The capability

specifier indicates the location of the capability for the object being

addressed. If the object is a segment then the offset part of the

virtual address refers to a particular word within the segment.

The CAP hardware provides support for virtual address

translation. The capability specifier of a virtual address is used to

compute the key for searching the capability unit during a memory

transfer. If a capability register in the unit with the required key is

not found, the microprogram evaluates the capability from store and loads

it into the unit. The hardware mechanism reduces microprogram

involvement in addressing to exception handling only, giving a

considerable saving in overheads. The binding of capabilities to
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addresses simplifies protection for users: they need not concern

themselves with capability register allocation, as would be necessary in

an explicit capability register machine such as the Plessey System 250

[6].

Memory Protection

As was remarked upon previously, the primary unit of memory

protection is the segment. The map entry for a segment consists of a

segment type mark, the absolute address of the segment in memory and its

size in words. There are also various status bits for the benefit of

memory management in the operating system. A capability for a segment

holds, as well as a map pointer and access right bits, a refining base

and limit. The capability denotes that part of the overall segment

starting from the refining base such that its size exceeds neither the

overall size, nor the refining size. The refinement mechanism makes it

possible to create capabilities giving access to only a small part of a

larger segment - a facility frequently required to satisfy the "minimum

privilege" principle.

Peripheral Protection

To use a particular peripheral device it is necessary to quote a

capability for a word of store associated with the device - these words

are known collectively as the P-store. The P-store should not be

confused with the peripheral control stores found in many machines.

CAP-3 has explicit instructions for starting I/O transfers which pass

their arguments directly to the microprogram. Before proceeding with an

I/O order the microprogram checks that a capability for the correct

P-store is quoted, although the actual contents of the location are

neither read nor altered. This contrivance is used for efficiency.

P-store capabilities are cached on the capability unit just as other

segment capabilities are, saving on the number of capability evaluations

that would occur if a "device" type object mechanism were to be used

instead. The operating system can control access to peripheral devices

by restricting the availability of P-store capabilities.

Capability Transfer

There are machine instructions for copying capabilities between

capability segments. MOVECAP will copy a capability without alteration.

A more potent instruction, REFINE, performs the copying operation and at

the same time removes selected bits in the access code of the copy. F°r

segment capabilities, REFINE can also modify the refining base and size
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of the capability to make the copy a subsegment of the original.

Type Objects and Type Extension

There are many types of object in an operating system; some such

as segments, processes, and message channels can be interpreted by the

microprogram; others such as file directories, I/O streams, eto. are the

currency of the operating system software. The microprogram does not

know in advance the range of types of object needed by the operating

system and must be able to cope with a large variety of them.

In CAP-1 , protected objects are composed of a protected procedure

(a protection domain within a process) encapsulating the representation

of the object. For example, a CAP-1 file directory manager is a

protected procedure holding a directory segment containing names, disc

addresses, and access information for files in the directory it manages

[7]. There are unfortunately some flaws in this contrivance; as all

abstract objects have the same type (protected procedure) it is difficult

to distinguish between them unless some marking convention is used. The

mechanism is cumbersome, especially for simple objects; binary operations

such as "merge sorted files" cannot be carried out and, because the

nested name space structure of CAP-1 makes the cost of moving a protected

procedure prohibitively expensive, it is not possible to pass protected

objects freely between processes.

CAP-3 uses a type extension mechanism based upon sealing

information within map entries. The representation of an object is

placed, together with a type mark, in a map entry which serves to define

the object. A capability for an object does not confer any privileges

for manipulating the contents of the map entry describing the object.

Thus the integrity of the contents of the entry are ensured as they are

sealed within the map.

The purpose of the type mark is to distinguish between different

sorts of objects. The representation may be either a capability

representation or a data representation. A data representation consists

of a protected bit pattern. A segment map entry, for example, has the

absolute base, size and status of the segment sealed within it.

Capability representations are used to describe objects that are

implemented in terms of other objects; for example, a stream object may

be implemented as a segment of memory; concealing the segment in a stream

object prevents holders of a stream capability from accessing the segment

and corrupting the stream structure. The ability to seal capabilities

furnishes an extensible protection architecture; any new object can be

defined in terms of pre-existing objects, reflecting the general
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principles of layering or levels of abstraction [8].

Certain operations such as object creation are similar for all

types of objects in terms of changes to the map; to perform such a

generic type operation it is mandatory to present a capability for a type

object representing all objects of the class being exercised. A type

object is a data object having a characteristic type field, recognisable

by the microprogram. The representation of the type object is a bit

pattern that is the type mark of all objects of that type. The type

object has no other significance than as a means of controlling generic

type operations.

The SEALDATA instruction will create a capability for a data

object. The arguments of the instruction are a capability with seal

access for a type object and the data to seal. The microprogram finds an

unused map slot and primes the type field with the type mark from the

representation of the type object. The data argument is loaded into the

representation part of the entry. The outcome is a fully privileged

capability for the new object. Type objects can be made by sealing data

specifying a new type mark with a type object whose representation is the

"type object" type.

If sealed data is to be interrogated, in the case of a password

or some such thing, the UNSEALDATA order is employed. The arguments of

UNSEALDATA are a capability for the object to unseal and a capability,

holding unseal access, for a type object matching the type of the object

to be unsealed. The map entry to be unsealed is checked to ensure that

it possesses a data representation and the representation is extracted.

An object, such as a segment, can have a data representation that

needs to be modified if, for example, the segment is relocated in memory.

There is an instruction, ALTERDATA, which supports this operation. It

takes a capability for a data object with alter access together with a

capability with seal access for an appropriate type object and loads a

new bit pattern into the representation of the data object. Any

capabilities in the capability unit derived from this object are flushed

out so that they will subsequently be re-evaluated in the light of the

nascent representation.
Objects with a capability representation are sealed and unsealed

by SEALCAP and UNSEALCAP respectively. These instructions are analogous

to their counterparts for data sealing except that SEALCAP copies a

capability into the representation of the new object and UNSEALCAP

returns a capability as its result. There is also an ALTERCAP

instruction.
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An Example of Revocation

Revocable capabilities for the
' th ing 1 object are made by
sealing a capability for the
object in a revoker map entry.

' t h i n g ' an object
map entry

a capability for the ' thing' object
which will be unaffected by revocation
and cannot be used with the REVOKE
instruction

revoke +
access.

A capability for the 'thing' object
which can be used with REVOKE to change
the access mask in the revoker

REFINE

A revoker map entry
for the 'thing'
object

A capability for the 'thing' object which cannot
be used with the REVOKE instruction although the
capability is affected by a revocation being
performed upon the 'thing1 object
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As objects are represented by map entries identified by global

names, they can freely migrate between processes without difficulty. The

type object mechanism for protecting objects enables generic operations

to be carried out by the microprogram kernel, even though it has no

knowledge of the meaning of the objects themselves. This type extension

scheme is based on a design proposed by D. Redell [9].

Revocation

A further feature of Redell's design is that by the inclusion of

a special variety of map entry it is possible to implement a revocation

scheme that fits into the overall type extension architecture. In CAP-1

any object that is to be revocable has to be concealed in a protected

procedure i-hioh performs all operations on the protected objects, subject

to the revocation conditions. This is a very expensive technique for

frequently accessed objects.

In CAP-3 an object is made revocable by sealing a capability for

it in a revoker map entry. The revoker contains an access mask which

controls access to the sealed object. If, in the course of the

evaluation of a capability, the microprogram encounters a revoker, it

calculates the access to the object to be the intersection of the access

mask in the revoker and the access code in the capability. Several

revokers can be scanned in this way until the root object is found.

Apart from its access mask a revoker is transparent to all other

operations; it does not conceal either the type mark or the

representation of the root object.

The REVOKE instruction may be used to modify the access mask of a

revoker. REVOKE works upon a capability holding the generic access

revoke for a revocable object and will load a new bit pattern into the

mask of the revoker pointed at by the capability.

By careful application of the revoke bit (similar in role to

Redell's lock bit) and multiple chains of revokers it is possible to

implement a considerable range of revocation policies.
To make revocation immediately effective it is necessary to

remove from the capability unit any capability whose evaluation involves

an indirection through a revoker changed by REVOKE. Stored in every

evaluated capability is the map slot of the root object from which the

capability register was set up. When a REVOKE order is executed, the

root object of the chain of map entries following the revoker is
determined and any entries in the capability unit for this object are

flushed out. This guarantees the removal of all capabilities evaluated

through the revoker, although upon occasion it may remove more
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capabilities than is strictly necessary.

Revoke access and alter access are the only two generic access

codes and have the same significance in all capabilities. The remainder

of the access code in a capability is type dependent and is not the

concern of the kernel unless, of course, the type is hardware-supported.

Mao Management

The microprogram kernel keeps a pool of free map slots and can

detect object's becoming inactive so that their entries can be reclaimed.

For this purpose there is a reference count associated with each map slot

recording how many capabilities and other map entries point to it.

Whenever a capability or map pointer is destroyed the reference count of

the object held up by the pointer is decremented. Should the reference

count fall to zero, there is no need to retain the object in the map and

its slot is returned to the free pool.

If a capability segment is sealed in an object and a capability

for this object is subsequently copied into the capability segment, a

circular structure is formed. The reference count mechanism cannot

detect circular structures becoming inactive. An asynchronous capability

segment garbage collector modelled on the CAP-1 filing system garbage

col] *v/r [10] can be used to dispose of inactive circular structures.

Ths microprogram does not flush out a capability segment when its

-eference count reaches zero as the task can be deeply recursive and

time-consuming. The microprogram is responsible only for the map

management; capability segment management is in the hands of the

operating system.

When an object is sealed, its creator oan label the new map entry

with an identifier of his own choosing so that the object can be

recognised subsequently without having to keep tables relating objects to

map slots.

Process Structure

CAP-1 has a hierarchical process structure and a non-hierarchical

protection domain structure within processes. CAP-3 attempts to capture

the advantages of CAP-1's domain structure by having a non-hierarchical

process structure where each process is in a single protection domain.

Capabilities are passed between processes by a microprogrammed message

system. Each process is defined by its domain descriptor capability

segment. A particular segment capability in the descriptor is for the

process base. In this segment there is a register dump area and

information describing the state of the process.
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A process may send a message to a channel. A channel capability

leads to a channel object whose representation is a capability segment.

The segment contains capabilities for the process to be woken up on the

arrival of a message at the channel and for the queue of messages queued

upon to the channel.

In a process' domain descriptor there is a capability for a

capability segment known as the message pool. Messages are constructed

as fixed size subsegments allocated out of the pool. The allocation is

carried out by the MAKEBLOK instruction which delivers a capability for a

message object. The message object has a capability representation, that

is, a capability for the portion of the message pool - the message block

- allocated for this message. An argument of MAKEBLOK specifies an

identifier that may be used to recognise messages when they are replied

to. There are instructions for transferring capabilities in and out of

message blocks.

Messages are despatched by the SEND instruction which is

presented with a capability for a message obje^'-, a capability for a

channel object and an optional capability for a reply channel. The reply

capability is dumped in the message block but it cannot be extracted by

the receiver of the message. The message block is attached to the

possibly empty chain of blocks waiting at the destination channel. The

process owning the destination channel is then marked as active.

Finally, the representation capability of the message object is made

invalid so that the sending process loses access to the message block. A

process may elect to wait after sending a message.

Channels are polled by the RECEIVE instruction. RECEIVE takes a

message from a channel's queue and makes it available as a capability for

a message object freshly created in the map with a capability for the

extracted message block as its representation. If there are no messages

on the queue RECEIVE yields a numerical return code indicating the

absence of a message.

When the receiver of a message has finished with it, he executes

the REPLY instruction upon the message object capability. REPLY

invalidates the representation capability of the message object so that

it is useless to the receiver. If the sender of the message included a

reply channel capability, the message block is sent back to this channel.

The destruction of the message object ensures that the reply capability

is only used once. There is a variant of REPLY that causes a wait after

despatching the message.

When a message transaction has been completed, the message block

may be returned to the message pool from which it was made by obeying the
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Message System Structure
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KILLBLOK instruction on a message object capability describing the block.

The capabilities in the message block are flushed out and the message

block is invalidated to prevent it being used subsequently. It is not

possible to kill a message which contains a reply capability until the

reply has been exercised.

Various access bits are associated with both message object and

channel object capabilities. These bits are used to control the

privileges of sending messages, receiving messages and issuing replies

and also to ensure the correct sequencing of message transactions.

When a process is woken up by the arrival of a message the

microprogram judges whether or not a process switch from the transmitting

process is necessary on the basis of priorities held in each process'

process base.

If a process wishes to await the arrival of a message it may

suspend by executing the WAIT instruction. All holdups, interrupts, and

traps are handled by the Interrupt process, known to the kernel. The

interrupt process may cause another process to run by obeying the WAKEUP

instruction specifying a capability for a process object which has a

capability for the new process' domain descriptor as its representation.

Control is immediately transferred to the selected process. A "wake up

waiting" field in each process base is used by the kernel to prevent a

process from losing a message that arrives in the middle of the execution

of a RECEIVE and WAIT instruction sequence.

The structure of the capability unit makes it possible to leave a

process' capabilities inactive in the unit when control switches to

another process and then to make them easily accessible again when the

first process resumes, which reduces the overheads of interprocess

communication. The CAP-3 message system aims to be as cheap as the

protected procedure mechanism of CAP-1. The mechanism removes the gross

distinction between processes and protected procedures found in CAP-1.

Implementation and Future Plans

At the time of writing, the microprogram has been completely

coded and runs several test programs. It is just under 1000

micro-instructions long. The code is divided up thus: basic instruction

set, 1000 orders; memory protection, 500 orders; type extension and

revocation, 500 orders; processes and messages, 1000 orders. The

remaining orders are accounted for by initialisation, interrupt handling

and fault reporting code.

Ad hoc measurements reveal that a message transaction between

processes takes between 100 and 200 times as long as a simple "load from
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store" instruction. Type extension and revocation operations are at

about 20 on this scale. By contrast, CAP-1 can carry out a protected

procedure call in 50 units whereas a (software) message transaction takes

several thousands of units. It should be noted that the CAP machine has

a "vertical" style of microprogram with little scope for parallelism, so

one might hope to do better than this in other machine architectures.

The major test of the kernel has yet to come: will it support an

operating system? It would be straightforward to re-implement the

current CAP operating system to run with the new microprogram. A greater

challenge exists in the production of a system utilising the type

extension and multiprogramming mechanisms of the kernel both within the

operating system and in the facilities offered to users. The main

question is whether or not the kernel primitives are too out down

compared to the analogues in, say, HYDRA to be effective. It is in

answering questions of this sort that the future of the kernel lies.

An Evaluation

The design described above provides an indication of the level of

facilities that it is reasonable to provide in a microprogrammed

protection system. The kernel is self-contained and its interfaces to

the operating system are clearout and simple. The kernel tries to avoid

forcing a particular structure on the software built around it. The

primitives of the kernel are a firm foundation for the construction of a

well-protected operating system. The kernel does not trust the software

built upon it; all data structures and arguments are checked at every

stage. While this may slightly reduce efficiency, it does lead to the

production of a rugged and reliable kernel. This approach has been

successfully adopted in previous CAP microprograms to good effect. The

microprogram kernel, aided by the sophisticated hardware of CAP, has the

properties of simplicity, flexibility, and economy of mechanism necessary

in a worthwhile rugged, extendible, fine-grained protection system.
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APPENDIX 2

ALGOL68C AND ITS RUN TIME SYSTEM

ALGOL68C is described in Bourne et al. (1976). The compiler,

which is itself written in ALGOL68C, produces output in an intermediate

language known as Zcode. The Zcode is then converted into machine

language by means of a translator. Parameters associated with the

compiler enable the exact form of the Zcode to be so chosen that it will,

within limits, be well adapted to the computer for which the compilation

is being done. The ALGOL68C compiler contains a special feature whereby

the environment - notably the status of the stack - as it exists at a

particular point in compilation may be preserved and subsequently

reinstated. This mechanism was provided so that the separate compilation

of sections of the program should be possible.

As in the case of other languages, it is necessary, in order that

the generated code should run, that there should be present in memory a

certain number of standard routines. These constitute the run time

system. All but a very small part of the run time system is written in

ALGOL68C. However, the lowest level, containing about 220 instructions

and known as MC, is written in assembly language. It provides the

support services, such as heap and stack allocation, that must be present

for any compiled code to run at all. MC is part of a segment known as

MIN which also contains a section of code for supporting the operations

of moving capabilities and for managing capability segments. This is

written in ALGOL68C with a few interpolated machine code instructions,

notably instructions for performing operations peculiar to the CAP. For

example, it contains the body of the ALGOL68C procedure moveoa.p which has

embedded in it the CAP instructions for moving capabilities, namely

MOVECAP and MOVECAPA. This is an example of a device sometimes known as

a write-around. whereby facilities available in machine code, but unknown

to the compiler of a high level language, may be made available through

procedure calls in the language. Other machine instructions besides

MOVECAP are dealt with in the same way; for example, the ALGOL68C

procedure call

enter(proc, a, b, c, d)

is executed by a write-around consisting of machine instructions which

load the numerical parameters a, b, c, d into the registers B1, B2, B3i

Bt and then enter the protected procedure PROC. It is assumed that,

before calling the enter procedure, the ALGOL68C programmer will have

used a call to movecap to place on the C-stack those capabilities that he

wishes to pass as arguments.
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MIN constitutes one segment of the run time system. Another

segment, known as SER, supports message passing and other coordinator

services. A third segment, USE, contains a number of higher level

write-arounds. One of these makes it possible for the programmer to

write a call to DIRMAN as

dirman(a, b, c, d)

instead of in the less convenient and elegant form

enter(dirman a, b, c, d) .

Others provide similar facilities for STOREMAN. USE also implements the

ALGOL68C transput calls.

Each protected procedure in the CAP system is written and

compiled as a complete ALGOL68C program and includes its own instance of

the run time system, or of as much of it as it needs. Naturally, the

code itself is shared. The powerful facilities included in the ALGOL68C

system for preserving and reinstating compile time environments were of

crucial importance in the design and implementation of the system for

compiling protected procedures, and without them it would have been

difficult to achieve anything like the same degree of elegance and

efficiency.

MAKEPACK is used by the ALGOL68C system to put capabilities for

the segments containing the run time system and for a segment containing

the compiled code in the P capability segment of the protected procedure.

This is the reason why in the programs shown in Appendix 3 the first few

slots of the P capability segment are left free.

A typical protected procedure is constructed according to the

following plan:

BEGIN

initialisation code

END;

DO # to infinity #

CASE first argument IN

code for performing services offered by the protected procedure

ESAC;

return(result)

OD;

When a protected procedure is entered for the first time after it

has been retrieved from the filing system, control enters at the

beginning and the initialisation code is executed. This code may be

quite lengthy and will include operations for the setting up of message

channels. It is followed by an indefinite DO statement containing a CASE
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statement switched on the first of the integer parameters with which the

protected procedure is called; it is this parameter which specifies the

nature of the operation. Control thus passes to the appropriate section

of code in the CASE statement and when this has been executed a procedure

known as return is entered. This procedure is implemented in the MC

section of the run time system and brings about an exit from the

protected procedure by means of a RETURN instruction. Before doing this,

however, it plants a link in such a way that, when the protected

procedure is next entered, control passes to a point immediately after

the call to the return procedure by which it left. The effect is that,

when a protected procedure is first called, control enters at the

beginning, but subsequent calls pick up where the last one left off.

This provides what is in effect a coroutine mechanism.

Some services are provided by procedures running in independent

processes. The process is normally halted and is woken up by a message

when its services are required. Procedures intended to be used in this

way are constructed according to the following plan:

BEGIN

initialisation code

END;

DO # to infinity *

WHILE messages (input) = 0 DO waitevent OD;

receive message with reply(a, b, c, d);

CASE a IN

code for performing services offered by the protected procedure

ESAC;

return reply(p, q, r, s) ;

OD;

The decision as to whether a given service should be provided by

means of an independent process or not is often somewhat arbitrary. The

fact that the two implementations have a very similar structure makes it

relatively easy to effect a change if one is required.
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SPECIMEN PROGRAMS

The programs given below constitute a group concerned with the

management of the virtual memory and the filing system. The most central

of these programs is SINMAN, which is responsible for the management of

system internal names (SINs) , for keeping the authoritative records of

object types, and for maintaining reference counts. SINMAN communicates

with the virtual store manager, VSM, in order to arrange for objects to

be brought into the active virtual memory as necessary. In turn VSM

communicates with the real store manager. The program for the real store

manager is not given here.

System internal names are integers. The possession of an enter

capability for SINMAN is, therefore, an important privilege, since it
implies a trust not to mishandle these integers. Four programs with this

privilege are presented here: DIRMAN, the file directory manager;

MAKEPACK, the program responsible for making new PDBs; STOREMAN, which

allows a user to create new objects and change their size; and DISCGARB,

the asynchronous disc garbage collector. DIRSTRUCT, a piece of source

code which defines the layout of directory segments, is also presented.

All the programs given here are created during system generation, except

MAKEPACK which is retrieved from the filing system in the ordinary way

when the system has been started up.

The programs have been slightly simplified in the interests of

brevity by omitting the bodies of some procedures and explaining instead

their functions in comments. The names of some variables have been

altered from those used in the working version to correspond with the

terminology adopted in the text and also in some cases to make their

significance clearer.
The programs all operate in the environment of the ALGOL68C run

time system. This provides services for setting up and using message

channels, together with a variety of services connected with capability

management. When these services are requested, an appropriate software

capability has usually to be presented. In many cases the nature of the

service provided by the run time system will be apparent from the name of

the procedure call used to request it. For example, getslot and freeslot

manage slots in the I capability segment.
Some procedures whose functions may not be clear from their names

are described below. Note that the mode SLOT refers to capability

segment entries. A typical declaration is:

SLOT commoap = getslot;
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this declaration causes the allocation of a slot which is later used for

a (dynamically created) communication capability.

maparrav This procedure converts a SLOT into REF[]INT. It provides

a means for talking in ALGOL68C about the contents of segments

other than the stack and the heap.

enter A write-around which calls the machine ENTER instruction

(see page 7). It takes as arguments a SLOT and up to five INTs.

The action is to execute an ENTER instruction with reference to

the capability at SLOT with the five INTs in the first five B

registers.

enter2 The same as enter, but with an additional five REF INT

arguments to which the contents of B2 to B5 are assigned on

return.

return Takes an INT, sets it in B2, and then executes a RETURN

instruction. On a subsequent call of the protected procedure

control will piok up in return with the variables first argument,

to fifth argument set from BO to B4.

return2 The same as return, but taking four INTs which are

assigned to B2 to B5.

ru,n time error This is a procedure variable; the procedure currently

assigned to it will be called as the result of any trap or error.

There is a default procedure which simply returns the fault to the

caller.

The following procedures are, like enter. write-arounds for the

corresponding machine instructions: indinf. seainf. seesize.

eseeinf, movecap, movecapa. refine. makeind.

A number of identifiers are declared and set equal to constants

used in the programs for masking and other purposes. Examples are: exec

access. read access, Mrite access, reap access. wcap access, capability,

permission, store permission, system stop permission. The last three

refer to permission bits used in software capabilities. The capability

specifier in the master coordinator's address space of the capability for

a segment is denoted by moaddr. Many communications that pass between

system processes concerning segments are expressed in terms of their

mcaddrs.

There are a number of procedures through which services provided

by the master coordinator and ECPROC are made available to users. Such

procedures have names that are suggestive of their function. For

example, procedures concerned with sending and receiving messages are

send dajba message, wait event. These and similar procedures always take
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a SLOT argument giving a send, receive, or reply capability as

appropriate. They may take other arguments as well. An example of a

procedure for capability management is update prl capability.

Procedures in this class take a SLOT argument giving the appropriate

permission capability. Another procedure which takes a permission

capability in a SLOT argument is: set UP send with reply.

Fault Numbers and Return Codes.

Generally speaking, if a protected procedure is given improper

data or if the external circumstances are such that it cannot carry out

its task, it issues a return code or raises a fault with a fault number

indicating what has happened. If there is evidence of serious corruption

of program or data it may be appropriate to stop the system. Only a few

protected procedures are able to do this, the privilege being conferred

by a software capability. The faults raised by procedures which are

called directly by user programs usually cause a compulsory diversion of

control in the caller; other procedures give return codes which it is the

responsibility of the caller to inspect. In either case, the return code

consists of a conventionally laid out 32 bit word. In the case of

software-detected errors, the first hexadecimal digit in the word is

always 8. The next digit records the depth of procedure nesting at which

the fault occurred; if a procedure passes back to its caller a fault

which it has itself received, it increments this digit by one. The next

two digits indicate the source of the fault; for example OA indicates

that the fault occurred in DIRMAN, OB that it occurred in MAKEPACK, and

21 that it occurred in the ALGOL68C run time system. The next two digits

are used in connection with traps occurring in the capability loading

cycle, and the last two digits give more detailed information about the

fault that has occurred.
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SINMAN

SINMAN is the program which handles the SIN directory and thus is the
basis for the management of all disc objects, permanent or temporary.
For each object it maintains a reference count of the number of times
its SIN is recorded in directories or PDBs. SINMAN also collaborates
with VSM to arrange that objects are kept in existence as long as there
is a capability for them in the active virtual memory. Since calls to
SINMAN often have SINs as arguments, enter capabilities for SINMAN are
only given to programs which must be trusted with SINs for other
reasons. They are RESTART, DIRMAN, MAKEPACK, LINKER, STOREMAN, VSM,
and DISCGARB. Note that entry requests 14 to 19 are associated with
DISCGARB; in particular requests 16 to 19 provide efficient facilities
for creation, alteration, and deletion of capabilities which avoid
generation of garbage in the PRL but rely on the good behavior of
DISCGARB.

SLOT stop slot
create cap
info cap
channel modotart
channel modulo
channel ram
channel modules
channel vsm
moaddr slot
dirman p capseg
dirman i capseg
channel vsmdel
channel disc garb
dg running

= P 4,
= P 5,
= P 6,
= P 7, # moooago channel for ny.'itom otart-up If
= P 8,
= ? 9,
= P 10,
= P 11,
= P 12,
= P 13,
= P 14,
= P 15,
= P 16,
= P 17,

# R capability segment is shared with PRLOARB #
pslslot = R 0,
vsm delete = R 1,
make enter = G 5,
arg slot = A 0;
# I capability segment slots all managed by runtime system #

runtime error := (STRING 3, INT i) VOID: stop system (stop slot, i)!

SLOT inst wk1
inst wk2
preserve wk
new segment wk
from wk
to wk

= getslot,
= getslot,
= getslot,
= getslot,
= getslot,
= getslot,

PROC null = (SLOT s) VOID: movecap (null capability, s) ;

INT blksize
cap access
rwaccess
rcwcacoess

= 7 • 128,
= ABS I6r3f0000,
= read access I write access,
= rcapaocess ! woapaocess;



SPECIMEN PROGRAMS 99

t Process SIN list (PSL) #

# The process SIN list is shared with PRLGARB. It relates PRL slots to
SINs and is used to determine whether a capability for an object of
given SIN does not already exist. It is also used to ascertain the SIN
of a capability collected by PRLGARB in order to report it to VSM. #

# The PSL is organized as a hash table. Entries are:

! PRL |d ! aoc ! SIN i

31 23 22 21 16 15 0

The following declarations concern the size of the PSL and the various
masks for its fields. #

INT psl size = H99,
psl incr = 13;

REF [] INT psl = maparray (pslslot);
INT pslunset = -1;
INT pslprlshift = 23,

psldeletemk = ABS I6rt00000,
pslkeymask = ABS I6r3fffff,
pslsinmask = ABS I6rffff,
fdmpslaoc = exec access;

PROC psladd = (INT sin, aco, prl) VOID:
BEGIN

SKIP # the detail of adding an entry to the PSL #
END;

PROC pslfind = (INT sin, ace) INT:
BEGIN

SKIP # the detail of looking up in the PSL given a SIN #
END;

PROC keyfromprl = (INT prl) INT:
BEGIN

SKIP # the inverse search, given PRL offset #
END;

# SIN directory layout and access routines #

# The SIN directory is on 18 blocks, whose SINs are read initially from
the restart block. #

SLOT restartslot = getslot;
REF [] INT restartseg = maparray (restartslot),
INT restartsinblk = 2; # offset of SIN of first SIN directory block #
INT sinmax = 7999;
INT sinblkmax = (sinmax + 1) * 2 % blksize; 9 number of blocks #
[0: sinblkmax] REF [] INT sinblk,
[0: sinblkmax] SLOT sinslot;

FOR i FROM 0 TO sinblkmax
DO sinblk [i] := maparray (sinslot [i] := getslot) OD;
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# Each entry in the SIN directory consists of two words:

! SAFETY! PUC ! TUC i

INT

31 24 23

tuc
puc
pucsafety
tucmask
pucmask
safetymask
puctucmask
pucshift
unusedsin
sizemask
sintypeshift

# require: tuc <
<

INT

128 #

sdmtype
segtype
fdmtype
pdbtype
swotype

87 o

= 1,
= ABS
= ABS
= ABS
= OS
= ABS
= ABS
= 8,
= -1,
= ABS
= 24;

256, puo <

= 0,
= 1,
= 2,
= 3,
= 4;

! TYPE ! SIZE !

31 24 23 0 t

t temporary use count f
I6r100, t permanent use count #
16HOOOOOO,
!6rff,
TSrffffOO,
16rffOOOOOO,
I6rffffff,

!6rffffff, # 24 bits t

65536, number of simultaneous preservations

# Each type has size restrictions as follows #
[] INT' max size = [] INT (sizemask, sizemask, 2 * 896, 896, 0)

[: AT 0];

PROC sindirentry = (INT sin, count, size, type) VOID:
# place appropriate data in SIN directory; SIN assumed ok t
BEGIN

INT blk = sin * 2 % blksize,
off = sin * 2 %* blksize;

sinblk [blk] [off] := count;
sinblk [blk] [off + 1] := (type SHL sintypeshift) ! size

END;

# variables set by 'current' to details of current SIN t
REF INT count of current, word 1 of current,
INT sin of current,

type of current,
size of current,
block of current;



SPECIMEN PROGRAMS 101

PROC current = (INT sin) VOID:
# assumes 'sin' is within range and not deleted #
BEGIN

block of current := sin * 2 % blksize;
INT off = sin * 2 %* blksize;
count of current := sinblk [block of current] [off];
word 1 of current := sinblk [block of current] [off + 1];
sin of current := sin;
type of current := word 1 of current SHH 21;
size of current := word 1 of current & sizemask

END; t current #

PROC goodsin = (INT sin) BOOL:
# ensures 'sin' is in range and not deleted; may call 'current' #
sin >= 0
ANDF sin <= sinmax
ANDF (current (sin); count of current = unusedsin);

PROC ourr use count = INT:
(count of current & tucmask) +
IF count of current < 0 THEN 0 ELSE count of current & pucmask FI;

t Message handling #

SLOT mod send, mod reply, rsra send, rsm reply, vsm send, vsm reply,
modules send, modstart send, modstart receive;

setup send with reply (channel module, mod send, data reply message,
mod reply, data message);

setup send with reply (channel modstart, modstart send,
full reply message, modstart receive, data message);

setup send with reply (channel rsm, rsm send, data reply message,
rsm reply, data message);

setup send with reply (channel vsm, vsm send, data reply message,
vsm reply, data message);

setup send (channel module2, modules send, data message);

BEGIN
SLOT temp;
setup send (channel vsmdel, temp, data message);
movecap (temp, vsmdelete);
freeslot (temp)

END;

SLOT discgarb send;
set up send (channel discgarb, discgarb send, data message);

INT mod create = 1,
mod extend = 2,
mod contract = 3,
mod ensure = 7 ,
mod2 del = 13,
mod2 copy = 11),
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INT rsra ensure
rsm outform
rsm chsize

INT vsm sin
vsm moinf
vsm disc
vsm kill

= 1,
= 2,
= 3;

= 1,
= 2,
= 4,
= 6;

# The following six procedures are concerned with common message
transactions t

INT ml, m2, m3, m4;

PROC module = (INT a, b, c, d) INT:
BEGIN

send data message wait event (mod send, a, b, c, d);
UNTIL messages (mod reply) = 0 DO wait event OD;
receive data message (mod reply, ml, m2, m3, mil);
ml

END;

PROC modstart = (INT i, SLOT seg) INT:
BEGIN

send full message wait event (modstart send, i, ?, ?, 7, seg);
UNTIL messages (modstart receive) > 0 DO wait event OD;
receive data message (modstart receive, ml, m2, m3, mt)j
ml

END;

INT rsml , rsm2, rsm3, rsmt;

PROC rsm = (INT a, SLOT cap, INT o, d) INT:
BEGIN

read prl capability (infooap, cap, rsml, rsm2);
send data message wait event (rsm send, a, rsml, c, d);
UNTIL messages (rsm reply) = 0 DO wait event OD;
receive data message (rsm reply, rsml, rsm2, rsm3, rsmt);
rsra!

END;

PROC ensure = (SLOT cap) VOID:
IF INT n;

(n := rsm (rsm ensure, cap, ?, ?)) = 0
THEN runtime error ("rsm rej", n)
FI;

PROC vsm = (INT a, b, c, d) INT:
BEGIN

send data message wait event (vsm send, a, b, c, d);
UNTIL messages (vsm reply) = 0 DO wait event OD;
INT p, q, r, s;
receive data message (vsm reply, p, q, r, s);
P

END;
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# Interface with DISCGARB #

# While DISCGARB is running, it is necessary for SINMAN to send it a
message whenever a directory or PDB capability is retrieved. The
following code looks after this #

INT dg running bit = 1 SHL 31,
dg serial mask = ABS I6r?fffffff;

REF INT discgarb word = maparray (dg running) [0];

IF first argument = 0 THEN discgarb word := 0 FI;

PROC start disogarb = (SLOT b slot, o slot) INT:
# Initialise bit maps 'b' and 'c' for DISCGARB #
BEGIN

# set 'dg running bit' before looking at SIN directory #
discgarb word := (discgarb word + 1) ! dg running bit;
REF [] INT b = maparray (b slot),

c = maparray (o slot);
INT c count := 0;
FOR i FROM 0 BY bitswidth TO sinmax
DO INT word = i % bitswidth;

b [word] := o [word] := 0;
FOR j FROM 0 TO bitswidth - 1
DO IF goodsin (i + j)

THEF type of current = fdmtype
ORF type of current = pdbtype

THEF (count of current & tucmask) = 0
THEN b [word] !:= 1 SHL j
ELSE c [word] ! := 1 SHL j;

c counc +:= 1
FI

OD
OD;
c count

END; t start disogarb #

PROC notify discgarb = (INT sin, type) VOID:
IF (discgarb word & dg running bit) = 0
THEF type = fdmtype

ORF type = pdbtype
THEN send data message (discgarb send, sin,

discgarb word & dg serial mask, ?, ?)
FI;

# Declarations of return codes for various errors of use of SINMAN #

INT unknown request = ABS I6r800d0001,
wrong sin = ABS I6r800d0002,
unknown cap = ABS I6r800d0003,
wrong access = ABS I6r800d000f,
small size = ABS I6r800d0005,
wrong type = ABS I6r800d0006,
illegal cap = ABS I6r800d0007,
refined cap = ABS I6r800d0008,
bad makeswo = ABS I6r800d0009,
bad destroy = ABS I6r800d000a,
big size = ABS I6r800d000b;
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f Six procedures are concerned with capability creation t

PROC newcap = (SLOT cap, INT sin, aoc, size) INT:
# create a store capability at PRL level f
BEGIN

t create a null PRL-level capability to ensure that a PRL slot
will be made available after VSM has been asked to allocate an
MC address; otherwise difficulties would ensue if the PRL were
subsequently found to be full. The actual creation is done by
using the ECPROC facility 'create prl capability' t

create prl capability (create cap, cap, -1, 0);
INT wordO = vsm (vsm sin, size, 0, sin);
movecap (null capability, cap); t frees a PRL slot #
INT prlacc =

IF (aco & rowcaccess) = 0
THEN rcwcacoess
ELSE rwaccess I execaccess
FI;

INT prl =
create prl capability (oreateoap, cap, wordO,

storeoapability I prlaoo I 65535 I hardware bit) 4
65535;

t get correct access at capability segment level 9
refine (cap, aoc ! 65535, oap);
prl

END; # newcap //

PROC capsegcap = (SLOT oap, INT a, b) VOID:
create capability (create cap, cap, a, b);

PROC segment from current = (SLOT cap, INT ace) VOID:
# create capability corresponding to current SIN //
IF INT psl = pslfind (sin of current, 0);

(psl 4 psldeletemk) = 0
THEN INT prl = newcap (cap, sin of current, ace, size of current);

psladd (sin of current, 0, prl)
ELSE INT prl = psl SHR pslprlshift;

capsegoap (oap, prl SHL 16,
hardwarebit 1 storecapability ! ace I 65535)

FI; # segfromsin //

PROC new segment = (SLOT cap, INT ace, size, type) INT:
# allocate work segment, create capability, deliver new SIN #
IF size <= 0
THEN small size
ELIF size > max size [type]
THEN big size
ELIF INT sin = module (modcreate, size, ?, ?);

sin < 0
THEN sin * disc full, probably #
ELSE # The SIN directory entry must be made before calling VSM; SIN

directory entries must have correct tuc's in case D1SCGARB
initialises itself from them and treats them as garbage
before VSM increments the TUC #

sindirentry (sin, safetymask + ((n>3 SHL 8) 4 pucmask) + tuc,
size, type);

INT prl = newcap ( c a p , sin, ace, s ize) ;
ps ladd ( s i n , 0 , p r l ) ;
c u r r e n t ( s i n ) ;
coun t of cu r r en t - := tuc ; t correct for above //
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notify disc garb (sin, type);
sin

FI; # new segment #

PROC new instance = (SLOT cap, seg, INT sin, ace) INT:
IF INT re = new segment (inst wk1, rcwcacoess, If, segtype);

re < 0
THEN null (inst wk1);

r-c # disc full #
ELSE eapsegcap (inst wk2, -1, sin);

movecapa (inst wk2, inst wk1 + 2);
null (inst wk2);
movecapa (seg, inst wk1 + 0);
makeind (0);
makeind (3);
moveeap (dirman p oapseg, nO);
movecap (dirman i capseg, nl);
refine (inst wk1, roapaooess ! 65535, n2);
enter (makeenter, 2, aco, ?, ?, ?);
movecap (nO, cap);
null (inst wk1);
INT prl =

(INT wO, w1j
read capability (info cap, cap, wO, w1);
wO SHR 16);

psladd (sin, fdm psl aco, prl);
fdmtype

FI; # new instance #

# The next two sections are concerned with system startup #

# Set up SIN directory blocks from restart block #

INT restartblk = 1, # disc address and SIN of restart block *
restartmfd = 1; t offset of sin of MFD in restart block #

# Some code is omitted here. It is used only during system startup, and
carries out various initialisation and scavenging operations t

# Facilities for common SINMAN operations are built up in the following
grouo of procedures #

INT oapinfO, oapinfl; # words of a software capability #

PROC capinf = (SLOT cap) INT:
# provide information about a capability #
IF read capability (info cap, cap, capinfO, capinfl);

(capinf1 & (hardware bit ! enter bit)) = 0
THEN (swctype SHL 24) ! exec access
ELIF (oapinfl & (hardware bit ! enter bit)) =

(hardware bit ! enter bit)
THEN illegal cap
ELIF INT prlO, prllj

read prl capability (info cap, cap, prlO, prlD;
(oapinfl & (hardware bit ! enter bit)) = hardware bit

THEN # some kind of store capability #
IF (capinfO & 65535) = 0

ORF (oapinfl & 65535) < (pr!1 & 65535)
ORF (prlO & 65535) = 0
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THEN refined cap
ELIF INT sin = vsm (vsm moinf, prlO, ?, ?);

sin < 0
THEN sin # error from VSM #
ELIF NOT goodsin (sin)
THEN wrong sin t presumably system error #
ELSE (type of current SHL 24) ! sin of current !

(capinf! & pr!1 & cap access)
FI

ELIF INT psl = keyfromprl (capinf0 SHR 16);
(psl & psldeletemk) = 0

THEN illegal cap
ELIF NOT goodsin (psl & pslsinmask)
THEN wrong sin
ELIF # instance of DIRMAN or enter capability for PDB #

type of current = fdmtype
THEN (fdmtype SHL 24) ! sin of current ! (capinfl & cap access)
ELSE (pdbtype SHL 24) 1 sin of current 1 (psl & cap access)
FI; # capinf #

PROC preserve current = VOID:
# increment puc of current sin and ensure that disc copy is ok #
BEGIN

IF INT ser = count of current + : = : = puosafety;
// The ' + : = : = ' compiles as single instruction. This matters
because there is no interlock on the SIN directory #
ser < 0

THEN t first preservation #
(segment from current (preserve wk, read access);

ensure (preserve wk);
null (preserve wk));

# ensure module map ok t
module (modensure, (ser SHR 8) & 65535, 65535, 0);
count of current +:= puo - (ser & pucmask);
# ensure SIN directory ok #
ensure (sinslot [sin of current * 2 % blksize])

ELSE count of current +:= puc - puosafety
FI

END; # preserve current #

PFOC change current = (INT ch) INT:
# change segment size; yields -1 if disc is full. Care is required

to allow for the fact that more than one process may be using the
segment; the situation is particularly tricky if more than one
process attempts to change the size of the segment; it is
important that the system should not be damaged even if one of the
users does not get the result he expects. Care is also required to
allow for crashing during the operation. If this happens the size
as given by the map is authoritative during restart. #

BEGIN
INT re =

IF ch > 0
THEN IF INT re = module (modextend, sin of current,

ch, ?);
re < 0

THEN re t disc full #
ELSE rsm (rsmchslze, argslot, ch, ?);

(word 1 of current +:= ch) & sizemask
FI

ELIF ch = 0
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THEN size of current
BLIP INT new = (word 1 of current +:=:= oh) + ah;

(new - 1) SHR sintypeshift = type of current
THEN t size would be < or = 0 #

word 1 of current -:= oh;
small size

ELSE rsm (rsmohsize, argslot, oh, ?);
module (raodcontract, sin of current, - oh, ?);
new

FI;
IF count of current > 0

ANDF (count of current & puomask) = 0
THEN it write up map asynchronously it

send data message (modules send, mods copy, ?, ?, ?)
FI;
re

END; # change current it

PROC instance = (SLOT cap, INT aoc) INT:
IF INT psl = pslfind (sin of current, fdra psl ace);

(psl & psldeletemk) = 0
THEN segment from current (cap, rwacoess);

new instance (cap, cap, sin of current, ace)
# may return failure it

ELSE oapsegoap (cap, (psl SHR pslprlshift) SHL 16,
enterbit 1 ace);

fdmtype
FI;

PROC enter current = (SLOT cap, INT ace) INT:
t make an enter capability for current SIN which refers to a pdb it
BEGIN

INT prl =
newcap (cap, sin of current, read access,

size of current);
psladd (sin of current, aoc, prl);
capsegcap (cap, prl SHL 16, enter bit);
pdbtype

END;

PROC delete current = VOID:
# delete the current virtual memory object from disc t
IF type of current = segtype
THEN it for the correctness of DISCGARB, it is required that any

object which is deleted from the map should also be marked as
deleted from the SIN directory; see also request 9 (RESTART) if

REF INT (count of current) := unused sin;
it delete from map asynchronously it
send data message (module2 send, mod2 del, sin of current,

?, ?)
it otherwise leave for DISCGARB to collect it

FI;

# The only fault which can validly occur in SINMAN is PRL full . Anything
else stops the system since it shows serious error it
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runtime error := (STRING s, INT i) VOID:
IF (i & ABS I6rf0ff00ff) = ABS I6r80010018 t PRL full #
THEN clear fault;

return (1 + ABS I6r01000000) ;
GOTO restart

ELSE stop system (stop slot, i)
FI;

t MAIN LOOP t

restart:

DO CASE first argument

IN t 1: DYNAMIC (for VSM) : b3 = SIN, D2 = 1,2 #
IF goodsin (third argument)
THEN CASE second argument IN

IF ((count of current +:=:= tuo) & tucmask) = 0
THEN notify discgarb (sin of current, type of current)

FI,
IF INT old = count of current - : = : = tuo;

(old < 0 ORF (old 4 pucmask) = 0)
ANDF (old & tuoraask) = tuc

THEN delete current
FI

ESAC;
return (0)

ELSE return (unknown request)

# 2: NEWSEG b2 = init, b3 = access
NEWSEG b2 = -1, b3 = access, b4 = type, b5 = size t

IF INT ace = third argument & cap access,
INT size, type;
BOOL new = second argument < 0;
IF new
THEN type := fourth argument;

size := fifth argument;
FALSE

ELSE goodsin (second argument)
ORF (type := segtype; size := size of current; FALSE)

FI
THEN return (wrongsin)
ELIF type < segtype

ORF type > pdbtype
THEN return (wrong type)
ELIF aco = 0

ORF ( new ANDF (ace & rcwoaccess) = 0)
THEN return (wrongaccess)
ELSE INT sin =

new segment (new segment wk ,
IF type = segtype THEN ace ELSE rwaocess FI, size,
type) ;

# this SIN was made current by 'new segment' f
IF sin < 0
THEN null (new segment uk) ;

return (sin)
ELIF INT re =

CASE type IN
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(movecap (new segment wk, argslot); segtype),
IF INT rc2 = new instance (argslot,

new segment wk, sin, aoo);
new
ANDF rc2 >= 0

THEN IF INT ro3 =
enter (argslot, 1, ?, ?, ?, ?);

ro3 < 0
THEN ro3
ELSE ro2
FI

ELSD. ro2
FI,
(current (sin) ;

maparray (new segment wk) [0] := -1;
# => empty PDB #
enter current (argslot, ace))

OUT wrong type
ESAC;

null (new segment wk) ;
re < 0

THEN return (ro)
ELSE IF NOT new

THEN current (second argument);
segment from current (from wk, read access);
current (sin) ;
segment from current (to wk, write access);
move (maparray

(from wk) [0: size of current - 1 AT 0],
maparray (to wk));

null (from wk) ;
null (to wk)

FI;
return (sin)

FI

# 3: SEGFROMSIN b2 = sin #
IF INT sin = second argument 4 65535;

goodsin (sin)
THEN segment from current (argslot, second argument

4 cap access) ;
return (type of current)

ELSE return (wrongsin)

f 1: CAPFROMSIN b2=sin I access #
IF INT sin = second argument 4 65535;

goodsin (sin)
THEN INT ace = second argument 4 oapacoess;

IF aco = 0
THEN return (wrongacoess)
ELSE INT re =

IF type of current <= segtype
THEN segment from current (argslot, aoo);

type of current
ELIF type of current = fdmtype
THEN instance (argslot, ace)
ELSE # 'pdbtype1? #

enter current (argslot, aco)
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FI;
return (re)

FI
ELSE return (wrongsin)

# 5: PRESERVE AO = capability t
IF INT info = capinf (argslot);

info < 0
ORF info SHR 2>\ = swctype

THEN returns (info, oapinfO, capinf 1, ?)
ELIF type of current = segtype

ANDF (info & rcwcaccess) = 0
THEN return (wrong access)

# C-type capabilities cannot be preserved t
ELSE preserve current;

return2 (info, 0, info, 0)
FI,

# 6: REMOVE b2 = sin, b3 ignored t
IF goodsin (second argument)
THEN IF type of current = sdmtype

ANDF ((count of current -:=:= puo) 4 puotucraask) = puc
THEN delete current
FI;
return (0)

ELSE return (wrongsin)
FI,

# 7: SININF b2 = sin #
IF goodsin (second argument)
THEN return (word 1 of current)
ELSE return (wrongsin)
FI,

9 8: SINOFMFD #
return (mfdsin) ,

# 9: RESTART AO = PUC table #
# The detail of this request is omitted since it can only be

understood in the context of the complete restart system t

t 10: USE COUNT b2 = SIN #
return (IF goodsin (second argument) THEN ourr use count ELSE

wrongsin FI),

# 1 1 : CAPINF AO = capability t
(INT info = capinf (argslot);

return2 (info, oapinfO, capinf 1 , ?)),

# 12: CHANGESI2E b2 = change AO = capability #
IF INT info = oapinf (argslot);

info < 0
THEN return (info)
ELIF type of current = segtype
THEN return (wrongtype)
ELIF (info & (write access ! wcap access)) = 0
THEN return (wrong access)
ELSE return (change current (second argument))
FI,
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# 13: MAKESWC b2 = wO, b3 = w1 #
IF (third argument & ABS I6rc0000000) = 0

ORF (third argument & ABS I6rf0000000) = 0 # for DIRMAN!
THEN return (bad makeswc)
ELSE oapsegoap (argslot, second argument, third argument);

return (0)
FI,

# 1M: START DISC GARB #
BEGIN

INT o count = start disc garb (argslot, A 1);
return2 (c count, mfdsin,

discgarb word 4 dg serial mask, ?)
END,

# 15: STOP DISC GARB #
(disc garb word &:= NOT dg running bit; return (0)),

# 16: DESTROY (for DISCGARB) f
IF goodsin (second argument)

ANDF (type of current = fdmtype ORF
type of current = pdbtype)

THEN IF curr use count = 0
THEN return (bad destroy)
ELSE type of current := segtype;

delete current;
return (0)

FI
ELSE return (wrongsin)
FI,

f 17: CHANGE CAP (for DISCGARB and RESTART) #
t AO must point to a PRL slot created by request 18; the

capability must be destroyed by request 19, not left for
PRLGARB t

IF INT sin = second argument & 65535,
ace = second argument & rwaocess;

goodsin (sin)
THEN INT prlO, pr!1;

INT prl =
read prl capability (info cap, argslot, prlO, pr!1) &
65535;

vsm (vsm kill, prlO, 0, 0);
INT wordO = vsm (vsm sin, size of current, 0, sin);
update prl capability (create cap, prl, wordO,
store capability ! hardware bit ( aoc I size of current);
return (type of current)

ELSE return (wrong sin)
FI,

# 18: MAKE CAP (see request 17) #
BEGIN

INT prl =
create prl capability (create cap, argslot, -1,
store capability I hardware bit ! rwaccess ! 65535)

& 65535;
update prl capability (create cap, prl, 0, 0);
return (0)

END,
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* 19: KILL CAP (see request 17) #
BEGIN

INT prlO, pr!1;
INT prl =

read prl capability (info cap, argslot, prlO, pr!1) &
65535;

vsm (vsm kill, prlO, 0, 0);
update prl capability (create cap, prl, 0, 0);
return (0)

END

OUT runtime error ("SINMAN", unknown request)
ESAC

OD
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VIRTUAL STORE MANAGER (VSM)

VSM receives requests to issue a 'mcaddr' given a SIN. It sees whether
a mcaddr has been allocated already, and if not procures one by asking
RSM (by message). A use count is maintained, giving the number of
processes which have been issued with each particular mcaddr. This is
decremented whenever a (non-reply) message is received indicating that
the sending process has deleted its PRL entry containing that moaddr.
RSM is informed about mcaddrs which have gone out of use - that is,
their use counts have fallen to zero. VSM calls SINMAN to indicate
that capabilities for the object underlying a particular SIN are in
issue (SINMAN request 'dynamic'). VSM also performs the functions of
opening and closing windows on large segments. Moving windows around
over a large segment is done by RSM. STOREMAN provides the user
interface to all window functions.

SLOT perm stop
ohan rsm
ohan!
ohan2
sinman slot
sinhash slot

INT moblk slot

= PH.
= P5,
= P6,
= P7,
= P8,
= P9,
= 10; # for mcarray: P10 to P13

runtime error := (STRING s, INT i)VOID:
stop system(perm stop, i);

# Entry requests t
INT new object

ensure
delete object
dynamic
use count

INT dyn use
dyn free

1 1 ,
1,
5,
1,

# RSM #
# RSM t
# RSM t
# SINMAN #

= 10; # SINMAN #

= 1,
= 2;

PROC sinman = (INT entry, sin)VOID:
enter(sinman slot, dynamic, entry, sin, ?, ?);

# Return codes - not fault numbers, as VSM is not user-called t
INT unknown mcaddr = ABSl6r80l60001, # unknown to VSM - e.g., a.

SYSGENed segment t
window mcaddr = ABSl6r80l60002, # operation not available for

windows #
closing not window = ABSl6r80l60003,
unknown entry = ABSl6r80!6000H;

# Message channel initialisation #
SLOT rsmsend, rsmreply;
setup send with reply(ohan rsm, rsmsend, data reply message,

rsmreply, data message);
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INT rsm1, rsm2, rsm3, rsm4;

PROC rsm = (INT a, b, c, d)INT:
BEGIN

send data message wait event(rsmsend, a, b, c, d);
UNTIL messages(rsmreply) = 0 DO wait event OD;
receive data message(rsm reply, rsrn! , rsm2, rsm3, rsml);
rsm1

END;

SLOT red , repl, reo2;

# Channel 2 is non-reply; it is used only for delete messages in which
a process indicates that it is no longer interested in a certain
mcaddr. #

setup receiveCchan!, reol, data reply message);
setup reply(rep1, data reply message);
setup receive(chan2, reo2, data message);

# Mcarray t

# The main data structure is 'mcarray' , a set of blocks indexed by
'mcaddr'. Each entry is one word:

i SIN I w ! d ! use count j

31 16 15 14 13 0

where 'w' indicates whether the entry is for a window and 'd' is used
to indicate deleted entries. Use count is count of processes with a
capability using this mcaddr. f

INT mocapsegmin = I], f first MC capability segment #
mocapsegmax = 14; # last MC capability segment #

INT moslots = (mccapsegmax - mcoapsegmin + 1) * 256,
# number of MC slots t

slotspermcblk = 896; t size of each block of 'mcarray' #
INT mcblks = (mcslots - 1) % slotspermoblkj if = 3 It
[0:moblks]REF[]INT mcarray;

t layout of each entry #
INT mcsinshft = 16,

mcsinmsk = Ihword,
mcwindowmk = 32768,
mcdeletemk = 16381, # indicates mcaddr is currently unknown

to VSM t
me ucmsk = 16383;

# Initialisation of the array t
FOR i FROM 0 TO mcblks
DO REF[]INT v = maparraytP(mcblkslot + i)); moarray[i] := v;

FOR j FROM 0 TO slotspermoblk - 1 DO v[j] := mcdeletemk OD
OD;
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PROC moelement = (INT mcaddr)REF INT:
BEGIN

INT count = ((mcaddr SHR 28) - mccapsegmin) * 256
+ ((moaddr SHR 16) & 255);

mcarray[count % slotspermoblk][count I* slotspermoblk]
END;

# SIN map #

# A bit map is maintained, recording whether a SIN is currently active
in the virtual memory, i.e., whether it has an mcaddr (as a segment,
not as a window). f

INT slnmax = 7999; t largest SIN #
INT sinmapmax = sinmax % bitswidth; f number of words in bitmap #
[0 : sinmapmax]INT sinmap;
FOR i FROM 0 TO sinmapmax DO sinmap[i] := 0 OD;

PROC known sin = (INT sin)BOOL:
sin >= 0 ANDF sin <= sinmax ANDF
(sinmap[sln % bitswidth] & (1 SHL (sin %* bitswidth))) = 0;

PROC marksin = (INT sin)VOID:
sinmap[sin % bitswidth] ! := 1 SHL (sin-?* bitswidth);

PROC unmarksln = (INT sin)VOID:
simnap[sin % bitswidthj &: = NOT(1 SHL (sin %* bitswidth));

# SIN hash #

# A hash table is used to convert SINs into moaddrs. Each entry is a
half word, being the most significant half of the mcaddr. A marker is
available to indicate when a hash table entry is deleted. Note that
the hash table does not contain the normal 'key' and 'value'; instead
it contains an index into 'mcarray' where the key can be found, t

REF[]INT sinhash = map array(sinhash slot);
INT sinhashsize = 2557,

sinincr = 13,
sin delete mk = ABS I6r0100;

PROC sinval = (INT sin)INT:
sinhash[sin % 2] SHL (IF ODD sin THEN - 16 ELSE 0 FI);

PROC setsinval = (INT sin, val)VOID:
sinhash[sin % 2] :=

IF ODD sin THEN (sinhash[sin % 2] & ABSl6rffff) ! (val SHL 16)
ELSE (sinhash[sin % 2] & ABSl6rffffOOOO) ! val FI;

# The following are the routines which access the SIN hash table #

PROC new mcaddr = (INT sin, BOOL window, INT size, base,
REF INT mo)INT: * allocate new moaddr #

IF rsm(new object, size, base, sin !
(IF window THEN 1 SHL 31 ELSE 0 FI)) = 0

THEN rsm1 f re #
ELSE INT addr = me := rsm2;

9 put in mcarray t
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mcelement(addr) := ((sin SHL mosinshft) !
(IF window THEN mcwindowmk ELSE 0 FD) + 1;

IF NOT window
THEN # put in 'sinhash' #

BEGIN
INT try := sin %* sinhashsize;
UNTIL (sinval(try) 4 sindeletemk) = 0
DO IF (try +:= sinincr) >= sinhashsize THEN

try -:= sinhashsize FI OD;
setsinvaHtry, addr SHR 16)

END;
# put in SIN bit map t
marksin(sin)

FI;
0 # re #

FI;

PROC old meaddr = (INT sin, iner) INT:
BEGIN

t SIN must be a l ready known to ' o inhash ' I
it windows In moar ray are Ignored t
INT try := Bin %* oinhaahaize;
INT a d d r ;
INT va l ;
UNTIL ( ( v a l := s i n v a l ( t r y ) ) 4 sindeletemk) = 0
ANDF(addr := val SHL 16;

( m o e l e m e n t ( a d d r ) 4 (mcs inmsk ! mcwindowmk I m o d e l e t e m k ) )
= (sin SHL m c s i n s h f t ) )

DO IF ( t ry +:= sinincr) >= sinhashsize
THEN try -:= sinhashsize FI OD;

raoe lement (addr ) + : = inor;
addr

E N D ;

PROC delete mcaddr = ( I N T m o a d d r ) V O I D :
IF (mcaddr SHR 28) >= mccapsegmin
THEF REF INT mo = m c e l e m e n t ( m c a d d r ) ;

(me 4 mcdeletemk) = 0 ANDF ( ( m e -:= 1) 4 mcuorask) = 0
THEN INT sin = mo SHR mos insh f t ;

BOOL window = (me 4 mcwindowmk) = 0;
me := mode le temk;
IF NOT window
THEN INT try := sin %* sinhashsize;

UNTIL sinval(try) SHL 16 = moaddr
DO IF (try +:= sininer) >= sinhashaize

THEN try -:= sinhashsize FI OD;
setsinvaK try, sindeletemk);
unmarksin(sin)

FI;
# Note that the temporary use count must not be decremented

until the object has been written to disc. There is a danger
that the object will be deleted after it has been decided to
write, it but before it has been written - hence the two
separate entries to SINMAN t

BOOL ensure = enter(sinman slot, usecount, sin, ?, 7, ?) = 1 >
rsm(delete object, mcaddr, ABS ensure, ?);
sinman(dyn free, sin)
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# MAIN LOOP #

DO
WHILE messages(reo1 ) = 0 AND messagest rec2) = 0 DO waitevent OD;

WHILE messages( reol ) = 0
DO INT a,b,o,d;

receive reply data message( red , repl, a,b,c,d);
INT ans data := 0;
INT ans = CASE a IN

# 1: SIN to moaddr; b = size, o = base, d = SIN #
IF known sin(d)
THEN old mcaddr(d, 1)
ELSE INT mo;

INT re = new moaddr(d, FALSE, b, e, mo);
IF ro < 0 THEN runtime error("", ro) PI;
sinman(dyn use, d); mo

FI,

# 2: moaddr to SIN, not for windows #
IF INT mo = moelement(b);

(me & modeletemk) = 0
THEN unknown moaddr
ELIF (mo & mowindowmk) = 0
THEN window moaddr
ELSE mo SHR mosinshft
FI,

# 3: ensure SIN t
IF known sin(b)
THEN rsm(ensure, old moaddr(b, 0), ?, ?)
ELSE 0

# 4: disc addr to moaddr (for SINMAN only) *
IF known sin(d)
THEN old moaddr(d, 1)
ELSE INT mo; INT ro = new moaddr(d, FALSE, b, 0, mo);

IF ro < 0 THEN runtime errorC1", ro) FI;
mo

FI,

#.5: close window (for STOREMAN only) t
IF (mcelement(b) & mowindowmk) = 0
THEN delete moaddr (b); 0
ELSE closing not window

# 6: converse of entry 1 t
(delete moaddr(b); 0),

# 7: open window; b = size, o = base, d = SIN t
BEGIN

INT ro = new moaddr (d, TRUE, b, o, ans data);
IF ro >= 0 THEN sinman(dyn use, d) FI; re

END

OUT runtime error ("VSM", unknown entry); unknown entry
ESAC;
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return data message(rep!, ans, ans data, 0, 0)
OD;

WHILE messagesfreo2) = 0 ANDF messages(reo!) = 0
DO
INT a,b,o,d; receive data message{reo2, a,b,c,d);
delete moaddr(a)
OD

OD
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STOREMAN

STOREMAN provides the public interface to administrative operations
upon capabilities - mainly capabilities for segments of memory, whence
the name. When requested to create new capabilities or to find
information about existing ones, STOREMAN calls SINMAN (in the same
process) . When requested to perform such operations as moving windows
or ensuring that a segment is up to date on disc the real store manager
is activated (by message). Requests for the creation and deletion of
windows are handled by messages to VSM. STOREMAN also communicates
with MODULE, the disc allocation manager, to ensure, where necessary,
that the allocation map is properly written to disc.

BEGIN
SLOT mn rsm = P 1,

info perm = P 6,
cap perm = P 7,
sinman = P 8,
messagename vsm = P 9>
messagename module = P 10,
* stack = I 0 #
capsegseg = I 1;

SLOT send rsm,
receive rsm, send vsm, receive vsm, send module, receive module;

SLOT aO = A 0;

# Runtime error #
runtime error := (STRING s, INT 1) VOID:

# for during STOREMAN initialisation #
(return fault (i); set return code (i); stop);

# Set up message channel #
f The channels are used to send messages to RSM for some requests, to VSM

for others, and to MODULE to ensure that the disc allocation map is up
to date. #

set up send with reply (mn rsm, send rsm, data reply message,
receive rsm, data message);

setup send with reply (messagename vsm, send vsm, data reply message,
receive vsm, data message);

setup send with reply (messagename module, send module,
data reply message, receive module, data message);

# STOREMAN creates new segments on demand. In the case of new capability
segments it attempts to do this by subsegmentation of a special segment
known as 'capsegseg'. This is done in order to keep a lot of small
objects together as one swap unit. #

INT prlref, Inf;
INT endval = segsize (oapsegseg) - 1;
INT i = read prl capability (info perm, oapsegseg, prlref, inf;;
prlref &:= Ihword;
REF [] INT a = maparray (capsegseg);
a [0] := endval;
INT bit31 = 1 SHL 31;
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« Interface wi th S I N M A N , RSM, VSM #
INT newseg = 2, # S I N M A N #

cap from sin = 1 , # SINMAN *
sininf = 7, # S INMAN #
capinf = 11, # SINMAN #
changesize = 12, # SINMAN #
ensureok = 1, # RSM #
out form = 2, t RSM #
move window = 9, # RSM #
vsm open = 7, # VSM #
close window = 5, # VSM #
segtype = 1,

# Return codes #
unknown request = ABS l6 r800H0001 ,
accessfault = ABS I6r800t0002,
closing not store type = ABS I 6 r 8 0 0 4 0 0 0 3 >
init from non store = ABS 16^0040001;

PROC result = ( INT i) V O I D :
(IFi < 0 THEN return fault (i) FI; return ( i ) ) ;

PROC find = ( INT sought) INT:
BEGIN

SKIP # this procedure which attempts to find 'sought ' words in
capsegseg #

E N D ;

# The next three procedures construct a procedural interface using the
message system #

INT ml,ro2,m3,ra4;

PROC send to rsm = (INT request, w3, w1)) INT:
BEGIN

INT ref, info;
read prl capability (info perm, aO, ref, info);
send data message wait event (send rsm, request, ref, w3, wt)i
WHILE messages (receive rsm) = 0 DO wait event OD;
receive data message (receive rsm, ml, m2, m3, mt);
ml

END; t send to rsm *

PROC send to vsm = (INT a, b, c, d, REF INT me) INT:
BEGIN

send data message wait event (send vsm, a, b, o, d);
WHILE messages (receive vsm) = 0 DO wait event OD;
INT v1, v3, vH;
receive data message (receive vsm, v1, mo, v3, v4);
v1

END; # send to vsm #

PROC ensure map = VOID:
BEGIN

send data message wait event (send module, 15, ?, ?. ?)!
WHILE messages (receive module) = 0 DO wait event OD;
INT m!, m2, m3, mt;
receive data message (receive module, ml, m2, m3, ml)

END; # ensure map #
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# MAIN LOOP t

runtime error := (STRING s, INT i) VOID: (result (i); GOTO recover);

recover:

DO CASE first argument IN

# 1: ENSUREOK #
BEGIN

INT rsm ro = send to rsm (ensure ok, ?, ?);
ensure map;
result (rsm re)

END,

# 2: OUTFORM t
result (send to rsm (outform, ?, ?)),

# 3: CHANGESIZE t
(movecap (aO, nO);

INT n = enter (sinman, ohangesize, second argument,
i, ?, •?);

IF n >= 0 THEN moveoap (nO, aO) FI;
result (n)) ,

# 4: NEWSEG, second argument is access, model capability in AO
or NEWSEG, -1, access, type, size t

IF second argument = -1
THEN moveoap (aO, nO);

INT cap = enter (sinman, oapinf, ?, 1, 1, ?);
IF cap < 0
THEN result (cap)
ELIF (cap SHR 21) = segtype
THEN result (init from non store)
ELIF
t check validity of requested access t

BOOL correct =
IF (cap & read access) = 0
THEN (second argument & (reap access I wcap access)) = 0
ELIF (cap & reap access) = 0
THEN (second argument & (read access 1 write access)) = 0
ELSE FALSE
FI;
correct

THEN INT n = enter (sinman, newseg, cap & rhword,
second argument, 1, ?);

result (IF n > 0 THEN moveoap (nO, aO); 0 ELSE n FI)
ELSE result (access fault)
FI

ELSE INT n, pos;
IF (third argument & (rcapaooess ! wcapaocess)) = 0

ANDF fourth argument = segtype
ANDF (pos := find (fifth argument)) > 0

THEN FOR i FROM pos + 1 TO pos + fifth argument
DO a [i] := -1 OD;
create prl capability (cap perm, aO,

prlref I (pos + 1),
store capability I bit31 I
(third argument & capacoess) ! fifth argument);

result (0)
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ELSE n := enter (sinman, newseg, second argument, third
argument, fourth argument, fifth argument);

# use normal segment creation if capsegseg is full t

result (IF n > 0 THEN moveoap (nO, aO); 0
ELSE n FI)

FI

t 5: CAPINF 9
(movecap ( aO , nO) ;

INT a, b, o, d;
enter2 (sinman, capinf, 7, 7, 7, ?, a, b, o, d);
return2 (a, b, c , d) ) ,

9 6: GETSIZEACCESS 9
(moveoap ( aO , nO);

INT sin = enter (sinman, capinf, 7, 7, 7, 7);
IF sin > 0 9 negative=> error return f
THEN INT n =

enter (sinman, sininf, sin 4 rhword , 7, 7, 7);
INT size = (n & (byte2 I rhword)),

access = (sin 4 byte2) SHL 8;
result (size t access)

ELSE result (sin)
FI),

# 7 OPEN WINDOW b2 = base, b3 = size+access, AO = segment 9
IF movecap (aO, nO) ;

INT sin = enter (sinman, capinf, 7, 7, ?, 7);
sin < 0

THEN result (sin)
ELIF (sin & third argument & cap access) =

(third argument 4 cap access)
THEN result (access fault)
ELSE INT moaddr;

INT re =
send to vsm (vsm open, third argument 4 65535, # size t

second argument, 9 base 9 sin & rhword, moaddr);
IF re < 0
THEN result (re)
ELSE create prl capability (cap perm, aO , moaddr,

third argument ! hardware bit ! store capability);
result (0)

FI

t 8 MOVE WINDOW b2 = new base, b3 = size+access, AO = window t
result (send to rsm (move window, second argument,

third argument)) ,

9 9 CLOSE WINDOW AO = window 9
(INT ref, info;

INT prl =
read prl capability (info perm, aO, ref, info) &
65535;

IF (info 4 hardware bit) = 0
THEN result (closing not store type)
ELIF INT d;

INT n = send to vsm (close window, ref, 7, 7, d);
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n = 0
THEN result (n)
ELSE update prl capability (cap perm, prl, 0, 0)j

result (0)
PI),

# 10 CLEANSE AO = cap #
result (unknown request), # no longer used #

# 1 1 : DETAILS #
(movecap ( aO, nO);

INT sin = enter (sinman, capinf, 7, 7, 7, ?);
IF sin > 0
THEN INT n =

enter (sinman, sinlnf, sin & rhword, 7, 7, ?) ;
return2 (0, f success # n & OyteS, # size t

sin & cap access, # access # sin SHR 21 # type #)
ELSE result (sin)
FI),

# 12: NEW INSTANCE (for PDBs, mainly) #
BEGIN

movecap (aO, nO);
INT info = enter (sinman, capinf, ?, ?, ?, 7);
IF info < 0
THEN result (info)
ELSE INT re = enter (sinman, cap from sin, info, 7, 7, 7);

IF re >= 0 THEN movecap (nO, aO) FI;
result (ro)

FI
END

OUT result (unknown request)
ESAC

OD

END # STOREMAN #
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DIRSTRUCT

This material defines the data structures used in directory segments.
It is used to produce an environment file which is then used in the
compilation of DIRMAN, DISCGARB, and RESTART - all of which require
knowledge of directory formats.

# A directory segment consists of a header followed by a sequence of
blocks #

INT header size = 6,
block size = 6;

# Blocks are linked by their first word #
t OP NEXT = (INT i) INT: directory[i] & rhword #
# OP LAST = (INT i) INT: directoryCi] SHR 16 #

t An entry is held in a linked list of blocks. The blook(s) containing
the textual name are followed by blook(s) containing the associated
entry data. Their structure is as follows:

1. Block(s) containing the name,
a) The firso block of an entry:

wordO link
wordl number of blocks used for entry
word2 bytel: no. of characters in name

followed by first 3 characters
remaining words contain 1 char/byte

b)Any subsequent blocks:
wordO link
remaining words: 1 char/byte

2. Blook(s) containing entry data:
a) First block:

wordO link
wordl
word2
words
wordt
words

access matrix
cap info 0
cap info 1
time of preservation
date of preservation

Unused blocks are kept on a free chain. #

INT access matrix offset
cap info 0 offset
cap info 1 offset
time of preservation offset
date of preservation offset
max offset

INT blocks total
blocks free
entries total
freelist head
hash table start
hash table end

= 1, t useful block offsets f
= 2,
= 3,
= 1,
= 5,
= block size - 1;

= 0, t indices to directory header
= 1,
= 2,
= 3,
= t,
= 5;
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9 An entry is kept on one of several separate chains. The appropriate
chain is selected by a hash function on the name of the entry, t

INT hash table size = hash table end - hash table start + 1;

INT null = 0; # the null index to a directory #

# Format of an access matrix word:

byte!
byte2
bytes

field for those with W-status
" " " " X-status
" " " » Y-status
" " " " Z-status

Format of these fields:
directory pdb

d7
d6
d5
dll
d3
d2
d1
dO

delete
update
create
W-status
alter
X-status
Y-status
Z-status

delete
update

alter
modify
inspect
link

segment

delete
update

alter
write
read
execute

SWC

delete
update

alter

software #

# bits of an access field for a directory t
INT delete = ABS I6r00000080,

update = ABS l6rOOOOOOHO,
create = ABS I6r00000020,
w = ABS I6r00000010,
alter = ABS I6r00000008,
x = ABS iSrOOOOOOOt,
y = ABS I6r00000002,
z = ABS I6r00000001;

# Format of capability information words:

1. For store capabilities:
cap info word 0 - not used
cap info word 1 - dO-d15 sin

dl6-d21 access
d2t-d27 store type (1=seg,2=dir,3=pdb)
d28-d31 file type = store = 0

2. For software capabilities (SWCs):
Entries for SWCs will be identified by the file type field
(d28-d31 of cap info word 1) being not equal to 'store'(= 0).
d26-d29 of this word indicates type of SWC as usual. #

INT file type field = ABS I6rf0000000,
store = 0;

ENVIRON DIRSTRUCT t directive to A68C to preserve the environment #
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DIRMAN

DIRMAN manages all file directories. A file directory relates text
names to access statuses and SINs. DIRMAN communicates with SINMAN (in
the same process) to procure a capability for an object of given SIN,
to discover the SIN of an object for which a capability is to hand, and
to request SINMAN to decrement or increment reference counts. When
following the directory structure to interpret a multi-part file name,
DIRMAN uses the 'segfromsin1 request to SINMAN to obtain a capability
for the directory segment instead of creating a further instance of
itself. DIRMAN is compiled in the environment constituted by
DIRSTRUCT.

SLOT chan ensurer = P 5,
stop perm = P 6,
chan clock = P 7>
# stack = I 0 9
ti heap = I 1 #
sinman = 1 2 ,
9 not used = 1 3 *
current file = getslot,
working directory = R 0,
working directory info slot = R 1,
file spec = A 0,
return slot = A 0,
cap to be filed = A 1,
a1 = A 1,
nO = N 0;

SLOT ensurer send, clock send, clock reply;

9 Initialisation code - sets up channels and initialises "runtime error1

t
set up send (chan ensurer, ensurer send, data message);
set up send with reply (chan clock, clock send, data reply message,

clock reply, data message);

PROC sys error = (STRING s, INT i) VOID: stop system (stop perm, i);

runtime error := sys error; 9 this is the standard setting when DIRMAN
is running. 9

INT sin of current file;

t Directory structure f

t See DIRSTRUCT for definition and explanation of the structure of a
directory #

REF [] INT directory = map array (current file);

9 Blocks are linked by their first word t
OP NEXT = (INT i) INT: directory [i] 4 rhword;
OP LAST = (INT i) INT: directory [i] SHR 16;

9 An entry is kept on one of several separate chains. The appropriate
chain is selected by a hash function on the name of the entry. #

PROC hash on name = INT: hash table start;
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MODE ENTRY = STRUCT (INT name ptr, entry ptr);

* File Specification #

REF [] INT spec = map array (file spec);
INT separator = ABS ".",

terminator = ABS "/";
[0: 63] INT name; # current component name #

ft Declarations of quantities to do with access status #
INT status; # access status (least significant byte) to current file #
INT full status

full access
deletable
max access request
read write
swc access
read only

Other constants #

= ABS I6r00000037,
= ABS I6r00370000,
= ABS I6r88888888,
= ABS I6r80000000,
= ABS I6r00060000,
= ABS I6r00010000,
= ABS I6r00020000;

i Entry arguments to SINMAN f
INT seg from sin

cap from sin
preserve cap
remove cap
sininf
puc
changesize
newseg
make swc
directory type
segtype
swotype

3,
4,
5,
6,
7,
0,# permanent use count #
12,
2,
13,
2, # type value for SINMAN #
1,
4,

t Fault and return codes #
success = 0,
inc proc count = ABS I6r1000000,
# for adding to fault return codes from SINMAN #
dirman fault = ABS I6r800a0000; il dirman fault series number f

t Fault codes specific to DIRMAN #
INT invalid entry request

no access permitted
creation not permitted
file not directory
no such entry
invalid access matrix
deletion not permitted
directory full
requested access not permitted
directory already initialised
update not permitted
alter not permitted
undeletable entry not permitted
invalid file spec
invalid file name
zero access requested
conflict with sinman about type
seg too small to be a directory

= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
= dirman
r dirman
= dirman

fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault
fault

1,
2,
3,
1,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
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argument exseg wrong = dirman fault ! 19,
no argument exseg = dirman fault ! 20,
segment cannot be reserved = dirman fault I 21,
update with wrong type = dirman fault ! 22,
update with wrong access = dirman fault ! 23;

# Segment reservation #

BOOL writing = TRUE,
reading = FALSE;

PROC reserve for = (BOOL write, SLOT s) VOIP:
BEGIN

PROC reserve fault = (STRING s, INT i) VOID:
fail (segment cannot be reserved);

runtime error := reserve fault;
IF write
THEN reserve for writing (s)
ELSE reserve for reading (s)
Fl;
runtime error := sys error

END; # reserve for #

t Ensure #
PROC ensure = (INT sin) VOID:

send data message (ensurer send, IF sin < 0 THEN 1 ELSE 2 FI,
sin of current file, sin, ?);

f Retrieve #
PROC retrieve = VOID:

BEGIN
retrieve specified directory;
INT type =

IF (name [0] SHR 21) < 2
THEN t special case #

reduce directory status
ELSE acquire named entry (cap from sin)
FI;

movecap (current file, return slot);
return (type)

END; # retrieve #

PROC retrieve specified directory = VOID:
BEGIN

INT spec char ptr := 0,
spec word ptr := 0,
spec byte ptr := 2;

INT char, name word ptr, name byte ptr, name char count;
INT case mask = ABS 8r337;

PROC bad spec = (STRING s, INT i) VOID:
fail (invalid file spec);

runtime error := bad spec;

INT current spec word := spec [0];
INT spec length = current spec word SHR 24;
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PROC nextchar = INT:
BEGIN

SKIP # this procedure which gets the next character from
the argument string #

END;

IF spec length = 0
THEF ((current spec word SHR 16) & 255) = separator
THEN nextchar
FI;

BOOL finished := FALSE;

UNTIL finished
DO runtime error := bad spec;

name word ptr := 0;
name byte ptr := 3;
name [0] := separator SHL 16;
t an omitted section of code extracts successive components

of a file name #
runtime error := sys error;

name [0] !:= name char count SHL 2t;
IF finished THEN acquire named entry (seg from sin)
# forcing retrieval of a segment even though the object is a

directory #
FI

OD
END; f retrieve specified directory t

PROC reduce directory status = INT:
# This retrieves an enter capability for a directory, possibly with a

reduced access status #
BEGIN

INT type := directory type;
INT access := status SHL 16;
IF second argument = max access request
THEN check and set requested access (access, FALSE)
FI;
type := enter (sinman, capfromsin, sin of current file !

access,
? ? ? ̂  •* , i , () ,

IF type < 0
THEN fail (type + inc proc count)
ELIF type = directory type
THEN fail (conflict with sinman about type)
FI;
moveoap (nO, current file);
type

END; # reduce directory status #

PROC acquire named entry = (INT sinman entry request) INT:
BEGIN

reserve for (reading, current file);
INT index = entry ptr OF locate named entry;
INT cap info 0 = directory [index + cap info 0 offset],

cap info 1 = directory [index + cap info 1 offset];
status := calculate rights (index) 4 full status;
INT access := status SHL 16;
IF access = 0
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THEN release reservation;
fail (no access permitted)

FI;
IF sinman entry request = capfromsin
THEN IF second argument = max access request

THEN check and set requested access (access, TRUE)
FI

ELSE access := read write
FI;
INT type := 4; # will later be reset if file type = store #

IF (cap info 1 & file type field) = store
THEN INT sin = cap info 1 & rhword;

type := enter (sinman, sinman entry request, sin ! access,
?, 1, ?);

IF type < 0
THEN release reservation;

fail (type + ino proc count)
ELIF type = (cap info 1 SHR 2H)
THEN release reservation;

fail (conflict with sinman about type)
FI;
sin of current file := sin

ELSE
# a software capability #
enter (sinman, make swc, cap info 0, cap info 1, ?, ?)

FI;

movecap (nO, current file);
release reservation;

IF sinman entry request = seg from sin
ANDF type = directory type

THEN fail (file not directory)
FI;
type

END; # acquire named entry #

PROC check and set requested access = (REF INT access, BOOL seg res)
VOID:

BEGIN
# second argument is requested access t
INT request = second argument & full access;
IF request = 0
THEN IF seg res THEN release reservation FI;

fail (zero access requested)
FI;
IF (request & access) = 0
THEN IF seg res THEN release reservation FI;

fail (requested access not permitted)
FI;
access := request

END; # check and set requested access t
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PROC locate named entry = ENTRY:
BEGIN

INT name ptr, entry ptr;
IF exists named entry (name ptr, entry ptr)
THEN release reservation;

fail (no such entry)
FI;
(name ptr, entry ptr)

END; # locate named entry #

PROC exists named entry = (REF INT name ptr, entry ptr) BOOL:
BEGIN

SKIP # the body of this procedure which searches for a named
entry in the directory data structure #

END;

PROC calculate rights = (INT index) INT:
calc rights (directory [index + access matrix offset]);

PROC calc rights = (INT access matrix) INT:
BEGIN

INT rights := 0;
IF (status & w) = 0 THEN rights !:= access matrix SHR 21 FI;
IF (status & x) = 0
THEN rights !:= (access matrix SHR 16) & 255
FI;
IF (status & y) = 0
THEN rights !:= (access matrix SHR 8) & 255
FI;
IF (status & z) = 0 THEN rights !:= access matrix & 255 FI;
rights

END; t calo rights #

# Remove t
PROC remove = VOID:

BEGIN
retrieve specified directory;
reserve for (writing, current file);
ENTRY it = locate named entry;
IF (calculate rights (entry ptr OF it) & delete) = 0
THEN release reservation;

fail (deletion not permitted)
FI;
# an omitted section of code does space management inside the
directory segment t

INT sin = IF INT oldcap info 1 = direotory[entryptr OF it
+ cap info 1 offset];

(oldoap info 1 & file type field) = store
THEN oldcap info 1 & rhword
ELSE -1 t software capability #
FI;

directory [entries total] -:= 1;
release reservation;
ensure (sin);
return (success)

END; # remove #
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PROC add to free list = (INT head ptr, tail ptr, nblooks) VOID:
BEGIN

SKIP t the omitted body of this procedure which manages space
in the directory structure #

END;

# Preserve t
PROC preserve = VOID:

BEGIN
# second argument is access matrix f
retrieve specified directory;
check name;
reserve for (writing, current file);
INT cap info 0, cap info 1;
unseal cap to be filed (cap info 0, cap info 1);
ensure (insert named entry

(second argument, cap info 0, cap info 1));
release reservation;
return (success)

END; t preserve #

PROC check name = VOID:
BEGIN

SKIP t this procedure which does a syntax check on a
user-supplied file name #

END;

PROC unseal cap to be filed = (REF INT cap info 0, cap info 1) VOID:
t This procedure discovers the SIN of an object for which a

capability is about to be preserved #
BEGIN

# second argument is access matrix #
IF (second argument & deletable) = 0
THEN release reservation;

fail (undeletable entry not permitted)
Fl;
moveoap (cap to be filed, nO);
INT info, ignore;
enterZ (sinman, preserve cap, ?, ?, ?, ?, info, cap info 0,

cap info 1, ignore);
IF info < 0
THEN release reservation;

fail (info + ino proo count)
Pi;
IF valid access matrix (second argument, info & full access)
THEN release reservation;

IF (info SHR 21) = swctype
THEN enter (sinman, remove cap, info & rhword, ,»uo, ? , ?)
FI;
fail (invalid access matrix)

FI
END; t unseal cap to be filed #

PROC valid access matrix = (INT matrix, max access allowed) BOOL:
BEGIN

SKIP t the omitted body of this procedure which does a syntax
check on access matrices t

END;
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PROC insert named entry = (INT access matrix,
cap info 0, cap info 1) INT:

BEGIN
# returns SIN of an implicitly deleted file if there is one,
otherwise -1 #
PROC insert fail = (INT code) VOID:

BEGIN
release reservation;
IF (cap info 1 & file type field) = store
THEN enter (sinman, remove cap, cap info 1 & rhword,

puo, ?, ?)
FI;
fail (code)

END; # insert fail #

INT sin of a deleted file := -1;
INT index, head ptr;
BOOL new;
IF INT dummy;

(new := exists named entry (dummy, index))
THEN IF (status & create) = 0

THEN insert fail (creation not permitted)
FI;

# an omitted section of code handles space management in the
directory and issues a failure code when the directory is full #

INT offset := 1;
FOR j FROM 0 TO nwords in name - 1 # declared

in the omitted part #
DO offset : =

IF offset = max offset
THEN index := NEXT index; 1
ELSE offset + 1
FI;

directory [index + offset] := name [j]
OD;
index := NEXT index;
directory [index + access matrix offset] := access matrix

ELSE IF (calculate rights (index) & update) = 0
THEN insert fail (update not permitted)
FI;
INT old cap info 1 =

directory [index + cap info 1 offset];
IF (old cap info 1 SHR 24) = (cap info 1 SHR 2t)
THEN insert fail (update with wrong type)
FI;
IF NOT valid access matrix (directory

[index + access matrix offset], cap info 1 &
full access)

THEN insert fail (update with wrong access)
FI;
IF (old cap info 1 & file type field) = store
THEN sin of a deleted file := old cap info 1 & rhword
FI

# when updating, access matrix given as argument is ignored f
FI;
directory [index +• cap info 0 offset] := cap info 0;
directory [index + cap info 1 offset] := cap info 1;
set time and date of preservation (index);
IF new
THEN add to entry chain (head ptr, index);
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directory [entries total] +:= 1
FI;
sin of a deleted file

END; t insert named entry #

PROC set time and date of preservation = (INT index) VOID:
BEGIN

INT ignore;
send data message wait event (clock send, 0, ?, ?, ?);
UNTIL messages (clock reply) = 0 DO wait event OD;
receive data message (clock reply, ignore,

directory [index + time of preservation offset],
directory [index + date of preservation offset], ignore)

END; t set time and date of preservation t

PROC get blocks = (INT n) INT:
BEGIN

SKIP # more space management #
END;

PROC add to entry chain = (INT head ptr, tail ptr) VOID:
BEGIN

SKIP 9 yet more space management #
END;

# Initialise directory #
PROC initialise directory = VOID:

# this is done only to new directories #
BEGIN

reserve for (writing, current file);
IF (directory [0] :=:= 0) = -1
THEN release reservation;

fail (directory already initialised)
FI;
INT block area size = segsize (current file) - header size;
IF block area size < 0
THEN release reservation;

fail (seg too small to be a directory)
FI;
directory [blocks total] := directory [blocks free] := 0;
directory [entries total] := 0;
directory [freelist head] := null;

FOR i FROM hash table start TO hash table end
DO directory [i] := null OD;

INT nblocks = block area size % block size;
IF nblocks > 0
THEN link new blocks and put on free list (hash table end + 1 >

nblocks)
FI;

release reservation;

f successful initialisation - return code gives number of excess
words (in range 0 to block size - 1) at the end of the directory
segment #

return (block area size - nblocks * block size)
END; t initialise directory #
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PROC link new blocks and put on free list = (INT head ptr,
nblocks) VOID:

BEGIN
SKIP
# the code called by the last procedure to set up the chains #

END;

t Alter access f
PROC alter access = VOID:

BEGIN
# second argument: access rights to be removed;

third argument: access rights to be added #
retrieve specified directory;
reserve for (writing, current file);
INT index = entry ptr OF locate named entry;
INT matrix := directory [index + access matrix offset];
IF (oalc rights (matrix) & alter) = 0
THEN release reservation;

fail (alter not permitted)
FI;
matrix 4:= second argument;
matrix I := third argument;
IF (matrix 4 deletable) = 0
THEN release reservation;

fail (undeletable entry not permitted)
FI;
INT max access allowed =

IF INT cap info 1 = directory [index + cap info 1 offset];
(cap info 1 4 file type field) = store

THEN cap info 1 4 full access
ELSE swc access
FI;

IF valid access matrix (matrix, max access allowed)
THEN release reservation;

fail (invalid access matrix)
FI;
directory [index + access matrix offset] := matrix;
release reservation;
ensure (-1);
return (success)

END; t alter access #

# The next three sections are concerned with presenting information about
directory contents to the caller. Details are given for one of them
only #

t Examine directory #
PROC examine directory = VOID:

BEGIN
SKIP t the detail of filling a segment with a description of

directory contents t
END;

# File info t
PROC file info = (REF [] INT inf, REF INT ptr, INT index) VOID:

BEGIN
SKIP # getting the facts about a particular file #

END;
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# File details t
PROC file details = VOID:

BEGIN
SKIP # another examination procedure #

END;

# File examine #
PROC file examine = VOID:

BEGIN
# 'exseg' is an argument segment into which the result goes #
retrieve specified directory;
INT nwords in name = (name [0] SHR 26) + 1;
INT required exseg size =

nwords in name + 2 + date of preservation offset;
runtime error := (STRING s, INT i) VOID:

fail (no argument exseg);
IF INT data = seginf (al);

(data & rhword) < required exseg size
ORF (data & write access) = 0

THEN fail (argument exseg wrong)
FI;
runtime error : = sys error;

movecap (al, return slot);
REF [] INT exseg = map array (return slot);
INT ptr := nwords in name + 1;
reserve for (reading, current file);
file info (exseg, ptr, entry ptr OF locate named entry);
release reservation;

# fill in rest of exseg //
exseg [0] := status;
exseg [1] := 1;
FOR i FROM 0 TO nwords in name - 1
DO exseg [i + 2] := name [i] OD;

refine (return slot, read only ! required exseg size,
return slot);

return (success)
END; # file examine #

PROC fail = (INT fault code) VOID:
BEGIN

return (fault code);
GOTO restart # the beginning of the main loop #

END;
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t MAIN LOOP #
restart:
DO # to infinity #

moveoap (working directory, current file);
INT working directory info = indinf (working directory info slot);
status := (enter access SHR 16) & full status;
sin of current file := working directory info & rhword;
CASE first argument IN

initialise directory, retrieve,
remove, preserve,
fail (invalid entry request), alter access,
examine directory, file details,
fail (invalid entry request), file examine

OUT fail (invalid entry request)
ESAC

OD

END 9 directory manager #
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MAKEPACK

This program is used to inspect the contents of PDBs and also to update
them. New PDBs are initially manufactured empty, and filled in by
successive updates. The PDB contains specifications of the sizes of
the capability segments to be created by LINKER, and also of their
content. The various entry requests in the main loop are
self-explanatory. The updating work is carried out on a copy of the
PDB, the result being copied back to the original at the end of an
update session. An attempt to update a PDB is rejected (rather than
held up) if an update session is already in progress. A separate
procedure called MAKEPDB furnishes a user interface to MAKEPACK.

SLOT stop slot
chan ensure
sinman
pdb slot
true slot
insp slot

P 5,
P 6,
reserve slot (2) ,
getslot,
getslot,
getslot;

runtime error := (STRING s, INT i) VOID: stop system (stop slot, i);

SLOT delete slot;
setupsend (chan ensure, delete slot, data message);

SLOT arg slot
entry cap
new arg

REF [] INT pdb
REF [] INT truepdb
REF [] INT testpdb
REF [] INT readpdb

= A 0,
= A 1,
= N 0;

= maparray (pdb slot); 9 working version i
= maparray (true slot); # original PDB #
= maparray (new arg); # check interlock t
= maparray (insp slot); # PDB to examine i

t Return codes #

INT inadequate status = ABS
bad capseg number = ABS
unknown request = ABS
bad pdb entry = ABS
sinman trouble = ABS
bad oapseg size = ABS
update in progress = ABS
makepack competition = ABS
unimplemented request = ABS
weak supporting capability = ABS
no update session = ABS
invalid segment type = ABS
no further entry = ABS
pdb full = ABS
capseg not set = ABS
too many requests = ABS

INT ro inor = ABS I6r01000000; t to add

I6r800b0001,
I6r800b0002,
I6r800b0003,
I6r800b0004,
I6r800b0005,
I6r800b0006,
I6r800b0007,
I6r800b0008,
I6r800b0009,
I6r800b000a,
I6r800b000b,
I6r800b000c,
I6r800b000d,
I6r800b000e,
I6r800b000f,
I6r800b0010;
to return codes passed back
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# Format of the PDB #
# The PDB is at present a single block with a standard prefix #

INT blkslze = 7 » 128,
readwrite access = read access ! write access,
rcwoacoess = roapaccess ! wcapaccess,
inspect = read access,
modify = write access,
link = exeoaocess,
accessmask = ABS I6r3f0000;

INT poapsegno = 1,
icapsegno = 5,
rcapsegno = 6;

INT segtype = 1 ,
fdmtype = 2,
pdbtype = 3,
swctype = t; # VMO types #

# The first 7 words of the PDB are in a standard format. The first three
words specify respectively the number of entries in the PDB, the
pointer to the first word, and the pointer beyond the last word of the
free area. Each entry in the PDB occupies three consecutive words, ff

INT pdb entries = 0,
free pointer = 1,
string area = 2;

# The next three words of the PDB specify the number of doubleword
entries to be allocated for the P , I , R capability segments. The format
of each entry is as follows

3 1 2U 2 3 1 6 8 1

! / / / / / / / / / / / / / i Access ! / / / / / / / / / / / ! Maximum entry !/!

If I and R capability segments are not required, the corresponding word
in the PDB is -1 «

INT isize = -1, t base of size field #
pcapsegsize = 3,
ioapsegsize = t,
rcapsegsize = 5;

# The final word of the header in the PDB is used for a lock to prevent
simultaneous update sessions taking place on a single PDB. This word
is set to 0 during a makepack session, but will be -1 at all other
times. #

INT makepack look = 6,
first entry = 7;

INT pdb entry size = 3;

t Each three-word entry in the PDB specifies a capability segment and
offse t , together with the entry type. The remaining fields depend on
the type f
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INT capsegshift
vmotypeshift
typeshift
alnbit

INT offsetmask
pdbslotmask
capsegmaslc

= 28,
= 16,
= 10,
= 1;

= ABS I6r1fe,
= ABS I6r700001fe,
= ABS I6r70000000;

# The entry type specifies the nature of the entry,
of other fields depends on the entry type. #

The interpretation

INT workspace segment
init from file title
init from sin
cap from file title
vino from sin
permission

1,
2,
3,
1,
5,
6;

SINMAN is called to provide services in relation to each entry, in
particular to supply the access status of a capability via the 'cap
inf entry. Entry requests as follows: #

INT new seg
seg from sin
cap from sin
preserve
sin inf
cap inf

= 2,
= 3, # for retrieving the PDB as a segment #

5,
7,
11;

INT sizemask = ABS !6rffffff; # returned by 'sin inf' #

9 Slot allocation within the PDB:

A bit map is kept to record those slots in the P,I,R capability
segments for which there is currently an entry in the PDB. During an
update session the map is altered during each transaction, and it is
possible to determine from the map whether at any instant the
capability segment size settings are consistent with the entries, f

[pcapsegno: rcapsegno] INT capseg excess; #for excess requests t
[pcapsegno: rcapsegno] INT default excess; V/default freedom #

default excess [pcapsegno] := 0;
default excess [icapsegno] := 20;
default excess [rcapsegno] := 0;

INT slot capseg, slot offset;
INT mapbase = 8 * pcapsegno,

maplimit = 8 * rcapsegno + 7;
pbase: maplimit] INT slot map; # bit array for slot use t

INT map word, map mask;
PROC set slot = (INT slot) VOID: # standard representation it

BEGIN
slot capseg := slot SHR capsegshift;
slot offset := (slot & byte2) SHR 16;
map word := (slotoffset SHR 5) + (slotoapseg SHL 3);
map mask : = 1 SHL (slotoffset REM 32)

END; # set slot //
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PROC mark pdb slot = (INT word) VOID:
BEGIN

INT oapseg = word SHR capsegshift;
INT offset = (word SHR 1) & byteO;
INT loo = (offset SHR 5) + (oapseg SHL 3);
INT mask = 1 SHL (offset REM 32);
slotmap [loo] !:= mask

END; # mark PDB slot #

PROC max slot = (INT oapseg) INT:
BEGIN

INT base = 8 * oapseg;
INT last slot := -1;
FOR i FROM 0 TO 7
DO IF INT word = slotmap [base + i] ;

word = 0
THEN FOR J FROM 0 TO 31

DO IF (word & (1 SHL J)) = 0
THEN last slot := 32 * i + j
FI

OD
FI

OD;
last slot

END; # max slot #

t Procedures for examining a PDB #

INT resultl, result2, results, result*);

PROC inspect pdb = VOID: # set up PDB to be examined #
BEGIN

enter (sinman, seg from sin, sin of cap ! read access, ?, ?, ?);
moveoap (new arg, insp slot)

END;

PROC examine oapseg = (INT oapseg) INT:
BEGIN

reserve for reading (insp slot);
INT ans =

IF INT size = readpdb [oapseg + isize];
size = -1

THEN oapseg not set
ELSE (size & rowo access) I

(((size & offsetmask) SHR 1) + 1)
FI;

release reservation;
moveoap (null capability, insp slot);
ans

END;

PROC examine pdb entry = VOID:
BEGIN

INT wordO, wordl, word2;
reserve for reading (insp slot);
INT slot = (slotoapseg SHL oapsegshift) 1 (slotoffset SHL 1);
INT entry = looatepdbslot (slot, readpdb);
IF entry > readpdb [pdbentries]
THEN resultl := no further entry
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ELSE INT n = firstentry + (entry - 1) * pdbentrysize;
wordO : = readpdb [n];
wordl := readpdb [n •»• 1];
word2 := readpdb [n + 2];
INT offset = (wordO SHR 1) & byteO;
INT oapseg = {wordO & capsegmask);
resultl := capseg ! (offset SHL 16);
results := (wordO & rhword) SHR typeshift;
IF results = permission
THEN results := wordl;

resultt := worda
ELIF result2 = workspace segment
THEN results := (wordl SHR 8) & accessmask;

resultt := (word! & sizemask) !
((wordO SHL 8) & byte3)

ELSE results := wordl & (rhword ! acoessmask);
IF INT re =

enter (sinman, sininf, wordl & rhword, ?, ?, ?);
ro < 0

THEN resultl := re + ro incr
ELSE resultl) : = ro 4 byteS
FI

FI
FI;
release reservation;
moveoap (null capability, insp slot)

END; # examine PDB entry #

INT max new entries = 32;
MODE NEW = STRUCT (INT wO, w1, w2, SLOT s, BOOL del);
[1: maxnewentries] NEW new;
FOR i FROM LWB new TO UPB new DO s OF new [i] := getslot OD;

INT first new entry, next new entry;
SLOT new entry slot;
INT new vmo type, new segment size, new entry access, new entry type;

PROC set pdb entry = INT:
BEGIN

new entry type := third argument;
new entry access := fourth argument & accessmask;
CASE new entry type IN t switch on entry type #

# 1: workspace segment #
IF new vmo type := fifth argument SHR 2t;

new vmo type <= 3
THEN IF newvmotype = 0 THEN newvmotype := segtype FI;

new segment size := fifth argument & size mask;
make work segment entry

ELSE invalid segment type
FI,

# 2: initialise from file title #
unimplemented request,
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# 3= initialise from SIN #
IF setcapinf (entry cap);

typeofoap = segtype
ANDF (access of cap & read access) = 0

THEN make early bound entry
ELSE weak supporting capability
FI,
# t: capability from file title #
unimplemented request,

# 5: early bound capability #
IF setcapinf (entry cap)
THEN IF typeofcap = swctype

THEN make permission entry
ELIF (access of cap & new entry access) = new entry access
THEN make early bound entry
ELSE weak supporting capability
FI

ELSE weak supporting capability
FI

OUT bad pdb entry
ESAC

END; # set PDB entry #

PROC make delete entry = INT:
BEGIN

REF NEW entry = get free entry;
wO OF entry := (slotcapseg SHL oapsegshift) !

(slotoffset SHL 1);
del OF entry := TRUE;
slotmap [mapword] &:= mapmask;
0

END; f make delete entry *

PROC make work segment entry = INT:
BEGIN

REF NEW entry = get free entry;
wO OF entry := (slotoapseg SHL oapsegshift) ! (slotoffset SHL 1)

1 (new vmo type SHL 16) ( (new entry type SHL typeshift);
wl OF entry := (new entry access SHL 8) ! (new segment size);
w2 OF entry := 0;
del OF entry := FALSE;
slotmap [mapword] !:= mapmask;
0

END; # make work segment entry #

PROC make permission entry = INT:
BEGIN

REF NEW entry = get free entry;
wO OF entry := (slotcapseg SHL oapsegshift) ! (slotoffset SHL 1)

! (permission SHL typeshift);
w1 OF entry := firstword of cap;
w2 OF entry := seoondword of cap;
del OF entry := FALSE;
slotmap [mapword] !:= mapmask;
0

END; t make permission entry #
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PROC make early bound entry = INT:
BEGIN

REF NEW entry = get free entry;
wO OF entry := (slotoapseg SHL oapsegshift) ! (slotoffset SHL 1)

! (new entry type SHL typeshift) ! (sinbit);
w1 OF entry := new entry access ! sin of cap;
w2 OF entry := 0;
movecap (entry cap, s OF entry);
del OF entry := FALSE;
slotmap [mapword] ! := mapmask;
0

END; # make early bound entry #

PROC get free entry = REF NEW:
BEGIN

IF next new entry >= max new entries
THEN return (too many requests);

GOTO restart
FI;
new [next new entry +:=:= 1]

END;

# Routines for checking suitability of capabilities #
INT type of cap,

access of cap, sin of cap, firstword of cap, secondword of cap;

PROC set cap inf = (SLOT slot) BOOL:
BEGIN

INT wordoffset = (slot OF slot SHR 15) & offsetmask;
INT indinf = cseginf (slot);
INT status =

IF indinf > 0
ANDF wordoffset < (indinf & rhword)

THEN INT info, z;
REF INT x = firstwordofcap,

y = secondwordofcap;
movecap (slot, new arg);
enter2 (sinman, capinf, ?, ?, ?, ?, info, x, y, z);
info

ELSE -1
FI;

IF status < 0
THEN type of cap := 0;

access of cap := 0;
sin of cap := -1

ELSE type of cap := status SHR 21;
access of cap := status & accessmask;
sin of cap := status & rhword

FI;
(status >= 0)

END; # set cap inf #

PROC check pdb inf = (SLOT slot, INT access) BOOL:
IF setcapinf (slot)
THEN (access of cap & access) = access

ANDF (typeofcap = pdbtype)
ELSE FALSE
FI; # check PDB inf t
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f PDB work area descriptors #
INT new string area, size of pdb, current pdb sin := -1;

# Calculation procedures t

PROC capseg size = (INT capseg number) INT:
IF INT n = pdb [capsegnumber + isize];

n >= 0
THEN ((n & offsetmask) SHR 1) + 1
ELSE -1
FI; f oapseg size f

PROC set capseg = (INT number, INT access) INT:
IF (number > 0)

ANDF (number <= 256)
THEN ((number - 1) * 2) I (access & rcwc access)
ELSE -1
FI; # set capseg If

t Procedures for creating or opening a PDB #

PROC newpdb = (INT size, BOOL empty) INT:
t allocate and initialise a new PDB #
t if empty, initialise with no entries, otherwise from AO #
# result to AO #
IF SLOT pdb = getslot;

SLOT to seg = getslot;
REF [] INT to = maparray (to seg);

PROC allocate = (INT size, ace) INT:
IF INT re = enter (sinman, newseg, -1 , ace, pdbtype, size);

re < 0
THEN freeslot (pdb);

freeslot (to seg);
re + re incr

ELSE f re = SIN #
movecap (nO, pdb);
enter (sinman, seg from sin, re I write access, ?, ?, ?) ;
moveeap (nO, to seg);
0

FI;
empty

THEN IF size < 7
THEN freeslot (pdb);

freeslot (to seg);
pdb full

ELIF INT re = allocate (size, link ! inspect ! modify);
re < 0

THEN ro
ELSE to [pdb entries] := 0;

to [free pointer] := first entry;
to [string area] := size;
moveoap (pdb, arg slot);
freeslot (to seg);
freeslot (pdb);
size

FI
ELIF NOT check pdb Inf (arg slot, link)
THEN freeslot (to seg);

freeslot (pdb);
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weak supporting capability
ELIF SLOT from seg = getslot;

moveoap (arg slot, nO);
enter (sinman, seg from sin, sin of cap ! read access, ?, ?, ?);
movecap (nO, from seg);
REF [] INT from = maparray (from seg);
INT from size = segsize (from seg);
INT to size =

IF INT min =
from size -
(from [string area] - from [free pointer]);

min <= size
THEN size
ELSE min
FI;

INT re = allocate (to size, access of cap);
re < 0

THEN freeslot (from seg);
re

ELSE to [pdb entries] := from [pdb entries];
to [free pointer] := from [free pointer];
to [pcapsegsize] := from [pcapsegsize];
to [ieapsegsize] := from [icapsegslze];
to [rcapsegsize] := from [rcapsegsize];
to [makepack lock] := -1;
FOR entry FROM first entry BY pdb entry size

TO first entry +• (from [pdb entries] - 1) * pdb entry size
DO FOR i FROM entry TO entry + pdb entry size - 1

DO to [i] := from [i] OD;
IF (from [entry] & sinbit) = 0
THEN INT sin = from [entry + 1] 4 rhword;
enter (sinman, seg from sin, sin ! read access, ?, ?, ?);
enter (sinman, preserve, ?, ?, ?, ?)
FI

OD;
INT string size = from size - from [string area];
FOR j FROM -string size TO -1
DO to [to size + j] := from [from size + j] OD;
to [string area] := to size - string size;
movecap (pdb, arg slot);
freeslot (pdb);
freeslot (from seg);
freeslot (to seg);
to size

FI; * new PDB t

PROC reserve pdb = (INT sin) BOOL:
BEGIN

enter (sinman, seg from sin, sin ! readwrite access, ?, ?, ?);
reserve for writing (new arg);
BOOL pdb free = (testpdb [makepack lock] = 0);
IF pdb free
THEN testpdb [makepaok lock] := 0;

movecap (new arg, true slot)
FI;
release reservation;
pdb free

END; # reserve PDB #
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PROC open for update = INT:
BEGIN

INT pdb info = enter (sinman, sin inf, sin of cap, ?, ?, ?);
size of pdb := pdbinfo & sizemask;
current pdb sin := sin of cap;
IF INT sin = enter (sinman, newseg, sin of cap,

readwrite access, ?, ?);
sin < 0

THEN current pdb sin := -1;
sin + re inor

ELSE moveoap (new arg, pdb slot);
IF pdb [pdb entries] = -1 # new PDB t
THEN pdb [pdb entries] := 0;

pdb [free pointer] := first entry;
pdb [string area] := size of pdb

PI;
pdb [makepaok lock] := -1; # free when copied back #
FOR i FROM mapbase TO maplimit DO slotmap [i] := 0 OD;
INT pointer := first entry;
FOR j FROM 1 TO pdb [pdbentries] # mark PDB entries #
DO INT word = pdb [pointer];

markpdbslot (word);
pointer +:= pdb entry size

OD;
FOR oapseg FROM pcapsegno TO rcapsegno
DO capseg excess [capseg] : = -1 OD;
first new entry := 1;
next new entry := first new entry;
new string area := pdb [string area];
0

FI
END; # open for update #

t Procedures for closing an open PDB t

INT max sins = 256;
[1: maxsins] INT delete list;
INT deleted sins;
BOOL entry match;

PROC abandon session = VOID:
BEGIN

free local slots;
reserve for writing (true slot);
truepdb [makepaok look] := -1;
release reservation;
movecap (null capability, true slot);
current pdb sin := -1;
moveoap (null capability, pdb slot)

END; # abandon session f

PROC free local slots = VOID:
FOR pointer FROM first new entry TO next new entry - 1
DO movecap (null capability, s OF new [pointer]) OD;
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PROC close after update = INT:
BEGIN

INT re := 0;
deleted sins := 0;
FOR capseg FROM poapsegno TO rcapsegno
DO fix capseg size (capseg) OD;
FOR pointer FROM first new entry TO next new entry - 1
DO REF NEW block = new [pointer];

INT slot = wO OF block & pdbslotmask;
INT entry = locatepdbslot (slot, pdb);
IF entry match
THEN add deletion (entry);

IF del OF block
THEN remove (entry)
ELSE replace (entry, block)
FI

ELSE IF NOT del OF block
THEN INT offset := pdb [free pointer];

pdb [free pointer] +:= pdb entry size;
pdb [pdb entries] +:= 1;
IF pdb [free pointer] > new string area
THEN re := pdb full;

GOTO failed # at end of rtn #
FI;
FOR i FROM entry TO (pdb [pdbentries] - 1)
DO INT new offset = offset - pdbentrysize;

pdb [offset] := pdb [new offset];
pdb [offset + 1] :=
pdb [offset + 2] :=
offset := newoffset

OD;
replace (entry, block)

pdb [newoffset +
pdb [newoffset +

FI
FI

current pdb sin, ?, ?);

-1 , deletelist [i], ?) OD;
the PRL garbage collector #

OD;
# at this point the PDB must be copied across t
reserve for writing (true slot);
move (mapsegment (pdb slot), true pdb);
release reservation;
send data message (delete slot, 1,
FOR i TO deleted sins
DO senddatamessage (deleteslot, 2,
# finally, overwrite slots to help

failed: # jump here if PDB becomes full #
movecap (null capability, true slot);
movecap (null capability, pdb slot);
free local slots;
current pdb sin := -1;
re

END; # close after update #

PROC fix capseg size = (INT capseg) VOID:
BEGIN

INT min size = maxslot (capseg) + 1;
INT old size = capsegsize (capseg);
INT new size := IF oldsize = -1 THEN 0 ELSE old size FI;
IF INT excess = capsegexcess [capseg];

excess = -1
THEN IF newsize < minsize

THEN newsize := minsize + defaultexcess [capseg]
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FI
ELSE newsize := minsize + excess
FI;
IF newsize > 256 THEN newsize := 256 FI;
pdb [capseg + isize] :=

setoapseg (newsize, pdb [capseg + isize] & rowoaooess)
END; # fix capseg size f

PROC locate pdb slot = (INT slot, REF [] INT refpdb) INT:
BEGIN

INT entry := 1;
INT pointer := first entry;
entry match := FALSE;
INT n;
FOR i FROM 1 TO refpdb [pdbentries]

WHILE (n := refpdb [pointer] 4 pdbslotmask; n <= slot)
DO IF n = slot THEN entry match := TRUE ELSE entry +:= 1 FI;

pointer +:= pdb entry size
OD;
entry

END; # locate PDB slot #

PROC add deletion = (INT entry) VOID:
IF INT offset = first entry + (entry - 1) * pdbentrysize;

(pdb [offset] & sinbit) = 0
THEN INT sin = pdb [offset + 1] & rhword;

deleted sins +:= 1;
deletelist [deleted sins] := sin

FI; # add deletion #

PROC remove = (INT entry) VOID:
BEGIN

INT offset := first entry + (entry - 1) * pdbentrysize;
FOR i FROM entry TO (pdb [pdbentries] - 1)
DO INT new offset = offset + pdbentrysize;

pdb [offset] := pdb [newoffset];
pdb [offset + 1] := pdb [newoffset + 1];
pdb [offset + 2] := pdb [newoffset + 2]j
offset := newoffset

OD;
pdb [offset] := -1;
pdb [offset + 1] := -1;
pdb [offset + 2] := -1; # clear #
pdb [pdbentries] -:= 1;
pdb [freepointer] -:= pdb entry size

END; # remove #

PROC replace = (INT entry, REF NEW block) VOID:
BEGIN

INT offset = first entry + (entry - 1) * pdbentrysize;
IF (wO OF block & sinbit) = 0
THEN SLOT slot = s OF block;

movecap (slot, new arg);
enter (sinman, preserve, 7, ?, ?, ?)

FI *
pdb [offset: AT 1] := (wO OF block, w1 OF block, w2 OF block)

END; # replace i
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t MAIN LOOP #

restart :

DO CASE first argument IN # switch on entry type #

# 1 : examine capability segment size #
IF cheokpdbinf (argslot, inspect)
THEN IF (second argument >= It)

ANDF (second argument <= 6)
THEN inspect pdb;

return (examine capseg (second argument))
ELSE return (bad capseg number)
FI

ELSE return (inadequate status)
FI,

# 2: examine PDB entry #
BEGIN

result2 := -1;
results := -1 ;
result*! := -1;
IF checkpdbinf (argslot, inspect)
THEN IF (setslot (second argument);

slotcapseg < H OR slotcapseg > 6)
THEN result 1 := bad capseg number
ELSE inspect pdb; examine pdb entry
FI

ELSE resultl := inadequate status
FI;
returns (resultl, results, results, result!))

END,

# 3: set capability segment size #
IF checkpdbinf (argslot, modify)

ANDF sin of cap = current pdb sin
THEN IF (second argument < 1)

ORF (second argument > 6)
THEN return (bad capseg number)
ELIF third argument <= 256 t maximum capseg size #
THEN INT loc = second argument + isize;
pdb [loc] := setcapseg (third argument, fourth argument);
oapseg excess [second argument] := -1;
return (0)
ELSE return (bad capseg size)
FI

ELSE return (inadequate status)

# 1: set capability segment excess #
IF cheokpdbinf (argslot, modify)

ANDF sin of cap = current pdb sin
THEN IF (second argument < 1 )

ORF (second argument > 6)
THEN return (bad oapseg number)
ELIF INT excess = third argument;

excess <= 256
THEN INT size = IF excess < 0 THEN -1 ELSE excess FI ;

capseg excess [second argument] := size;
return (0)
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ELSE return (bad capseg size)
FI

ELSE return (inadequate status)

# 5: set PDB entry #
IF oheokpdbinf (argslot, modify)

ANDF sin of cap = current pdb sin
THEN IF (setslot (second argument);

slotcapseg < U OR slotoapseg > 6)
THEN return (bad capseg number)
ELSE return (set pdb entry)
FI

ELSE return (inadequate status)
FI,

9 6: delete PDB entry #
IF checkpdbinf (argslot, modify)

ANDF sin of cap = current pdb sin
THEN IF (setslot (second argument);

slotcapseg < 1 OR slotcapseg > 6)
THEN return (bad capseg number)
ELSE return (make delete entry)
FI

ELSE return (inadequate status)
FI,

# 7: open PDB for update #
IF current pdb sin = -1
THEN return (update in progress)
ELIF checkpdbinf (argslot, modify)
THEN return (inadequate status)
ELIF reserve pdb (sin of cap)
THEN return (open for update)
ELSE return (makepack competition)
FI,

# 8: close PDB after update #
IF current pdb sin = -1
THEN return (no update session)
ELIF oheekpdblnf (argslot, modify)

ANDF sin of cap = current pdb sin
THEN return (close after update)
ELSE return (inadequate status)
FI,
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# 9: abandon update session #
BEGIN

IF current pdb sin = -1 THEN abandon session FI;
return (0)

END,

# 10: create new PDB f
return (newpdb (second argument, ODD third argument))

OUT return (unknown request)

ESAC

OD t end of main loop #
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DISCGARB

This is the asynchronous disc garbage collector. It is run as a
process on its own. It asks SINMAN to deliver a snapshot of the SIN
directory, indicating the existence and type of all objects which
contain SINs. It also receives messages from instances of SINMAN in
other processes whenever directories or PDBs are retrieved from the
filing system. On the basis of this information, together with
knowledge of the SIN of the master directory, it can locate detached
directories and dispose of them. Although a directory or PDB whose
reference count falls to zero could be disposed of directly, the
work is left to DISCGARB.

SLOT known slot
untouched slot
needs look slot

SLOT sinman
mn clock
mn receive
mn logger
stop perm

SLOT structure slot

f Error codes #
INT next obj fail

check sin fail
scan obj fail
unexpected failure
use count fail

# SINMAN types #
INT sdmtype

segtype
dirtype
pdbtype
swotype

# SINMAN entry requests #
INT remove

sininf
use count
ask sinman
stop disogarb
destroy
change cap
make cap
kill cap

= P 1, # bit map 'a1

= P X * hit. man 'h'

bit map 'c' #= P 6;
= P 7,
= P 8,
= P 9,
= P 10,
= P 11;

= getslot;

= ABS I6r801c0001,
= ABS I6r801c0002,
= ABS I6r801o0003,
= ABS I6r801o0004,
= ABS I6r801o0005;

= 0,
= 1,
= 2,
= 3,

7,
10,
m,
15,
16,
17,
18,
19;

# to get bit maps t

# Segment reservation t

BOOL reserved := FALSE;

PROC reserve = (SLOT s) VOID: (reserved := TRUE;
reserve for reading (s));
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PROC release = VOID:
IF reserved THEN release reservation; reserved := FALSE FI;

PROC stop sinman = VOID: enter (sinman, stop disogarb, 0, 0, 0, 0);

runtime error := (STRING s, INT i) VOID: stop system (stop perm, i);

f Bit maps #

REF [] INT known = maparray (known slot),
untouched = maparray (untouched slot) ,
needs look = maparray (needs look slot);

INT map size = 8000 % bitswidth;
INT needs look count := 0;
INT obj count := 0;

PROC new obj = (INT sin) VOID:
# mark object as "needs look1 if it has not been encountered

before, that is if ( a = 1 AND b = 1 ) OR a = 0. Note that
(a = 0) => (b = 0) #

IF INT word = sin % bitswidth,
bit = 1 SHL (sin %* bitswidth);

INT a = (known [word] !:=:= bit) 4 bit,
b = (untouched [word] &:=:= NOT bit) & bit;

a = b
THEN needs look [word] !:= bit;

obj count +:= 1;
needs look count + : = 1

FI;

INT find ptr := 0; 9 used circularly; never reset t

PROC next obj = INT:
BEGIN

TO mapslze WHILE needs look [find ptr] = 0
DO find ptr +:= 1; IF find ptr >= mapsize THEN find ptr := 0 FI OD;
REF INT word = needs look [find ptr];
IF word = 0 THEN runtime error ("", next obj fail) FI;
INT bit := 1;
INT bit count := 0;
WHILE (word & bit) = 0 DO bit := bit SHL 1; bit count +:= 1 OD;
word &:= NOT bit;
needs look count -:= 1;
find ptr * bitswidth + bit count

END;

PROC check sin = (INT sin) VOID:
# called for each SIN in a directory or PDB #
IF INT type = enter (sinman, slninf, sin, ?, ?, ?);

type < 0
THEN runtime error ("", check sin fail)
ELIF (type SHR 24) = dirtype

ORF (type SHR 24) = pdbtype
THEN new obj (sin)
FI;

INT serial; # set by 'get bit maps'; primary copy is in SINMAN #
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PROC get bit maps = VOID:
t initialise bit maps from SIN directory #
BEGIN

INT o count, mfdsin, d;
moverow (untouched, nO);
moverow (needs look, n1);
enters (sinman, ask sinman, 0, 0, 0, 0, c count, mfdsin,

serial, d);
FOR 1 FROM 0 TO mapsize - 1
DO known [i] := untouched [i] 1 needs look [i] OD;
needs look count := obj count := o count;
new obj (mfdsin)

END;

# Channels, etc #

SLOT send clock, receive clock, receive, send logger, receive logger;

set up send with reply (mn clock, send clock, data reply message,
receive clock, data message);

set up receive (mn receive, receive, data message);

set up send with reply (nm logger, send logger, full reply message,
receive logger, data message);

INT clock interval = 12000 # 2 minute # ,
objs per tick = 10; f cycle about once per hour t

9 Interpretation of directories and PDBs #

PROC init structure slot = VOID:
(enter (sinman, make cap, ?, ?, ?, ?); movecap (no, structure slot));

PROC kill structure slot = VOID:
(movecap (structure slot, nO); enter (sinman, kill cap, ?, ?, ?, ?));

PROC scan object = (INT sin, PROC (INT) VOID check) VOID:
IP REF [) INT structure = maparray (structure slot);

moveoap (structure slot, nO);
INT re = enter (sinman, change cap, sin 1 read access, ?, ?, ?);
ro < 0

THEN runtime error ("", scan obj fail)
ELIF moveoap (nO, structure slot);

INT type = re;
reserve (structure slot);
type = dirtype

THEN # scan directory #

# See DIRSTHUCT for definition and explanation of the structure
of a directory #

OP NEXT = (INT i) INT: structure [i] 4 rhword;
OP LAST = (INT i) INT: structure [i] SHR 16;

INT header size = 6,
block size = 6;
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INT blocks total = 0, // Indices to directory header t
blocks free = 1,
entries total = 2,
freellat head = 3,
hash table start = H,
hash table end = 5,

null = 0, # the null index to a directory #

access matrix offset = 1, # useful block offsets #
cap info 1 offset = 3,
max offset = block size - 1;

INT file type field = ABS I6rf0000000;

PROC check entries = (INT head) VOID:
BEGIN

INT index := NEXT head;
UNTIL index = null
DO INT nblocks = structure [index + 1];

TO nblocks - 1 DO index := NEXT index OD;
INT cap info 1 =

structure [index + cap info 1 offset];
IF (cap info 1 & file type field) = 0 I store t
THEN INT ain = cap info 1 4 rhword;

check (sin)
FI;
index := NEXT index

OD
END;

IF structure [0] = -1 # if initialised #
THEN FOR i FROM hash table start TO hash table end

DO check entries (i) OD
# otherwise ignore - probably too small to be a directory
segment #

FI;

release

ELIF type = pdbtype
THEN * scan PDB #

t layout of PDBs; for authoritative version, see LINKER #
* there should really be an ENVIRON for this, as for DIRSTRUCT t
INT pdbentries = 0,

free pointer = 1,
string area a 2,
p oapseg size a 3,
i oapseg size = 1,
r oapseg size = 5,
makepaok look = 6,
first entry = 7;

INT isize = p oapseg size - 4j
INT w per entry = 3; t number of words per entry #
INT sinbit = 1;

INT ontrloa = structure [pdb entries];
FOR 1 FROM first entry BY w per entry

TO first entry + (entries - 1) * w per entry
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DO INT a = structure [i],
b = structure [i + 1];

IF (a & sinbit) = 0 THEN check (b & 65535) FI
OD;

release
ELSE runtime error ("", unexpected failure)
FI;

t Garbage disposal #

PROC scan garbage = (PROC (INT) VOID work) VOID:
FOR i FROM 0 TO mapslze - 1
DO INT word = untouched [i];

FOR j FROM 0 TO bitawidth - 1
DO IF (word & (1 SHL J)) = 0

THEN work (i • bitswidth + j) FI OD
ODi

INT garbage count;

COMMENT
PROC type = (INT sin)VOID:

( garbage count + : = 1; print(sin, blank) );
COMMENT

PROC remove dir pdb = (INT sin) VOID:
# first pass of 'scan garbage1 f
BEGIN

garbage count +:= 1;

PROC check entry = (INT s) VOID:
# argument of 'scan object" #
IF (known [s % bitswidth] & (1 SHL (s %* bitswidth))) = 0
THEF # directory or PDB #

INT re = enter (sinman, remove, s, ?, ?, ?);
re < 0

THEN runtime error ("remove dir pdb", re)
FI;

scan object (sin, check entry)
END;

PROC check use count = (INT sin) VOID:
// second pass of 'scan garbage' t
IF INT re = enter (sinman, use count, sin, ?, ?, ?);

re < 0
THEN runtime error ("check use count", ro)
ELIF re = 0
THEN runtime error ("", use count fail)
FI;

PROC remove seg = (INT sin) VOID:
# third pass of 'scan garbage' #
BEGIN

PROC check entry = (INT s) VOID:
IF (known [s % bitswidth] & (1 SHL (s %* bitswidth))) = 0
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THEF t segment #
INT ro = enter (sinman, remove, s, ? , ? , ? ) ;
re < 0

THEN runtime error ("remove seg", ro)
FI;

scan object (sin, check entry)
END;

PROC destroy obj = (INT sin) VOID:
* fourth pass of 'scan garbage' t
enter (sinman, destroy, sin, ?, ?, ?)j

t MAIN PROGRAM #

init structure slot;

DO get bit maps;

WHILE needs look count > 0 ORF messages (receive) > 0
DO send data message (send clock, clock interval, ?, ?, ?);

UNTIL (WHILE messages (receive) > 0
DO INT sin, ser, d;

receive data message (receive, sin, ser, d, d);
# if ser = serial the message refers to a previous

run of DISCGARB, and must be ignored *
IF ser = serial THEN new obj (sin) FI

OD;
messages (receive clock) > 0)

DO wait event OD;
(INT d; receive data message (receive clock, d, d, d, d));

TO objs per tick WHILE needs look count > 0
DO INT sin = next obj; scan object (sin, check sin) OD

OD;

# the garbage has been found #

BEGIN

garbage count ;i 0;
scan garbage (remove dlr pdb);
send full message (send logger, 7, obj count, garbage count,

?, P 0);
kill structure slot;
scan garbage (check use count);
scan garbage (remove seg);
kill structure slot;
scan garbage (destroy obj);
UNTIL messages (receive logger) > 0 DO wait event OD;
(INT d; receive data message (receive logger, d, d, d, d))

END

OD
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